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ABSTRACT 

 

The goal of this paper is to present the unsticking piston after stop stage of a fluid power system. This phenomenon is a real 

problem for the industrial development of pneumatic technology. Less apparent in hydraulic systems but also present, this 

phenomenon will be described, analysed and a method will be proposed to predict it. Simulation helps to explain certain 

experimental results obtained in positioning linear actuators. 
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NOMENCLATURE 
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XpC , pX partial derivative of the mass flow rate 

qJ around equilibrium state (kg/s/Pa) 

F force (N) 

e

J

u
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uJG , u partial derivative of the mass flow rate qJ 

around equilibrium state (kg/s/V) 

k polytropic constant 

kr spring constant (N/m) 

M total load (kg) 

p pressure in the cylinder chamber (Pa) 

Xm
q  mass flow rate provided from the servo-

distributor to cylinder chamber X (kg/s) 

r perfect gas constant (J/kg/K) 

S area of cylinder bore (m
2
) 

t time (s) 

T temperature (K) 

u servo-distributor input voltage (V) 

v velocity (m/s) 

V volume (m
3
) 

y position (m) 

δ variation near equilibrium set 

Subscripts 

C Coulomb friction 

DS dynamic stiction friction 

E exhaust 

f friction 

mes experimental measures 

N chamber N 

P chamber P 

S supply 
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sim simulated 

SK Stribeck friction 

SS static stiction friction 

t rod 

u unsticking 

v viscous friction 

Superscripts 

e equilibrium 

stop partial equilibrium at time stop 

 

INTRODUCTION 

 

In the past few years, new electropneumatic positioning 

devices have come on to the market. One of the most 

critical problems for their industrial integration originates 

from the existence of a steady state error due to dry 

friction. So naturally reducing this friction during the 

design of the product (with a new type of joint for 

example) can be a valid development. Unfortunately when 

position is controlled by position, velocity and 

acceleration feedback, even if there is no integrator in the 

control law, the consequence is an increase in the sticking 

and restarting effect, which is better known in mechanical 

processing as "stick-slip" [1], even though in this case the 

cause is different. 

This paper presents a comparison between experimental 

and simulated results, obtained for piston displacements 

for which an adapted flow stage model of the servo-

distributors has been used [2]. This paper, therefore, 

completes previous development carried out concerning 

piston unsticking in pneumatic systems by Sesmat et al 

[3]. 

 

1 GENERALITY ABOUT FRICTION 

 

Friction effect on the industrial systems have been studied 

by many authors, [4 to 11] who have proposed some 

physical and mathematical models. Theoretically these 

models are not stationary but it is usual to make the 

assumption that only parameters evolve with time but the 

form of the model does not. Four kinds of friction are 

generally described: viscous, static, Stribeck and Coulomb 

friction (Figure 1). 

Stiction FS

Stribeck FSK

Friction

Velocity
0

Coulomb FC

Viscous FV

 

Figure 1 Different friction phenomena. 

Modelling static friction is the most difficult phase, it 

concerns very low velocities when the joint is stick on to 

the cylinder wall due to a static stiction force FS. 

In 1902 Stribeck observed an exponential decrease of 

friction when the velocity is small and increasing. During 

this stage the piston moves along the cylinder wall, the 

joint loses its shape. This decrease in friction can reach 

25% of stiction friction and tends towards Coulomb 

friction.  

The main classic models describing all main friction 

phenomena of are compared in figure 2. 

Friction

Velocity0

Tustin _ _

Bo et Pavelescu __

Armstrong-Hélouvry -.

Hess et Soom ..

 

Figure 2 Comparison between the more usual friction 

models. 

 

2 MEASURE AND IDENTIFICATION OF 

FRICTION 

 

Generally friction forces are function of velocity. Figure 3 

shows experimental results obtain in the electropmeumatic 

system described in section 4. 

 

 

Figure 3 Experimental measure of friction force. 

The first thing to note is that the model is not symmetrical. 



 

4
th
 JHPS International Symposium on Fluid Power, JHPS’99, 15-17 November 1999, Tokyo Japan, p125-130 

So the friction force is noted F
+
 if velocity is positive and 

F
-
 in other case. 

Secondly in electropneumatic actuators, the track surface 

quality (thus the piston position), the joint wear, the 

working conditions (temperature, pressure, quality of air) 

are all parameters which influence the friction value. It 

can be noticed that at low velocities the friction values are 

not constant. It is difficult to fix a Stribeck time constant. 

That is why the notions of dynamic FDS and static FSS 

stiction friction are defined as equal to the friction value at 

sticking and slipping time respectively. 

 

3 SIMPLE CASE OF PISTON UNSTICKING: 

SIMPLE ACTING ACTUATOR 

 

The model (Eq. 1) of an electropneumatic simple-acting 

actuator can be obtained using two physical laws: the first 

giving the pressure dynamics in the chamber with variable 

volume and the second being the fundamental mechanical 

relation. A pressure evolution law in a chamber with 

variable volume can be obtained with the following 

assumptions [12, 13]: 

the air is a perfect gas and its kinetic energy is negligible 

in the chamber, 

the process is polytropic characterised by coefficient k. 

the temperature variation in the chamber is negligible and 

so is considered equal to the supply temperature. 
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The nullity of all time derivatives in the model (1) defines 

the equilibrium set. This definition is important and must 

not be confused with mechanical equilibrium. In fact this 

last notion corresponds to the nullity of the two last 

equations in the model (1). Physically this means that the 

piston has stopped but the pressure in the chamber 

continues evolve. So the notion of partial equilibrium 

(noted with superscript stop) has to be defined as the case 

where the mechanical equilibrium is obtained but not the 

pneumatic equilibrium. The model (1) leads to the 

following conditions at the piston stop time: 
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u

stop
 is the value of the control which corresponds to a 

pressure force equal to the sum of the friction force and 

spring force at time stop (Eq. 3). Due to the form of 

control law (acceleration feedback), this value is constant 

during all the partial equilibrium stage. 

 

 ( )stop
f

stop
r

stop
tFykSp +=  (3) 

with  ( ) +− ≤≤ DS
stop

fDS FtFF  

Then: 

 ( ) ( )+− +≤≤+ DS
stop

r
stop

DS
stop

r Fyk
S

pFyk
S

11
 (4) 

 

A good servo-distributor must have an steep slope for the 

pressure gain characteristic at null mass flow rate and also 

the pressure force characteristic too. Then u
stop

 is small 

and figure 4 shows that the mass flow rate can be 

considered proportional to the pressure. 

 

 

Figure 4 Mass flow rate characteristics series. 

 

This assumption combined with the first equation of 

model (1) shows that the pressure evolution in the 

chamber is of first order. The pressure evolves and tends 

to a theoretical value of pressure p(u
stop

) deduced from the 

pressure gain characteristic of the servo-distributor. Two 

cases are possible according to this pressure value. If 

relation (5) is true: 

 ( )( ) ( )[ ] [ ]+−

∞→
∈−=− SSSS

stop
r

stopstop
r

t
FFykuSpyktSp ;lim  (5) 
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then it is certain than the partial equilibrium leads to a 

total equilibrium without the piston unsticking (see case ℵ 

in figure 5). But in the other case the piston slips after 

sticking (at t=tu in case  ℑ in figure 5). Another control 

value is calculated and the same analysis has to be carried 

out to predict whether or not there will be another stick-

slip phase. 

( )−+ SS
stop

r Fyk
S

1

( )++ SS
stop

r Fyk
S

1

stopp

�

�

Pressure

Time
0

( )stopup

tutstop

 

Figure 5 Possible pressure evolutions during partial 

equilibrium. 

 

As opposed to the classical description of stick-slip in 

mechanical systems, a periodic cycle of alternating 

moving and stopping does not appear in all cases. It is not 

a question of limit cycle, the unsticking stage can appear 

only one time. 

However in case of double-acting systems the 

phenomenon of piston unsticking has been noticed in both 

cases but never explained with experimental results. That 

is what this paper will explain in the next sections. 

 

4 DESCRIPTION AND MODELLING OF AN 

ELECTROPNEUMATIC SYSTEM 

 

The system under consideration (figure 6) is a linear 

double acting electropneumatic servodrive using a simple 

rod (32/20 mm) with a stroke of 500 mm controlled by 

two three-way  servo-distributors. A potentiometer gives 

the position. Velocity is obtained by analogue derivation 

and acceleration by numerical derivation. A pressure 

sensor is implemented in each chamber. 

With same assumptions as in section 2, considering that 

the two servo-distributors are identical and that there is no 

leakage between the two cylinder chambers, the tangent 

linearised model of the system is described by Eq. 7 [12]. 
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Figure 6 Electropneumatic system. 

With variation near equilibrium set 
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With pressure time constants 
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5 EXPERIMENTAL RESULTS 

 

With a classical partial state feedback in position, velocity 

and acceleration, for a displacement of 50 mm near the 

end stroke of the cylinder, figure 7 shows experimental 

results and occurrence of restart at t=t3. Pressures and 

position are given by sensors, the pressure force is 

reconstructed as follow: 

 

 ( ) ( ) ( ) EtNNPP pSpSpSForce ttt −−=  (9) 

 

This occurrence of piston unsticking has been explained 

in simulation by Sesmat et al [3] using an appropriate 

flow stage model of the servo-distributor. In this case of 

double-acting cylinder the pressure force evolution 

comes from the evolution of both pressures due to the 

parallel structure of the system. Then during all the time 

of the partial equilibrium stage, to assure total 

equilibrium, the evolution of the two pressures must 

verify Eq. 10: 

 ( ) [ ]+−∈∀ SSSS FFtForcet ;  (10) 

 

Figure 7 Experimental results: unsticking phenomenon 
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To understand the reason for this undesirable 

phenomenon the pressure evolution is presented in plane 
( )EtNNPP pSpSpS + ,  in which stiction friction values 

are identify. By using information about position and 

direction of movement, we deduced: 
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Friction values (Eq. 11) are define by used Eq. 12 to plot 

the straight lines in figure 8: 

 

 fPPEtNN FpSpSpS +=+  (12) 

 

 

 

Figure 8 Analysis of unsticking piston and friction 

identification. 

 

The last two figures show that between t2 and t3 the two 

pressure dynamics are very different (by a ratio of 8). The 

biggest chamber has the biggest time constant according 

to relation 8. In order to predict the unsticking time, the 

differential pressure equations can be resolved (Eq 13): 
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So during the stop stage the force evolution is: 
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Using Eq. 17, the two inequation 10 can not be resolved 

analytically. The numerical solution in this case is 

s 80.3=sim
ut . Figures 9 and 10 show comparisons 

between experimental measurements and simulation. The 

time at which the first stop occurs is tacken as a reference. 

The experimental unsticking time 

s 86.323 =−= ttt mesu  agrees with the simulation. 

 

 

 

Figure 9 Simulated and experimental pressure 

evolutions after stop 

 

By considering an isothermal evolution instead of a 

polytropic one, the simulation results are improved 

(figures 9 and 10). 

 

 

 

Figure 10 Simulated and experimental force evolution 

after stop 
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CONCLUSION 

 

In this paper the phenomenon of piston unsticking has 

been studied. This is not caused by the use of an integrator 

in the positioning control law. 

In the case of simple acting fluid power actuators the 

unsticking piston phenomenon depends only on the final 

value of the chamber pressure. This value can be 

predicted from pressure gain characteristic at null mass 

flow rate with the knowledge of the control value at time 

stop.  

However for double acting actuators the combination of 

stiction friction and the parallel structure of the system can 

caused piston unsticking in one other case. During 

pressure evolution, if the pressure exits from the static 

stiction range, the piston moves again after sticking. 

The difficulty of evaluating friction due principally to its 

variation with time, position and experimental conditions 

requires the development of the appropriate control law to 

reduce this undesirable effect. Some further work 

concerning the estimation of friction in real time [14] has 

to be carried out or robust control [15, 16] must be 

improved. 
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