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Abstract. During wakefulness and deep sleep brain states, cortical neu-
ral networks show a different behavior, with the second characterized by
transients of high network activity. To investigate their impact on neu-
ronal behavior, we apply a pairwise Ising model analysis by inferring the
maximum entropy model that reproduces single and pairwise moments
of the neuron’s spiking activity. In this work we first review the infer-
ence algorithm introduced in Ferrari, Phys. Rev. E (2016) [1]. We then
succeed in applying the algorithm to infer the model from a large en-
semble of neurons recorded by multi-electrode array in human temporal
cortex. We compare the Ising model performance in capturing the sta-
tistical properties of the network activity during wakefulness and deep
sleep. For the latter, the pairwise model misses relevant transients of high
network activity, suggesting that additional constraints are necessary to
accurately model the data.

Keywords: Ising model, maximum entropy principle, natural gradient,
human temporal cortex, multielectrode array recording, brain states

Advances in experimental techniques have recently enabled the recording of
the activity of tens to hundreds of neurons simultaneously [2] and has spurred
the interest in modeling their collective behavior [3,4,5,6,7,8,9]. To this purpose,
the pairwise Ising model has been introduced as the maximum entropy (most
generic [10]) model able to reproduce the first and second empirical moments
of the recorded neurons. Moreover it has already been applied to different brain
regions in different animals [3,5,6,9] and shown to work efficiently [11] .

The inference problem for a pairwise Ising model is a computationally chal-
lenging task [12], that requires devoted algorithms [13,14,15]. Recently, we pro-
posed a data-driven algorithm and applied it on rat retinal recordings [1]. In
the present work we first review the algorithm structure and then describe our
successful application to a recording in the human temporal cortex [4].

We use the inferred Ising model to test if a model that reproduces empirical
pairwise covariances without assuming any other additional information, also
predicts empirical higher-order statistics. We apply this strategy separately to
brain states of wakefulness (Awake) and Slow-Wave Sleep (SWS). In contrast to
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the former, the latter is known to be characterized by transients of high activity
that modulate the whole population behavior [16]. Consistently, we found that
the Ising model does not account for such global oscillations of the network
dynamics. We do not address Rapid-Eye Movement (REM) sleep.

1 The model and the geometry of the parameter space

The pairwise Ising model is a fully connected Boltzmann machine without hidden
units. Consequently it belongs to the exponential family and has probability
distribution:

Pη
(
X
)

= exp
(
T (X) · η − logZ[η]

)
, (1)

where X ∈ [0, 1]N is the row vector of the N system’s free variables and Z[η]
is the normalization. η ∈ RD is the column vector of model parameters, with
D = N(N + 1)/2 and T (X) ∈ [0, 1]D is the vector of model sufficient statistics.
For the fully-connected pairwise Ising model the latter is composed of the list of
free variables X and their pairwise products:

{Ta(X)}Da=1 = { {Xi}Ni=1 , {XiXj}Ni=1,j=i+1 } ∈ [0, 1]D . (2)

A dataset Ω for the inference problem is composed by a set of τΩ i.i.d. empirical
configurations X: Ω = {X(t)}τΩt=1. We cast the inference problem as a log-
likelihood maximization task, which for the model (1) takes the shape:

η∗ ≡ argmax
η

`[η] ; `[η] ≡ TΩ ·η− logZ[η] , (3)

where TΩ ≡ E
[
T (X) | Ω

]
is the empirical mean of the sufficient statistics. As

a consequence of the exponential family properties, the log-likelihood gradient
may be written as:

∇ `[η] = TΩ−Tη , (4)

where Tη = E
[
T (X)

∣∣η ] is the mean of T (X) under the model distribution (1)
with parameters η. Maximizing the log-likelihood is then equivalent to imposing
TΩ = Tη: the inferred model then reproduces the empirical averages.

Parameter space geometry In order to characterize the geometry of
the model parameter space, we define the minus log-likelihood Hessian H[η], the
model Fisher matrix J [η] and the model susceptibility matrix χ[η] as:

χab[η] ≡ E
[
TaTb

∣∣ η ]−E
[
Ta
∣∣ η ]E[ Tb ∣∣ η ] (5)

Jab[η] ≡ E
[
∇a logPη

(
X
)
∇b logPη

(
X
) ∣∣ η ] , (6)

Hab[η] ≡ −∇a∇bl
[
η
]
, (7)

As a property inherited from the exponential family, for the Ising model (1):

χab[η] = Jab[η] = Hab[η] . (8)

This last property is the keystone of the present algorithm.



Moreover, the fact that the log-likelihood Hessian can be expressed as a co-
variance matrix ensures its non-negativity. Some zero Eigenvalues can be present,
but they can easily be addressed by L2-regularization [14,1]. The inference prob-
lem is indeed convex and consequently the solution of (3) exists and is unique.

2 Inference algorithm

The inference task (3) is an hard problem because the partition function Z[η]
cannot be computed analytically. Ref. [1] suggests applying an approximated
natural gradient method to numerically address the problem. After an initial-
ization of the parameters to some initial value η0, the natural gradient [17,18]
iteratively updates their values with:

ηn+1 = ηn − αJ−1[ηn] ·∇ `[ηn] . (9)

For sufficiently small α, the convexity of the problem and the positiveness of the
Fisher matrix ensure the convergence of the dynamics to the solution η∗.

As computing J [ηn] at each n is computationally expensive, we use (8) to
approximate the Fisher with an empirical estimate of the susceptibility [1]:

J [η] = χ[η] ≈ χ[η∗] ≈ χΩ ≡ Cov
[
T
∣∣ Ω ]

. (10)

The first approximation becomes exact upon convergence of the dynamics, ηn →
η∗. The second assumes that (i) the distribution underlying the data belongs to
the family (1), and that (ii) the error in the estimate of χΩ , arising from the
dataset’s finite size, is small.

We compute χΩ of Eq. (10) only once, and then we run the inference algo-
rithm that performs the following approximated natural gradient:

ηn+1 = ηn − αχ−1Ω ·∇ `[ηn] . (11)

Stochastic dynamics.4 The dynamics (11) require estimating ∇ `[η] and
thus of Tη at each iteration. This is accounted by a Metropolis Markov-Chain
Monte Carlo (MC), which collects Γη, a sequence of τΓ i.i.d. samples of the
distribution (1) with parameters η and therefore estimates:

TMC
η ≡ E

[
T (X)

∣∣ Γη ] . (12)

This estimate itself is a random variable with mean and covariance given by:

E
[
TMC
η

∣∣ {Γη} ] = Tη ; Cov
[
TMC
η

∣∣ {Γη} ] =
J [η]

τΓ
, (13)

where E
[
·
∣∣ {Γη} ] means expectation with respect to the possible realizations

Γη of the configuration sequence.

4 The results of this section are grounded on the repeated use of central limit theorem.
See [1] for more detail.



Data: TΩ,χΩ
Result: η∗,TMC

η∗

Initialization: set τΓ = τΩ ,α = 1 and η0; estimate TMC
η0 and compute ε0 ;

while ε > 1 do
ηn+1 ← ηn−αχ

−1
Ω ·∇ l[ηn];

estimate TMC
ηn+1

and compute εn+1;

if εn+1 < εn then
increase α, keeping α ≤ 1 ;

else
decrease α and set ηn+1 = ηn;

end
n← n+ 1;

end
Fix α < 1 and perform several iterations.

Algorithm 1: Algorithm pseudocode for the Ising model inference.

For η sufficiently close to η∗, after enough iterations, this last result allows
us to compute the first two moments of ∇`MC

η ≡ TΩ−TMC
η , using a second

order expansion of the log-likelihood (3):

E
[
∇`MC

η

∣∣ {Γη} ] = H[η] · (η−η∗) ; Cov
[
∇`MC

η

∣∣ {Γη} ] =
J [η∗]

τΓ
. (14)

In this framework, the learning dynamics becomes stochastic and ruled by
the master equation:

Pn+1(η′) =

∫
dη Pn(η) Wη→η′ [η] ; Wη→η′ [η] = Prob

(
∇`MC

η = η′−η
)
, (15)

where Wη→η[η] is the probability of transition from η to η′. For sufficiently
large τΓ and thanks to the equalities (8), the central limit theorem ensures that
the unique stationary solution of (15) is a Normal Distribution with moments:

E
[
η
∣∣ P∞(η)

]
= η∗ ; Cov

[
η
∣∣ P∞(η)

]
=

α

(2− α)τΓ
χ−1[η∗] . (16)

Algorithm. Thanks to (8) one may compute the mean and covariance
of the model posterior distribution (with flat prior):

E
[
η
∣∣ PPost(η)

]
= η∗ ; Cov

[
η
∣∣ PPost(η)

]
=

1

τΩ
χ−1[η∗] (17)

where τΩ is the size of the training dataset. From (14), if η ∼ PPost we have:

E
[
∇`MC

η

∣∣ {Γη∼PPost}
]

= 0 ; Cov
[
∇`MC

η

∣∣ {Γη∼PPost}
]

=
2χ[η∗]

τΓ
. (18)

Interestingly, by imposing:
1

τΩ
=

α

(2− α)τΓ
(19)



the moments (16) equal (17) [1]. To evaluate the inference error at each iteration
we define:

εn =
∥∥∇`MC

ηn

∥∥
χΩ

=

√
τΩ
2D
∇`MC

ηn ·χ
−1
Ω · ∇`MC

ηn . (20)

Averaging ε over the posterior distribution, see (18), gives ε = 1. Consequently,
if ηn 6= η∗ implies εn > 1 with high probability, for ηn → η∗ thanks to (19) we
expect εn =

√
τΩ/τΓ /(2− α) [1]. As sketched in pseudocode 1, we iteratively

update ηn through (11) with τΓ = τΩ and α < 1 until εn < 1 is reached.

3 Analysis of cortical recording
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Fig. 1. Empirical pairwise covariances against their model prediction for Awake and
SWS. The goodness of the match implies that the inference task was successfully com-
pleted. Note the larger values in SWS than Awake

As in [4,7], we analyze∼ 12 hours of intracranial multi-electrode array record-
ing of neurons in the temporal cortex of a single human patient. The dataset is
composed of the spike times of N = 59 neurons, including N I = 16 inhibitory
neurons and NE = 43 excitatory neurons. During the recording session, the sub-
ject alternates between different brain states [4]. Here we focused on wakefulness
(Awake) and Slow-Wave Sleep (SWS) periods. First, we divided each record-
ing into τΩ short 50ms-long time bins and encoded the activity of each neuron
i = 1, . . . , N in each time bin t = 1, . . . , τΩ as a binary variable Xi(t) ∈ [0, 1]
depending on whether the cell i was silent (Xi(t) = 0) or emitted at least one
spike (Xi(t) = 1) in the time window t. We thus obtain one training dataset
Ω = {{Xi(t)}Ni=1}

τΩ
t=1 per brain state of interest. To apply the Ising model we

assume that this binary representation of the spiking activity is representative
of the neural dynamics and that subsequent time-bins can be considered as in-
dependent. We then run the inference algorithm on the two datasets separately
to obtain two sets of Ising model parameters ηAwake and ηSWS.



Thanks to (4), when the log-likelihood is maximized, the pairwise Ising model
reproduces the covariances E

[
XiXj | Ω

]
for all pairs i 6= j. To validate the

inference method, in Fig. 1 we compare the empirical and model-predicted pair-
wise covariances and found that the first were always accurately predicted by
the second in both Awake and SWS periods.
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Fig. 2. Empirical and predicted distributions of the whole population activity K =∑
iXi. For both Awake and SWS periods the pairwise Ising model outperforms the

independent model (see text). However, Ising is more efficient at capturing the popu-
lation statistics during Awake than SWS, expecially for medium and large K values.
This is consistent with the presence of transients of high activity during SWS.

This shows that the inference method is successful. Now we will test if this
model can describe well the statistics of the population activity. In particular,
synchronous events involving many neurons may not be well accounted by the
pairwise nature of the Ising model interactions. To test this, as introduced in Ref.
[6], we quantify the empirical probability of having K neurons active in the same
time window: K =

∑
iXi. In Fig. 2 we compare empirical and model prediction

for P (K) alongside with the prediction from an independent neurons model, the
maximum entropy model that as sufficient statistics has only the single variables
and not the pairwise: {Ta(X)}Na=1 = {Xi}Ni=1. We observed that the Ising model
always outperforms the independent model in predicting P

(
K
)
.

Fig. 2 shows that the model performance are slightly better for Awake than
SWS states. This is confirmed by a Kullback-Leibler divergence estimate:

DKL

(
PData
Awake(K)

∣∣ P Ising
Awake(K)

)
= 0.005; DKL

(
PData
SWS (K)

∣∣ P Ising
SWS (K)

)
= 0.030 .

This effect can be ascribed to the presence of high activity transients, known
to modulate neurons activity during SWS [16] and responsible for the larger
covariances, see Fig. 1 and the heavier tail of P (K), Fig. 2. These transients are
know to be related to an unbalance between the contributions of excitatory and
inhibitory cells to the total population activity [7]. To investigate the impact of



these transients, in Fig. 3 we compare P (K) for the two populations with the cor-
responding Ising model predictions. For the Awake state, the two contributions
are very similar, probably in consequence of the excitatory/inhibitory balance
[7]. Moreover the model is able to reproduce both behaviors. For SWS periods,
instead, the two populations are less balanced [7], with the inhibitory (blue line)
showing a much heavier tail. Moreover, the model partially fails in reproducing
this behavior, notably strongly overestimating large K probabilities.
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Fig. 3. Empirical and predicted distributions of excitatory (red) and inhibitory (blue)
population activity. During SWS, the pairwise Ising model fails at reproducing high
activity transients, especially for inhibitory cells.

Conclusions: (i) The pairwise Ising model offers a good description of
the neural network activity observed during wakefulness. (ii) By contrast, tak-
ing into account pairwise correlations is not sufficient to describe the statistics
of the ensemble activity during SWS, where (iii) alternating periods of high and
low network activity introduce high order correlations among neurons, especially
for inhibitory cells [16]. (iv) This suggests that neural interactions during wake-
fulness are more local and short-range, whereas (v) these in SWS are partially
modulated by internally-generated activity, synchronizing neural activity across
long distances [4,16,19].
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