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Abstract

This paper deals with the robust control problem of a pneu-
matic actuator subjected to parameters uncertainties and load
disturbances. The control strategies are based on second order
sliding mode approaches. Implementation results of the pro-
posed sliding mode control schemes on an experimental set-up
are given to illustrate the developments.

Nomenclature

� Load position (�)
� Load velocity (���)
� Servo-distributor input voltage (� )
� Pressure (	
) � Chamber volume (��)
���� External force (� ) �� Dry friction forces (� )

 Viscous friction coeff. � Load mass (��)
� Polytropic constant � Chamber temperature (�)
� Perfect gas constant related to unit mass (������)
� Area of the cylinder piston on a chamber side (��)
�� Mass flow rate provided by the servo-distributor

to cylinder chamber (����)
� Relative to � chamber
� Relative to 	 chamber.

1 Introduction

Until several years, pneumatic actuators were mainly used for
two-end position control. However, viewed that the pneumatic
actuators have several advantages versus for example electrical
or hydraulic ones because they are cheap, lightweight, clean,
and they present a good force/weight ratio, many works and
developements showed that this kind of actuators can also be
used in a position control context, by using specific servodis-
tributor [9, 31, 10, 14, 16, 21, 27]. As the necessary technology
is avalaible for the positioning control of pneumatic actuators,
the exciting challenge is now to develop new control laws able
to get high static and dynamic precision in presence of undesir-
able characteristics. They are due to the high compressibility of
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air, the high other nonlinearities of these systems (in particular
frictions), and the variation of environment as load disturbance.
Due to these latter facts, several works have proposed linear
and nonlinear controllers in order to get high performances be-
haviour. In [7], a comparison between two positionning lin-
ear control laws (a fixed gains control law and a control law
with scheduling gains) of an electropneumatic disymmetrical
cylinder is made in point to point displacement aim. This work
has been extended to nonlinear control in [23, 6] and [8], in
which a linearizing controller has been implemented on an ex-
perimental set-up in single and multi variable context. Due to
uncertainties appearing in the modelization, robust controllers
are necessary to ensure position tracking with high precision.
A possible way to reach this objective is the use of sliding
mode approach. This approach has been used in several works
[5, 22, 30]. The standard sliding mode features are high accu-
racy and robustness with respect to various internal and exter-
nal disturbances. Specific problem involved by this technique
is chattering effect, i.e. dangerous high-frequency vibrations of
the controlled system. Some authors [26, 29] relate the chatter-
ing behaviour to the discontinuity of the discontinuous “sign”
function on the sliding manifold. To overcome this problem,
the first and natural suggestion is to replace the discontinu-
ous function in a small vicinity of the surface by a smooth
approximation ; that implies a small deterioration in accuracy
and robustness1. Recently, a new philosophy for sliding called
“high-order sliding mode” has been proposed with several dif-
ferent solutions (twisting and super-twisting algorithms [19],
approach based on bang-bang control [1], �� approach for the
definition of the sliding manifold [18]). Instead of influencing
the first sliding manifold derivative, the “sign” function acts
on its higher time derivative. Keeping the main advantages of
the standard sliding mode control, the chattering effect is elimi-
nated and higher order precision is provided. It has been shown
in [17] for the control of a permanent magnet synchronous mo-
tor.
The paper proposes a second order sliding mode controller for
an electropneumatic actuator. Section 2 describes the model
of the electropneumatic actuator and states the problem under

1Note that this solution is not enough in pneumatic field [4]: indeed, a
good compromise between static position error and chattering cannot be found.
So, the spool of the valve is exited which conduced to a lot of noise due to
the air going from source to exhaust and an undesirable deterioration of the
servodistributor



interest. Section 3 deals with the design of a second order slid-
ing mode controller for this system. Section 4 discusses the
implementation results of the proposed control schemes on an
experimental set-up.

2 Model of the pneumatic system and control
problem statement

2.1 Description of the experimental set-up

The electropneumatic system under interest is a double acting
actuator (Figure 1) composed by two chambers, denoted 	 (as
positive) and � (as negative). The air mass flow rates entering
the two chambers are modulated by two three-way servodistrib-
utors controlled by a micro-controller with two electrical inputs
of opposite signs. The pneumatic jack horizontally moves a
load carriage of mass M, has a stroke of 500 mm and is very
unsymmetrical since it has an internal diameter of 32 mm with
a simple rod of 20 mm diameter. The position sensor of the
load cariage is a potentiometer. Velocity is obtained by analog
derivation from the position signal and a numerical derivation
of the velocity signal gives the acceleration information used
by the control law. Two pressure sensors are also implemented
in each chamber and used for incremented the quality of con-
trol in term of accuracy and robustness.

Figure 1: Electropneumatic system

2.2 Model

Assumptions [25, 20] used to obtain a model of the pneumatic
part of the electropneumatic system are:

� The supply and exhaust pressures are constant,

� The air is a perfect gas and its kinetic energy is negligible
in both chambers,

� The pressure and the temperature are homogeneous in
each chamber,

� The thermodynamic evolution of the air in the cylinder
chambers is polytropic and characterized by a coefficient
�,

� The temperature variations in each chamber are negligible
with regards to the mean temperature T,

� There is no mass flow leakage between the two cylinder
chambers and outside the actuator,

� The dynamics of the servo-distributor are neglected.

� The two three-way servodistributors are the same and their
electrical variable inputs are of inverse signs.

Then, a nonlinear dynamic model of the electropneumatic sys-
tem reads as:
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with � the load carriage position, � its velocity and �� and
�� the pressures of 	 and � chambers. The model of mass
flow rate delivered by each servo-distributor can be reduced
to a static function described by two relationships ����� �� �
and ������ ���. The two first equations of (1) concern the
pneumatic part of the system and are obtained from the state
equation of perfect gases, the mass conservation law and the
polytropic law under the assumptions given above. The two last
equations describe the mechanical part and are derived from the
fundamental mechanical equation applied to the moving part.
The term �� represents all the dry friction forces which act
on the moving part in presence of viscous friction �
��� and
an external force only due to atmospheric pressure �� ����. In
order to get an affine nonlinear state model, the mass flow rate
static characteristic issued from measurements [24] is written
as a function of control input � and polynomial functions of � �
and �� [3]

����� �� � � ���� � � ���� � ������� � �
������ ��� � ���� �� ���� � �������� � �

(2)

2.3 Uncertainties

Two kinds of uncertainties are taken into account: uncertainties
due to the identification of physical parameters, and variations
of environment.

Viscous friction coefficient � 20%
Dry friction coefficient � 90%
Function ���� � 15%
Function ���� �� � 5%
Load mass variation � 50%



The knowledge of the viscous friction coefficient has been
identified and the variation of this coefficient around the nomi-
nal value has been experimentally evaluated at �20%. The dry
friction coefficient is more difficult to identify: the track sur-
face quality (thus the piston position), the seal wear, the work-
ing conditions (temperature, pressure, quality of air) influence
the dry friction values. By some experimental tests, dry fric-
tion variation around the nominal value is evaluated to �90%.
Futhermore, the dry friction variations are supposed to be not
instantaneous: the dry friction dynamics are then bounded. The
mass flow rate delivered by each servodistributor has been ap-
proximated by polynomial functions (2). The uncertainties on
���� and ���� are evaluated to �15% and �5% respectively.
Finally, during the load moving, the total mass in displacement
can evolve from 17 kg until 47 kg. The nominal mass is 32 kg,
the variation being more and less �50%.

2.4 State model with uncertainties

The formalization of the variations is stated as

������� � �� � �� � ��� � Æ���
������� � �������� � �� � ��� � Æ���
���� � �� � ��� � Æ���
������� � �� � �� � ��� � Æ���
�������� � ��������� � �� � ��� � Æ���
��� � �� � ��� � Æ���
�� �� � �� � ��� � Æ���
����� � �	 � ��	 � Æ�	�
�
�� � �
 � ��
 � Æ�
�

(3)

where ��	 (� � � � 	) is the nominal value of the concerned pa-
rameter, Æ�	 the uncertainty on the concerned parameter such
that �Æ�	� � Æ��	, with Æ��	 a known positive bound. Note
that, viewed the previous hypotheses, Æ�� � Æ�� � 
. The
term � � �


��
���
� is viewed as a perturbation which is

bounded, as its first time derivative. Let � denote the state
� � ��� �� �� ���

� � ��� �� � ��� and � the input. Then, a
state space model of the pneumatic actuator is
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(4)

with � 	 
 �  !� and � 	 � �  ! such that 
 � �� 	
 !� �� 
 " ��	� � �	 � ���� � � � � � �� �	�	� � ��	� �
�	��� � � � � � 
� and � � �� 	  ! � ��� � �����,
��	� and ���� the minimum/maximum values of the 	 and
� chambers pressures, ���	� and ����� (resp. ���	� and
����� ) the minimum/maximum values of the load velocity
(resp. position) and ���� the maximum value of the voltage
input.

2.5 Control problem statement

The aim of the control law is to respect a good accuracy in
term of position tracking for a desired trajectory defined by a

fifth order time polynomial function (Figure 2). The amplitude
of displacement is equal to 50% of the total stroke around the
central position and the maximum desired velocity equals 0.60
m/s.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−150

−100

−50

0

50

100

150

D
es

ire
d 

po
si

tio
n 

[m
m

]

Time [s]

Figure 2: Desired position trajectory (��) versus time (�).

3 A second order sliding mode controller

It is well known that the standard sliding mode features are
high accuracy and robustness with respect to various internal
and external disturbances. The basic idea is to force the state
via discontinuous feedback to move on a prescribed manifold
called the sliding manifold 
 � � �� 	 
 � ���� #� � 
�
with 
 �  !� so that the corresponding zero dynamics sat-
isfy a suitable dynamical behaviour [15]. A specific problem
involved by this technique is the chattering effect. Some au-
thors [26, 29] relate the chattering behaviour to the disconti-
nuity of the sign function on the sliding variable. To over-
come this problem, they suggest to replace the sign function
in a small vicinity of the surface by a smooth approximation;
that implies a small deterioration of accuracy and robustness. A
new approach called ”high-order sliding mode” has been pro-
posed [1, 19]. In this technique, instead of influencing the
first sliding variable derivative, the sign function acts on its
higher time derivative. Let ���� #� (� 	 
 ) the sliding vari-
able, with a relative degree equal to � (i.e. the control appears
in the ��� time-derivative of ���� #�). In the case of the � ��

order sliding mode, the idea is to keep the following set of con-
straint conditions ���� #� � ����� #� � � � � � �����
��� #� �
�����
��� #� � 
, where � 	  � . In this configuration, the
control � acts directly on ���
��� #� but the total time deriva-
tives �����
��� #�� �����
��� #�� � � � � ����� #�� ���� #� are regular
continuous functions defined on the state space.

3.1 Second order sliding mode

Without loss of generality, consider a single-input nonlinear
system

�� � $��� � �����
� � ���� #�

(5)



with � 	 
 �  !� the state variable and � 	 � �  ! the
input, such that 
 � �� 	  !� � ��	� � �	��� � � � � � ��
and � � �� 	  ! � ��� � �����. ���� #� is the output func-
tion, called sliding variable. $ , � and � are smooth uncertain
functions. Suppose that the control objective is to force ���� #�
to zero. By differentiating twice �, under the assumption that
system (5) has relative degree versus � equal to 2, it leads to the
following relationship

�� � ��
�� �

�
�� ����$��� � �������

�� � ���
��� � �

�� � ����$��� � �������
(6)

Definition 1 [2] Given the sliding variable ���� #�, its “second
order sliding manifold” is defined as


 � �� 	 
 � ���� #� � ����� #� � 
� (7)

Definition 2 Consider the not-empty second order sliding set
(7), and assume that it is locally an integral set in the Filippov
sense, i.e. it consists of Filippov’s trajectories of the discon-
tinuous dynamics system [11]. The corresponding behavior of
system (5) satisfying (7) is called “second order sliding mode”
with respect to the sliding variable ���� #�.

Definition 2 means that system (5) satisfies a second order slid-
ing mode with respect to ���� #� if its state trajectories lie on the
intersection of the two manifolds ���� #� � 
 and ����� #� � 

in the state space. In order to state a rigorous control problem,
the following conditions are assumed:

� H1 � is bounded and discontinuous. Furthermore the so-
lution of (5) admits solution in the Filippov sense on the
2-sliding manifold 
 for all #

� H2 �$����� and ������� are bounded and �
�� ����� #� % 
.

Let 
 � ���
��� � �

�� � ���$���� and 
 � �
�� � �������� Under

H1-H2, there exist positive constant values &, �� and �� so
that, �� 	 � and �� 	 
 ,


 " �� " 
��� �� #� " �� � �
��� �� #�� � & (8)

Consider local coordinates �'� '��
� � �� ���� . Then, on the ba-

sis of the previous definitions and conditions, the second order
sliding mode problem may be expressed in terms of the finite
time stabilization problem for the following uncertain second
order system [19]

�'� � '�
�'� � 
��� �� #� � 
��� �� #��

(9)

where '� may be unmeasurable but with a known sign. There
exist several algorithms able to ensure the finite time stabiliza-
tion of the system (9) towards the origin [1, 12, 19]. Among
them, the so-called “Twisting algorithm” is based on an ade-
quate commutation of the control between two different values

so that the trajectories in the phase plan of (9) execute an infi-
nite number of rotations while converging in finite time to the
origin. This algorithm is defined by the following control law
[12, 19]

� �

�
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(10)

with the sufficient conditions which ensure the finite time con-
vergence to the sliding manifold


 " (� " (� � (� %
&
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��(� � & % ��(� � &�

(11)

3.2 Sliding variable and control design

To track the load position given by Figure 2, a sliding variable
is proposed, so that the error dynamics follows a desired first
order dynamic. Denoting ����� �#� the desired trajectory, one
gets

� � �� � ������ � )��� � ����� � (12)

where ) is a positive parameter such that 	 �*� � �* � )* is
Hurwitz polynomial. Note that the relative degree of � equals
2. Consider the second time derivative of �

�� � + �,� (13)
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(14)

+� and ,� are the known nominal expressions whereas the ex-
pressions Æ+ and Æ, contain all the uncertainties due to param-
eters variations and term � . The final controller is composed
by a linearizing controller coupled to a second order sliding
mode one (see Figure 3 and Equation (15)). The validity of the
control law depends on the stability of the unobservable sub-
system, which is one-dimensional. It is very difficult to obtain
results about the global stability of the zero dynamics, but, in
the physical domain, the local stability has been proved [6].
Using the static feedback2

� � ,��
� ��+� � �� (15)

where � is the new control vector, one gets

�� � �Æ+� Æ�
��

+�� � �� � Æ�
��

��

�� + �,�
(16)

2The scalar �� never equals 0; then, the control input � is always defined.



Figure 3: Global structure of the robust controller.

In fact, the term�,��
� +� of (15), which is the so-called equiv-

alent control in the sliding mode context [29], is not able to
cancel all the nonlinearities. Then, uncertainties can act on the
motion equations in a nonlinear form. Since ��, ��� ��� ���
�	, Æ�	, � and �� are bounded, there exist positives constants
&� ��, and �� so that

�+� " &

 " �� " , " ��

(17)

Then, one can apply the second order algorithm previously pre-
sented
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with
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Finally, a sliding mode occurs on 
 leading to desired tracking
property for the position.

4 Implementation results of the second order
sliding mode controller

The control law is implemented using a dSpace DS1104 con-
troller board with a dedicated digital signal processor with a
4�� sample time. Two pressure sensors are fixed in each
chamber. The sensed signals were run through the signal condi-
tioning unit before being read by the 16 bits analog/digital con-
verter. The pressures �� and �� are such that ��	� � � bar
and ���� � � 

�. The maximum/minimum value of the
load position equals ���	������ � ���
 ��. The control
input is such that ���� � �
�
The objective consists in minimizing the position tracking er-
ror in presence of model uncertainties and load variations. The
gains (� and (� have been tuned such that condition (18) is
satisfied : (� � �

 and (� � �


. The real ) is fixed
at ) � �����. Some experiment results are provided here to
demonstrate the robustness of the second order sliding mode
controller. Firstly, the total load mass equals 27 kg. Figure 4
displays the tracking position error with desired position de-
scribed in Section 2.5. The maximum position tracking error
is about 2.12 �� which is better than with classical nonlin-
ear control [8]3: this error represents less than 1% of the total

3The control laws in [8] have been implemented on the same experimental
set-up, in the same conditions.

displacement magnitude. In steady state, the position error is
about 86 -�, which is better than with classical linear control
law (PI) [14]. Figure 5 displays the control input which is not
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Figure 4: Tracking position error (��) versus time (�).

affected by the chattering effect. Even if the signal exited the
spool valve during the dynamic stage, no audible noise can be
heard4, which was not the case with first order sliding [5]. From
these experiment results, good tracking responses are obtained
for the position owing to the robust control characteristics of
the controller. These two curves are obtained without a good
mass flow rate model and in presence of important frictions
variations. For the last experimentation, the total load mass
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Figure 5: Control input (� ) versus time (�).

is decreased until 17 kg. The presented results are obtained
without changing the control gains value. The robust control
characteristics of this controller versus the load mass variation
can be observed in Figure 6. The maximum position tracking
error is about 1.81 mm. In steady state, the position error is
about 92 -�. The required performances are achieved.

5 Conclusion

The paper has proposed a second order sliding mode controller
for an electropneumatic actuator. The controller based on the

4The noise is due to a very high frequency displacement of the servodistrib-
utor mobile part, which can induce a faster wear.
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Figure 6: Tracking position error (��) versus time (�).

twisting algorithm has been tuned so that its convergence is
ensured in spite of parameters uncertainties and perturbation.
Experimental results show that the trajectory tracking is done
with a very good accuracy. The results have been compared
to previous ones and appear more precise and robust versus
uncertainties and load variations.

References

[1] G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoid-
ance by second-order sliding mode control”, IEEE Trans.
Automat. Control, vol. 43, no.2, pp.241-246, (1998).

[2] G. Bartolini, A. Ferrara, A. Pisano, and E. Usai, “On the
convergence of 2-sliding algorithm for non-linear uncer-
tain systems”, International Journal of Control, vol. 74,
no.7, pp.718-731, (2001).

[3] M. Belgharbi, D. Thomasset, S. Scavarda, and S. Sesmat,
“Analytical model of the flow stage of a pneumatic servo-
distributor for simulation and nonlinear control”, Proc.
Sixth Scandinavian International Conference on Fluid
Power SICFP’99, Tampere, Finland, pp.847-860, (1999).

[4] M. Bouri, D. Thomasset, and S. Scavarda, “Integral slid-
ing mode controller of a rotational servodrive”, Proc. � ��

JHPS, Tokyo, Japan, pp.145-150, (1996).

[5] M. Bouri, D. Thomasset, “Sliding control of an elec-
tropneumatic actuator using an integral switching sur-
face”, IEEE Trans. Control Syst. Technology, vol.2, no.2,
pp.368-375, (2001).

[6] X. Brun, M. Belgharbi, S. Sesmat, D. Thomasset, and S.
Scavarda, “Control of an electropneumatic actuator, com-
parison between some linear and nonlinear control laws”,
Journal of Systems and Control Engineering, vol.213,
no.I5, pp.387-406, (1999).

[7] X. Brun, S. Sesmat, D. Thomasset, and S. Scavarda, “A
comparative study between two control laws of an elec-
topneumatic actuator”, Proc. European Control Confer-
ence ECC’99, Karlsruhe, Germany, (1999).

[8] X. Brun, D. Thomasset, “Choice of control law in elec-
tropneumatics. Expertise using an industrial benchmark
and some new trends”, Proc. Conference on Decision and
Control CDC’00, Sydney, Australia, (2000).

[9] X. Brun, D. Thomasset, and E. Bideaux, “Influence of
the process design on the control strategy: application
in electropneumatic field”, Control Engineering Practice,
vol.10, no.7, pp.727-735, (2002).

[10] K.A. Edge, “The control of fluid power systems - re-
sponding to the challenge”, Journal of Systems and Con-
trol Engineering, vol.211, no.I2, pp.91-110, (1997).

[11] A.F. Filippov, Differential Equations with Discontinuous
Right-Hand Side, Kluwer, Dordrecht, the Netherlands,
(1988).

[12] S.V. Emelyanove, S.K. Korovin, and A. Levant,“Higher-
order sliding modes in control systems“, Differential
Equations, vol.29, no.11 pp.1627-1647,(1993).

[13] K. Furuta, “Sliding mode control of discrete system”, Sys-
tems and Control Letters, vol.14, pp.145-152, (1990).

[14] K. Hamiti, A. Voda-Besançon, and H. Roux-Buisson,
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