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Abstract— The aim of this paper is to propose efficient
multivariables controllers for an electropneumatic system.
The considered system use two three-way proportional
servodistributors. Generally, it is supposed that these two
servodistributors are equivalent to one five-way proportional
servodistributor when they are controlled with inputs of
opposite signs. In this case, a monovariable control law can be
established. However, with the system of two three-way
servodistributors, it is possible to control two different
trajectories. For example, it seems useful to control position
and pressure without a degradation of the desired
specifications.

Due to uncertainties appearing in the modelization, robust
controllers are necessary to ensure position and pressure
tracking with high precision. For this, two control laws based
on a combination of a first and second order sliding mode are
proposed. The experiment results are presented and discussed.

NOMENCLATURE

b viscous friction coefficient (N/m/s)

k polytropic constant

M total load mass (kg)

P pressure in the cylinder chamber (Pa)

qm mass flow rate provided from
servodistributor to cylinder chamber (kg/s)

r perfect gas constant related to unit mass
(J/kg/K)

S area of the piston cylinder (m?)

T temperature (K)

vV volume (m®)

U Input voltage (V)

y,v,a,j  position (m), velocity (m/s), acceleration
(m/s%), jerk (m/s’)

o) leakage polynomial function (kg/s)

w.) polynomial function (kg/s/V)

l length of stroke (m)

Subscript

ext external

D dead volume

S supply

chamber N
chamber P
desired

oy =

I. INTRODUCTION

Pneumatic cylinder systems have the potential to provide
high output power to weight and size ratios at a relatively
low cost. Adding to their simple structure, easy
maintenance, and low component cost, pneumatic actuators
are one of the most common type of industry actuators.
However the complexity of the electropneumatic systems
and the important range of control laws are a real industrial
problem where the target is to choose the best control
strategy for a given application.

The traditional and widely used approach to the control
of electropneumatic systems is a fixed gain linear
controller, based on the local linearization of the nonlinear
dynamics about a nominal operating point [1]. This method
relies on the key assumption of small range operation for
the linear model to be valid. When the required operation
range is large, the linear controller is likely to perform very
poorly or to be unstable. The harmful effect is due to the
limitation of the linear feedback controller tolerance for the
adverse effect of the nonlinearities or parameters variations.

When a fixed gain linear controller cannot satisfy the
control requirement, it is natural to investigate other
controllers. In recent years, research efforts have been
directed toward meeting this requirement. Most of them are
feedback linearization [2]. However, a reasonably accurate
mathematical models for the pneumatic system are required
by the feedback linearization.

A number of investigations have been conducted on
fuzzy control algorithms [3], adaptive control [4] and
robust linear control [5].

Another rather theoretically attractive robust approach is
the standard sliding mode control [6]. It is believed that a
robust controller can be derived based on rather little
information of the system. This approach has been used in
several works [7], [8], [9]. The standard sliding mode



features are high accuracy and robustness with respect to

various internal and external disturbances. Specific
drawback presented by the classical sliding mode
techniques is the chattering phenomenon [10]. The

chattering phenomenon is generally perceived as motion,
which oscillates around the sliding manifold. In order to
overcome this drawback, a research activity aimed at
finding a continuous control action, robust against
uncertainties, guaranteeing the attainment of the same
control objective of the standard sliding mode approach has
been carried out in recent years. The results algorithms,
turned out to belong to the class of high order sliding mode
control [11], [12].

In [13] a second order sliding mode controller for an
electropneumatic system is presented. The system use two
three-way proportional servodistributors. It is supposed that
these two servodistributors are equivalent to one five-way
proportional servodistributor when they are controlled with
input of opposite signs. In this case, a monovariable control
law can be established. However, The validity of the
control law depends on the stability of the unobservable
subsystem, which is one-dimensional. It is very difficult to
obtain results about the global stability of the zero
dynamics.

With the system of two three-way servodistributors, it is
possible to control two different trajectories. For example,
it seems useful to control position and pressure without a
degradation of the desired specifications (tracking
position). As is shown in [14], this strategy can allows to a
minimum energy consumption. In this case, the control law
is based on feedback linearization and flatness theory.
However, this method of designing controller may not be
effective when the mathematical model of the plant is
unknown.

Due to uncertainties appearing in the modelization,
robust controllers are necessary to ensure position and
pressure tracking with high precision. In [15], a robust
multivariable control using backstepping design is
proposed. In this paper the second order sliding mode
approach is employed to develop a robust position and
pressure tracking controller for electropneumatic actuator.
The paper is organized as follows. Section 2 describes the
model of the electropneumatic actuator. Section 3 deals
with the design of two second order sliding mode
controllers for this system. Section 4 discusses the
implementation results of the proposed control schemes on
an experimental set-up.

II. ELECTROPNEUMATIC SYSTEM MODELLING

The considered system (Fig. 1) is a linear inline double
acting electropneumatic servo-drive using a single rod
controlled by two three-way servo-distributors. The
actuator rod is connected to one side of the carriage and
drives an inertial load on guiding rails. The total moving

mass is 17 kg.
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Fig. 1. The electropneumatic system

The electropneumatic system model can be obtained
using three physical laws: the mass flow rate through a
restriction, the pressure behavior in a chamber with variable
volume and the fundamental mechanical equation.

The pressure evolution law in a chamber with variable
volume is obtained assuming the following assumptions
[16]: air is a perfect gas and its kinetic energy is negligible.
The pressure and the temperature are supposed to be
homogeneous in each chamber. The process is polytropic
and characterized by coefficient k. Moreover, the
electropneumatic system model is obtained by combining
all the previous relations and assuming  that the
temperature variation is negligible with respect to average
and equal to the supply temperature. The dynamics of the
servodistributors may be neglected [1]. So, the model can
be reduced to a static one described by two relationships
qu(uP,pP) and qu(uN,pN) between the mass flow

rates ¢ p and g, the input voltages upand u ), and

the output pressures.

The mechanical equation include pressure force, viscous
friction and an external constant force due to atmospheric
pressure. So the following equation gives the model of the
above system:

dy

y_,

dt

@ _Ls 1y bv—F,.,]
—=—|Sppp—Sypry —bv-

dt IY; NFN ext "
dp _ kT g plup,p )—S—Pp v
di Vp(y)| mP PRI g PP
N _ KT o )N
dt Vy(y)| mNENENTT PN
Where:

/
V,(0)=Vpp +SP3

{Vp (y)=Vp(0)+Spy With:

V =Vyl0)-S /

are the piping volumes of the chambers for the zero



position and Vpp,,. ) are dead volumes present on each

extremities of the cylinder.
The main difficulty for model (1) is to know the mass
q,p and q n-

This model is issue of

experimental measurement [17] and therefore a
mathematical model for a static flow stage has been
obtained from a polynomial approximation [18] affine in
control (2) and the nonlinear affine model is then given by

3).

flow rates

gn(u, p) = @p) + Yp, sgn(u)) xu (2)
dy _
dt
a1 3
?::M[SPPP_SNPN_bV F, z]
d T
=t V,f(y )[w(pp)——Tppv} ; ( )wpp sgn(up ))Xup
d T s
%= VNV(y){(ﬂ(pNHﬁpNV} 7o ly )II/(PN Lsgn(uy )Xy

w() > 0 over the physical domain. With two inputs u pand
uy , the nonlinear model of the system in Fig. 1 has the
following form:

xX=f(x)+g(x)xU (4)
with

xX'=(yv.pp.py)

where:

%
1
H[SPPP -SyPn _bv_Fext]

f)=

'//(PPng” (VP)) 0

8(x)=(gi(x).g:(x))= v
krT

V(v W(PN ,sgn (MN )

T =(upuy)

Using two servodistributors leads to a system with two
degrees of freedom according to the control and this
opportunity is exploited to achieve two different control
objectives. Taking advantage of the supplementary degree
of freedom issued from this new design, it is possible to
control another output other than the position control.

Let’s define h(x) the vector constituted of the two

chosen outputs: position and pressure in chamber P

_ hi(x) |y
Hx) _[hg (z)j_(pp] ©)

In order to use a sliding mode technique, a coordinate
transformation is proposed with diffeomorphism given by
(6). The nonlinear affine model is then given by (7).

hi(x)=y
th1(£)=V
z=9(x)=| | (6)
L rhi(x)=a
hy(x)=pp
dy _
gza @)
dt
d

d—j’ =Ly (07 (2 )+ Lot L ;2 hy (07 (2)u +LosL P hy(97! (2)uy

Do e - -
=L pha(97 (2D Lgrha(97 (2D + Ly ha(97! (2

Where

i) =2L Se_grp ) Mg
rhi(x) " Vp(y)fﬂp,,) VN(y)fﬂpN) ®
Sppp  SnpN | | b
rT[Vp(J’)+VN(J’)] Mz(SPpP Swpn == Fea)
5 krTS p ,
Ly Ly hl(l)_m w(pp,sign(up))>0 )
2 _ kI”TSN
Lo, Li“hy(x)=~ W w(py.sgnluy))<0 (10)
kT Sp
Lohy(x)= -Zr 11
rha(x)=7"0 ){co(p )= ppv} (11)
kT
Lo hax) =7 7 (pp,sgnlup))>0 (12)
P
Lg,h> (97" (2))=0 (13)

Using the electropneumatic model (7), the control laws
are synthesized in the next section using a combination of
first and second order sliding mode technique.
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Fig. 2. Desired trajectories

The aim of the control law is to respect a good accuracy
in term of position and pressure tracking for a desired
trajectories. The relative degree of the position and the
pressure are respectively three and one. This means that the
electropneumatic system can only track position trajectories



at least three times differentiable and pressure trajectories at
least one time differentiable. The desired trajectory have
been carefully chosen in order to respect the
differentiability required. (see Fig. 2).

III. SLIDING MODE CONTROLLERS FOR
ELECTROPNEUMATIC SYSTEM

A. Second order sliding mode

Sliding mode control is a powerful nonlinear control
method capable of providing robust performance for
nonlinear dynamic system. In the method the desired
trajectory is tracked by the operating point of the system. It
is a well known fact that sliding mode control with
switching output will result in a sliding mode on a
predefined subspace of state space. This mode has useful
invariance properties in the face of uncertainties of plant
such as external disturbances and structural parameters, and
therefore is a candidate for tracking control of uncertain
nonlinear system.

The effective application of sliding mode control to
pneumatic systems needs to resolve the problem related to
the chattering phenomenon and the switching control
signals [12]. Higher order sliding modes appear to be
suitable to counteract this problems [11], [12].

Let s(x,t) the sliding variable, the A

mode is

order sliding
determined by the
s=s=§=5=..=s"1 =9 , which form an r-dimensional
condition on the state of the dynamic system. In general,
s("to be made
available, i.e. 2-sliding controller needs s,sto be made

equalities

any r-sliding controller needs s,s,5,...,

available
Consider the system (14) with relative degree equal to
two with respect to the input:

Xy =X

. (14)

iy =Pl t)+y(xtu
x,=sand @¢(x,t), W(x,t)are uncertain
functions with 0 < |¢(x,t)| < C, and 0<k,, <w(x,t)<k), .

Several 2-sliding algorithms have been presented in the

literature [11],[19]. In this paper, twisting algorithm and the
algorithm with a prescribed convergence law are used.

The twisting algorithm is defined by the following
control law [11]:

Ay sgn(s) ifss<0

B — Ay sgn(s) if s§>0

The corresponding sufficient conditions for the finite
time convergence to the sliding manifold are [11]:

where x; =5,

(15)

C
Ay > Ay >—L
m

kyAy —Cop>ky A, +C,

(16)
a7

In this case, the trajectories are characterized by twisting
around the origin on the phase portrait of sliding variable.
The convergence of the algorithm with a prescribed
convergence law is different [11], [19]. The trajectories
converge to a prescribed function and then to the origin.
The control law is defined as follows:
u=-asgn(s-g(s))
where @ > 0, and the continuous function g('s) is smooth
everywhere except on s=0. It is assumed that all the
solutions of the equation s=g(s) vanish in a finite time

. 9g(s)
and the function > g(s) is bounded:

g(s)

‘3g( s) <c,

ds

The sufficient condition for the finite time convergence
to the sliding manifold is defined by the following
inequality [19]:

C
S Lo +C;
K

m

B. Sliding variable and control synthesis
Let us define a vector S of components s; (i = 1,2) by:
S;=My=yi)t(v=vy)
$;=(Pp—Ppa)
where Ais a positive parameter. Consider the second

(18)

time derivative of s, and the first time derivative of s,:

“dtaa- i )
+a(y,v,pp, Py )+ Lo, L hy (67 (2))up (19)
+ Lo, L (97 (2)uy

(20)

) kS _ )
§y=- ’; Ppv+O(.pp)+ Laiha (97 (2)up = ppg
P
with
krT

a(y,v,pp,PnN)= v (y)

Sy
o(pp)— Valy )(P(PN)] 1)
_LZ(SPPP_SNPN_bV_Fext)

and

T
#(y.pp)= Voty) o(pp)

Functions a(y,v,pp,px) and ¢(y,pp) contains all

(22)

uncertainties, i.e., the leakage polynomial function and
friction. Using the static feedback:

U=B"x[4+V7] (23)

! According to the physical domain, the determinant of the matrix B is
never equal to 0.



with:
Us=lup uyl’ (24)
g | Ll (97 (2) L, L2y (97 (2) 25)
| L ha(97M(2) 0
—Ma—ay )+ ju +% ?%er
e p(y) Vn(y) 26)
kSp .
_mva+de
and V = [v ;] V) ]T is the new control vector, one gets
S;=0(y,v.pp.Py)+V; (27)
$;=9(y,pp)+v; (28)
There exist positives constants C, and C; so that
[@(v,v, pps )| < Cy (29)
lo(y. pp)l<C; (30)

The system is subdivided into two subsystems. The
second subsystem (28) is associated to the pressure and it is
stabilized by a first order sliding mode controller:
vy =—(C+ky)sgn(s;)
where k,is a positive constant.

(€2))

Equation (27) is associated to the position. According to
(29) and (30), one can apply the twisting algorithm
previously presented:

— Ay sgn(s;) ifs;8; <0
K {—ﬂM sgn(s;) if s;$;>0

Ay >4, >C, Ay >4, +2C, are the
corresponding conditions for the finite time convergence to
the sliding manifold.

This algorithm is based on an adequate commutation of
the control between two different values so that the
trajectories in the phase plan of execute an infinite number
of rotations while converging in finite time to the origin.

The convergence of the algorithm with a prescribed
convergence law is different. The trajectories converge to a
prescribed function and then to the origin (see next section).
The control law is defined as follows:
vy =—asgn(s;—g(s;)) (33)

As indicated previously, the solutions of the equation
s;=g(s;) vanish in a finite time and the function

9g(s;)
ds;
The function g('s;) is chosen as follow (Fridman and
Levant, 2002):

(32)

and

g(s; ) is bounded.

1
g(s;)=—kls;|2 sgn(s,) (34)
Given the system described in (3), the actual inputs

defined in (23), with v; and v, are given by (32) (31) or
(33) (31), are applied to the electropneumatic system. A
sliding mode occurs on § leading to desired tracking
property for the position and the pressure.

IV. EXPERIMENTAL RESULTS

These controllers were implemented using a dSpace
DS1104 controller board with a dedicated digital signal
processor. The sensed signals, all analog, were run through
the signal conditioning unit before being read by the A/D
converter. The velocity cylinder is determined by analog
differentiating and low-pass filtering the output of the
position given by an analog potentiometer. The acceleration
information is obtained by differentiating numerically the
velocity.

Some experiment results are provided here to
demonstrate the robustness of these controllers.

Firstly, the twisting algorithm is applied. Fig. 3 shows the
position error and the pressure error.

From the experiments results, a good tracking responses
are obtained for the position and pressure in chamber p.

In steady state, the position error is about 0.23 mm,
which is better than with a feedback linearization control
law [14]. The maximum position tracking error is less then
3 mm, i.e. 1,2 % of the total displacement magnitude. The
maximum pressure tracking error is equal to 0.06 bar.

Position error (mm)

L) 0.5 1 1.5 2 25 3 3.5 4 4.5 5 5.5
Time (s)

e
o
&

o

I —

Pressure error (bar)
s
s
3

s

) 0.5 1 15 2 2.5 3 3.5 4 45 5 5.5

Time (s)
Fig.3. Position and pressure errors

To illustrate the convergence of the twisting algorithm,
the initial position is set at 125 mm. The algorithm is
employed when the desired position reaches -125mm (see
Fig. 4). Fig. 5 shows the trajectories of the twisting



algorithm. The trajectories are characterized by twisting
around the origin on the phase portrait of sliding variable.
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Fig.5. Phase trajectory
Fig.6 shows the position and pressure errors obtained

with combined first order sliding mode and the algorithm
with a prescribed convergence law.
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Fig. 6. Position and pressure errors

The robust control characteristics of this algorithm

controller can be observed. The maximum position tracking
error is about /,6 mm and the maximum pressure tracking
error is about 0.06 bar at the same time.

To illustrate the convergence of the algorithm with the
prescribed convergence law algorithm, it is employed when
the desired position reaches —125 mm and the position is
equal to 140 mm (see Fig. 7). Fig. 8 shows the trajectories
of the algorithm with a prescribed convergence law. Firstly,
the trajectory reach the function s; = g('s; )Jand then the
origin s; =$; =0 in finite time.

A multivariable control law based on the flatness theory
[20] is developed in [14]. The maximum position error is
about 5,35 mm. In steady state, the position error is near to
0.5 mm. So, the tracking performances obtained by these
algorithms are good in regard of precedents one[1][14].
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V. CONCLUSION

This paper has successfully demonstrated the application
of two second order sliding mode controllers to control the
position and the pressure of an electropneumatic system.
Firstly, the mathematical model of the electropneumatic
system was introduced. Then, the theoretical bases of the
controllers were described in detail. The robustness vis-a-
vis modeling errors has been proved. Then,
experimentation was carried out to check the effectiveness
of the proposed controllers. The obtained experimental
results are satisfactory and are in concordance with the
numerical results, the required performance are achieved.
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