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GLOBAL WELL-POSEDNESS OF THE AXISYMMETRIC NAVIER-STOKES

EQUATIONS WITH MEASURE-VALUED INITIAL DATA.

GUILLAUME LÉVY1

1. Introduction

2. Collection d’estimations critiques

There exists a constant C depending only on ‖µ‖TV such that for any positive t,

(1) ‖u(t)‖L∞(Ω) ≤ Ct−
1
2 .

3. Proofs ?

We begin with the global existence statement, which is rather simple to prove as most of the
job has already been done in [1].

Theorem 3.1 (Global existence). Let µ ∈ M(Ω). There exists at least one global solution
ω : R+ × Ω → R of the axisymetric Navier-Stokes equations with initial data µ, satisfying
further the following assumptions.

• L1 decay in time : the function t 7→ ‖ω(t, ·)‖L1(Ω) is decreasing and converges to ‖µ‖TV

as t goes to 0.
• Short time smoothness : for arbitrary small δ > 0, (t, x) 7→ ω(t, x) is smooth on
[δ,+∞[×Ω, with (critical estimates).

• Weak-* continuity : as t → 0, we have ω(t, x)dx ⇀∗ µ in M(Ω).
• (Maybe other properties here)

Proof. We will simply smooth out the initial data, summon the result from [1] which provides
us with estimates uniform in the regularization parameter, at which point we may pass to the
limit.

Let S denote the linear semigroup associated to the cylindrical laplacian δcyl and define for
0 < ε < 1 the regularization µε := S(ε)µ of the initial data. Thanks to [1], we know that
the axisymmetric Navier-Stokes equations with initial data µε possess a unique, global solution
ωε, satisfying estimates depending solely on ‖µε‖L1(Ω) ≤ ‖µ‖TV . More precisely, there exists a
constant C depending only on ‖µ‖TV such that the following inequalities hold.

(blabla smoothness en temps positif) (penser à des estimations avec r à une pusisance
négative, pour faire converger la condition au bord)

In particular, for any δ > 0, the family (ωε)0<ε<1 is locally relatively compact in, say,
C2([δ,+∞[×Ω). Extracting a subsequence, we see that any accumulation point ω of this family
satisfies the axisymmetric Navier-Stokes equations on R

∗
+ × Ω, with the same estimates (in

particular, it is smooth in time and space). Moreover, thanks to Equation (estimée pusisance
négative), any such ω satisfies the Dirichlet boundary condition.

As for the initial condition, we rely on the same technique as in [2], with minor modifications.
Given a test function ϕ in C2(Ω) with compact support, we define, for strictly positive values
of both t and ε,

Iϕ(t, ε) :=

∫

Ω
ωε(t, x)ϕ(x)dx.

We immediately notice that the estimates on ωε yield the bound

sup
t>0

Iϕ(t, ε) ≤ ‖µ‖TV ‖ϕ‖L∞(Ω).

1
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Computing the time derivative of Iϕ and using the equation on ω to integrate by parts, we get

∂tIϕ(t, ε) =

∫

Ω
ωε(t, x)

(
u(t, x) · ∇ϕ(x) + ∆∗

cylϕ(x)
)
dx,

where ∆∗
cyl is the formal L2 adjoint of ∆cyl. Thanks to the bound (citer borne u ici), there

exists a constant C depending only on ‖µ‖TV such that

|∂tIϕ(t, ε)| ≤ Ct−
1
2 .

Consequently, for each ϕ, the family (Iϕ(·, ε))0<ε<1 is bounded in C 1
2 (R+), hence locally rela-

tively compact in C0(R+) by Ascoli’s theorem. Finally, interchanging the two limits ε → 0 and
t → 0 proves that for any ϕ in C2(Ω) with compact support, we have, as t goes to 0,

∫

Ω
ω(t, x)ϕ(x)dx −→

∫

Ω
ϕ(x)dµ(x).

Arguing by density and using the uniform bound on ‖ωε(t)‖L1(Ω) concludes the proof of the
convergence ω(t, x)dx ⇀∗ µ as t goes to 0. �

We now turn to a mass estimate near the symmetry axis, which is an improvement over the
one in [2]. Given µ in M(Ω) and R ≥ 0, we define the near-axis mass function

M(µ,R) := ‖1r≤Rµ‖TV .

Of course, if µ admits an integrable density ω, we have

M(µ,R) =

∫ R

0

∫

R

|ω(r, z)|dzdr.

In this case, we will indifferently denote the above quantity by M(ω,R) or M(µ,R). Following
Lemma 5.1 in [1], we first assume that our initial data is positive, removing this assumption
afterwards.

Proposition 3.2. (Near the axis, positive case) Let µ ∈ M+(Ω) be a positive measure. There
exists a constant C such that for any positive t and any ρ ≥ C

√
t, we have

(2) M(ω(t), ρ) ≤ 1√
πt

∫ ∞

0
e−

y2

4t M(µ, y + 2ρ)dy.

Proof. Since the axisymmetric Navier-Stokes equations preserve the positivity of the solution,
for any positive t and R, we have

M(ω(t), R) =

∫ R

0

∫

R

ω(t, r, z)dzdr.

In order to avoid technical singularities near the axis, where r = 0, we will rather work with
the remainder function

f(t, R) :=

∫ ∞

R

∫

R

ω(t, r, z)dzdr.

From the estimates on ω, it follows that f is smooth in all its variables. Computing its time
derivative and using the equation on ω gives, for positive t and R,

∂tf(t, R) = ∂2
Rf(t, R) +

1

R
∂Rf(t, R) +

∫

R

u(t, R, z)ω(t, R, z)dz.

Thanks to the estimate (1), we have
∫

R

u(t, R, z)ω(t, R, z)dz ≥ − C√
t

∫

R

ω(t, R, z)dz =
C√
t
∂Rf(t, R).

Let now g(t, R) := f(t, R+ a(t)) for some positive and decreasing function a to be chosen later.
Computing the time derivative of g for positive t and R, we get

∂tg(t, R) ≥ ∂2
Rg(t, R) +

(
1

R+ a(t)
+

C√
t
+ a′(t)

)
∂Rf(t, R).
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For some parameters ρ and t1 to be specified later, we choose, following [2],

a(t) = ρ+
t1 − t

ρ
+ 2C(

√
t1 −

√
t).

With this choice, for t in the time interval [0, t1], we have

a(t) ≥ a(t1) = ρ, a′(t) +
C√
t
+

1

R+ a(t)
≤ 0.

Hence, for t in [0, t1] and any positive R, we have

∂tg(t, R) ≥ ∂2
Rg(t, R).

Since f is a decreasing function of its second argument, for any positive t (in particular, for t
in [0, t1]), we have

∂Rg(t, 0) = ∂Rf(t, R+ a(0)) ≤ 0.

By the parabolic maximum principle, for any t0 in ]0, t1[, for any t in [t0, t1] and any positive
R, g(t, R) ≥ h(t, R) where h is the solution of

(3)





∂th(t, R) = ∂2
Rh(t, R), t, R > 0,

∂Rh(t, 0) = 0, t > 0,
h(t0, R) = g(t0, R) = f(t0, R + a(t0)).

In particular, taking R = 0, for any t in [t0, t1], we have f(t, a(t)) ≥ h(t, 0). From the monotonic-
ities of f and a, we get f(t, a(t)) ≤ f(t, a(t1)) = f(t, ρ). On the other hand, the representation
formula for h gives us

h(t, 0) =
1√

π(t− t0)

∫ ∞

0
e
− y2

4(t−t0)h(t0, y)dy

=
1√

π(t− t0)

∫ ∞

0
e
− y2

4(t−t0) f(t0, y + a(t0))dy.

We will now choose t1(ρ) ≤ cρ2, with c chosen such that

c+ 2C
√
c ≤ 1

4
.

Hence, if t0 is sufficiently small, we have a(t0) ≤ 3ρ
2 . Under this condition, using again the

monotonicity of f , for any t ∈ [t0, t1(ρ)] we have

h(t, 0) ≥ 1√
π(t− t0)

∫ ∞

0
e
− y2

4(t−t0) f

(
t0, y +

3ρ

2

)
dy.

We now wish to take the limit t0 → 0. As we cannot hope f to be continuous up to the initial
time, we will resort to a smooth cutoff function. Let χ : R → [0, 1] be a smooth, positive and
increasing function such that

χ(r) =

{
0 if r ≤ 3ρ

2 ,
1 if r ≥ 2ρ.

It is pretty clear that for any y and t in R+, we have

f

(
t, y +

3ρ

2

)
≥
∫

Ω
ω(t, r, z)χ(r − y)dzdr.

By the dominated convergence theorem, we can now take the limit t0 → 0 in order to get

(4) f(t, ρ) ≥ 1√
πt

∫ ∞

0
e−

y2

4t

(∫

Ω
χ(r − y)dµ(r, z)

)
dy.

This last integral over Ω is clearly no less than ‖µ1r≤y+2ρ‖TV , which yields

(5) f(t, ρ) ≥ 1√
πt

∫ ∞

0
e−

y2

4t f(0, y + 2ρ)dy.
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Reverting to the mass-function M , we have proven the existence of a small constant c such that

for any positive t and any ρ ≥
√

t
c
,

(6) M(ω(t), ρ) ≤
(
‖ω(t)‖L1(Ω) − ‖µ‖TV

)
+

1√
πt

∫ ∞

0
e−

y2

4t M(µ, y + 2ρ)dy.

The decay of the L1 norm of ω with time allows us to close the proof. �

Proposition 3.3 (Near the axis, general case). Let µ ∈ M(Ω) be a measure. There exists a
constant C such that for any positive t and any ρ ≥ C

√
t, we have

(7) M(ω(t), ρ) ≤ 1√
πt

∫ ∞

0
e−

y2

4t M(µ, y + 3ρ)dy.

Proof. We will mostly rely on the positive case, though with some necessary tweaks. Let us
begin by picking some small time s. On the time interval [s,∞[, we know that our mild solution
ω and its velocity field u are smooth. Hence, the linear system




∂ta+ div∗(ua)−∆cyla = 0
a(t, 0) = 0
a(s) = a0

possesses a unique solution for any a in, say, L1(Ω). Moreover, provided that a0 has a sign, a
keeps the same sign for all subsequent times. We will choose the positive and negative parts of
ω(s) as initial data; the corresponding solutions will be denoted by ω±. Reproducing the proof
in the positive case, we arrive at the following. There exists a constant C such that for any
positive t and any ρ ≥ C

√
t, we have

(8) M(ω±(t), ρ) ≤
1√
πt

∫ ∞

0
e−

y2

4t M(ω±(s), y + 2ρ)dy.

Since both ω± are positive functions and ω(t) = ω+(t) − ω−(t) by the smoothness and u and
the linear uniqueness it entails, we have |ω(t)| ≤ ω+(t) + ω−(t) for any t ≥ s, with equality at
t = s. In particular, there holds

M(ω(t), ρ) ≤ M(ω+(t), ρ) +M(ω−(t), ρ)

and
M(ω(s), ρ) = M(ω+(s), ρ) +M(ω−(s), ρ).

Hence, summing the two inequalities gives

(9) M(ω(t), ρ) ≤ 1√
πt

∫ ∞

0
e−

y2

4t M(ω(s), y + 2ρ)dy.

We will now resort to the same trick as above, using a smooth cutoff function χ. Doing so, we
finally arrive at the slightly weaker inequality

(10) M(ω(t), ρ) ≤ 1√
πt

∫ ∞

0
e−

y2

4t M(µ, y + 3ρ)dy.

�

Armed with this mass-spreading estimate in the general case, we are now ready to prove
additional integrability on the velocity field for short times, under a weak decay assumption on
M(µ, ·).
Proposition 3.4. Let µ ∈ M(Ω) be a measure. There exists a constant C > 0 such that for
any positive functions α, ρ : R+ → R+, the velocity field u associated to any solution ω of the
axisymmetric Navier-Stokes equations with initial data µ satisfies

(11)

∫ 1

0

∥∥∥∥
ur(t)

r

∥∥∥∥
L∞(Ω)

dt ≤ C

∫ 1

0

(
M(µ, α(t) + 3ρ(t)) + ‖µ‖

1
3
TV

√
t

α(t)
e−

α(t)2

4t

)
dt

t

+ C‖µ‖
1
3
TV

∫ 1

0
(tρ(t))−

2
3dt.
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Proof. As in the proof of Corollary 3.2 in [2], we will treat differently points close and far away
from the axis. Let us denote by

ω−(t, r, z) := ω(t, r, z)1r≤ρ, ω+(t, r, z) := ω(t, r, z)1r>ρ.

The corresponding velocity fields obtained through the Biot-Savart law will be denoted by
u±(t, r, z). The trick will be to choose ρ as a function of t in order to optimize the estimates.
Using the estimate (Estimate here), we have

∥∥∥∥
u−r (t)
r

∥∥∥∥
L∞(Ω)

. ‖ω−(t)‖
1
3

L1(Ω)

∥∥∥∥
ω−(t)
r

∥∥∥∥

2
3

L∞(Ω)

and ∥∥∥∥
u+r (t)

r

∥∥∥∥
L∞(Ω)

. ‖ω+(t)‖
1
3

L1(Ω)

∥∥∥∥
ω+(t)

r

∥∥∥∥

2
3

L∞(Ω)

.

Let us look at u−r first. Regarding the second term, Estimate (estimate here) gives us

∥∥∥∥
ω−(t)
r

∥∥∥∥

2
3

L∞(Ω)

. t−1.

The first term is precisely M(ω(t), ρ)
1
3 ,. Using Proposition 3.3 and Jensen’s inequality, we get

M(ω(t), ρ)
1
3 .

1√
πt

∫ ∞

0
e−

y2

4t M(µ, y + 3ρ)
1
3dy.

Now, given some arbitrary positive real number α, we split the integral into two parts, depending
on whether the integrand is greater than or smaller than α. We have

M(ω(t), ρ)
1
3 . M(µ, α+ 3ρ) + ‖µ‖

1
3
TV

√
t

α
e−

α2

4t .

where we used the bound ∫ ∞

X

e−u2
du ≤ 1

X
e−X2

,

valid for any X > 0. We now turn to the second half of the velocity field. Thanks to the L1

decay, we obviously have

‖ω+(t)‖
1
3

L1(Ω)
≤ ‖µ‖

1
3
TV

for any positive t. On the other hand, from the definition of ω+ and estimate (estimate here),
we have ∥∥∥∥

ω+(t)

r

∥∥∥∥

2
3

L∞(Ω)

. (ρt)−
2
3 .

Gathering all the pieces, we got the desired estimate. �

The following corollary is now an obvious consequence of the preceeding Propositions.

Corollary 3.5. Let µ ∈ M(Ω) be a measure. Assume that its near-axis mass function M
decays fast enough near 0 so that there exists increasing functions α, ρ : R+ → R+ for which
the three following integrals are finite.

∫ 1

0
(tρ(t))−

2
3 dt;

∫ 1

0

1√
tα(t)

e−
α(t)2

4t dt;

∫ 1

0

M(µ, α(t) + 3ρ(t))
1
3

t
dt.

Then, for any mild solution ω of the axisymmetric Navier-Stokes equations, its velocity field u
satisfies ∫ 1

0

∥∥∥∥
ur(t)

r

∥∥∥∥
L∞(Ω)

dt < ∞.
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Remark. For the first two integrals to be finite, we need
√
t to be negligible in front of both

α(t) and ρ(t). In particular, the third integral can be finite only if

∫ 1

0

M(µ,
√
t)

1
3

t
dt < ∞.

Changing variables, this last condition is equivalent to
∫ 1

0

M(µ, t)
1
3

t
dt < ∞.

This decay condition seems indepassable if one needs the velocity field integrability for short
times.

Remark. Having a M(µ, ·) which decays like a power function near the origin, no matter how
small the exponent, is enough to ensure that Corollary 3.5 holds. In particular, if M(µ, ·)
vanishes identically near the origin as it is in the case of one or several Dirac masses in Ω, all
the integrability conditions are easily seen to be satisfied.

Mettre ici un blabla explicatif

Proposition 3.6. Let T be an arbitrary time. Let U, V : [0, T ]×R
3 → R

3 be continuous vector
fields satisfying the following assumptions :

(1) div U ≡ 0;

(2) K1 := sup0<t<T t
1
2 ‖U(t)‖L∞(R3) < ∞;

(3) K2 :=
∫ T

0 ‖V (t)‖L∞(R3)dt < ∞.

Consider the equation

∂tf + U · ∇f + V f −∆f = 0.

There exists a unique fundamental solution Φ̃ to the above equation. Moreover, Φ̃ is Hölder-
continuous in space and time on [0, T [×R

3 and satisfies the pointwise bounds

0 < Φ̃(t, x; s, y) ≤ C

(t− s)
3
2

exp

(
−|x− y|2
4(t− s)

+K1
|x− y|√
t− s

+K2

)
.

Proof. Déjà fait ailleurs, flemme de recopier. �

Lemma 3.7. The fundamental solution Φ̃ is contravariant with respect to axial rotations, in the
following sense. For any rotation matrix R whose invariant axis is the symmetry axis {r = 0},
we have

(12) Φ̃(t, x; 0, Ry) = Φ̃(t, R−1x; 0, y).

Proof. Par unicité de la solution fondamentale (les données initiales sont égales avec cette con-
vention et les champs U, V sont invariants). �

We will be more interested in the averaged version of Φ̃, denoted by Φ, obtained by integrating

it in the θ variable. The bounds for the original Φ̃ translates, for any η > 0 into

(13) 0 < Φ(t, x; 0, y) ≤ Cη

t
exp

(
−(1− η)

|x− y|2
4t

)
.

An immediate consequence of the above proposition is a decomposition of ω into simpler
pieces. Indeed, for t > 0 and x ∈ Ω, we have

ω(t, x) =
∑

i

αiωi(t, x) + ωd(t, x),

where

ωi(t, x) := αiΦ(t, x; 0, xi)
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is the contribution from the vortex filament starting at xi and

ωd(t, x) :=

∫

Ω
Φ(t, x; 0, y)dµd(y)

is the diffuse contribution, coming from the continuous (or non atomic) part µd of µ.
The bound (13) translates into

(14) |ωi(t, x)| ≤
Cη|αi|

t
e−

1−η

4t
|x−xi|2

and

(15) |ωd(t, x)| ≤
Cη|αi|

t

∫

Ω
e−

1−η
4t

|x−y|2d|µd|(y).

Our goal now is to gain more information on the Gaussian behavior of Φ for small times.
While this was performed originally in (GS16) and (avecYanlin) for the atomic part of the initial
measure, at least at the level of the full solution, we still need to prove this statement for the
diffuse part. We begin with a few easy lemmas relative to rescaling operators which we will
frequently use.

Definition. Let y be a point in Ω and λ ∈ R
∗
+. Define the rescaling operators around y at the

scale λ acting on f ∈ L1(Ω) by

(Rve
y,λf)(x) =

√
λf
(
y +

√
λx
)
,

(Rvo
y,λf)(x) = λf

(
y +

√
λx
)
.

Remark. If ω and u are two functions such that for some constant C and any x in Ω

|u(x)| ≤ C

∫

Ω

|ω(z)|
|x− z|dz,

then for any y in Ω and λ > 0,

|Rve
y,λu(x)| ≤ C

∫

Ωλ

|Rvo
y,λω(z)|
|x− z| dz,

where Ωλ := Ω−y√
λ
.

Lemma 3.8. The following local uniform convergences hold. For any y in Ω,

Rve
y,tud(t) → 0 and Rvo

y,tωd(t) → 0.

Moreover, for any index j such that y 6= xj,

Rve
y,tuj(t) → 0 and Rvo

y,tωj(t) → 0.

Proof. Let us first assume that there exists an index j such that y 6= xj. Then, owing to the
bound (14), we have

|Rvo
y,tωj(t)(x)| ≤ Cη|αj |e−

1−η

4t
|y−xi+

√
tx|2 .

Hence, locally uniformly in x and for t small enough,

|Rvo
y,tωj(t)(x)| ≤ Cη|αj |e−

1−η

8t
|y−xi|2 .

Owing to the above remark, it is straightforward to show that also Rve
y,tuj(t) goes to 0 locally

uniformly in x as t → 0.
Let us now turn to the diffuse parts of the solution. Beginning with the vorticity and using

the Gaussian bound, we have

|Rvo
y,tωd(t)(x)| ≤ C

∫

R2

e−
1−η

4t
|y−y′+

√
tx|2d|µd|(y′).

Choosing some arbitrarily small parameter ε, we split the integral according to whether |y−y′| ≤
ε or |y − y′| > ε. Since µd is by definition atom-free, the first integral goes to 0 as ε goes to 0,
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uniformly in t; the other one goes to 0 as t → 0 for any ε. Repeating the same argument as for
uj above shows that Rve

y,tud(t) goes to 0 as t → 0 locally uniformly. �

Lemma 3.9. Let (tm)m∈N be a sequence converging to 0. Define sequences of rescaled functions

(u(m))m∈N and (Φ(m))m∈N by

(16)

{
u
(m)
y (s, z) :=

√
tmu(tms, y +

√
tmz), s > 0, z ∈ Ω

Φ
(m)
y (s, z) := tmΦ(tms, y +

√
tmz; 0, y).

Then, any pair of limit points (ūy, Φ̄y) of these sequences as m → ∞ satisfy

(17)

{
∂sΦ̄y + ūy · ∇Φ̄y −∆Φ̄y = 0,
Φ̄y(0) = δ0.

Proof. We recall that the pair (u, Φ̃) satisfies the equation

∂tΦ̃ + u · ∇Φ̃−∆Φ̃ = Φ̃
ur
r
, t > 0, x ∈ R

3.

Integrating on the circle orthogonal to the z-axis going through y and applying the rescalings,

the equation for the pair (u
(m)
y ,Φ

(m)
y ) reads

∂sΦ
(m)
y + div∗(u

(m)
y Φ(m)

y )−∆Φ(m)
y =

√
tmΦ(m)

y

u
(m)
y,r

Rm
,

where R2
m := (y1 +

√
tmz1)

2 + (y2 +
√
tmz2)

2. (préservation des bornes, point d’accumulation)
Hence, the right-hand side converges locally uniformly to 0 as m → ∞. Taking the limitm → ∞
proves that any accumulation point Φ̄ indeed satisfies the transport-diffusion equation. Since
the equations on the rescalings provide us with uniform bounds in L1H−3 for the derivative in
time, the initial condition is what we want (réécrire ce passage). �

Proposition 3.10. With the same notations as in the above lemma, for any y ∈ Ω, we have

Φ̄y(s, z) =
1

4πs
e−

|z|2

4s , s > 0, z ∈ R
2.

Proof. We split the proof into two cases, depending on whether y is an atom of µ.
Case 1 : y is not an atom of µ.
In this case, Lemma 3.8 entails the nullity of ū and hence, Φ̄ is the fundamental solution of

the two-dimensional heat equation. The conclusion is thus immediate.
Case 2 : there exists an index i such that y = xi.

Owing again to Lemma 3.8, u(m) − u
(m)
i goes to 0 locally uniformly as m → ∞ (et idem avec

Φ).
Et alors, on vérifie qu’on se ramène au non linéaire 2D et on invoque Proposition 1.3 in

(Gallay-Wayne). �

Remark. Étape suivante : donner un taux de convergence du reste en temps petit. Espoir :
que ça soit un minimum uniforme. Est-ce qu’on travaillerait pas encore un peu sur Φ, plutôt
que la solution ω ? Ça a l’air plus efficace, ça évite les blowups qui mènent juste à zéro.

C’est encore à vérifier, mais il est possible qu’on puisse reproduire la preuve de Gallay-Sverak
sur la solution fondamentale en tout point. C’est peut-être l’idée qui va débloquer toute la fin
(aka l’unicité), à voir.

Let χ : R+ → R+ be a smooth, decreasing function such that

χ(x) = 1 if x ≥ 1

2
, χ(x) = 0 for x ≤ 1

4
.

For y ∈ Ω and X ∈ R
2, let

f0,y(t,X) := G(X)χ

(
r(y +

√
tX)

r(y)

)
.

The function f0,y is tailored to satisfy the Dirichlet condition on ∂Ωt for all positive t.
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Appendix A. On refait l’estimation de masse

On travaille pour l’instant au-delà de s > 0, comme ça tout le monde est lisse et intégrable
comme on veut. La Φ est solution de

(18)

{
∂tΦ(t, x; s, y) + div∗(u(t, x)Φ(t, x; s, y)) −∆cylΦ(t, x; s, y) = 0,
Φ(s, ·; s, y) = δy.

On a des estimations sur u : on sait que ‖u‖L∞ . t−
1
2 .

Proposition A.1. On a une estimation gaussienne de la masse de Φ(t, x; s, y) pour t ≤ cr(y)2

avec c petite constante et r(x) ≤ 1
2r(y).

Proof. Il suffit de recopier la preuve de Gallay-Sverak, qui est complètement linéaire. �

Corollary A.2. Soit y tel que r(y) > C
√
t. Alors

∥∥∥∥
BS(Φ(t, ·; s, y)

r

∥∥∥∥
L∞

. (relou)

Proof. On divise comme d’habitude Φ en deux bouts, selon que r(z) > 1
2r(y) ou r(z) ≤ 1

2r(y)
et on les appelle Φ±(t, z; s, y). Pour Φ− :

‖Φ−(t, ·; s, y)‖
1
3

L1 . e−X2
/X avec X =

r(y)√
t

‖Φ−(t, z; s, y)/z‖
2
3
L∞ . t−1? à vérifier

Pour Φ+ :

‖Φ+(t, ·; s, y)‖
1
3

L1 . 1

‖Φ+(t, z; s, y)/z‖
2
3
L∞ . r(y)−

2
3 ‖Φ+(t, z; s, y)‖

2
3
L∞ . (tr(y))−

2
3 ? à vérifier aussi .

�

Proposition A.3. Borne finale sur le champ : soit C une constante assez grande (définie plus
haut).

‖V (t)‖L∞ .

∫

r(y)>C
√
t

(
1

t
e−

cr(y)2

t

(
r(y)√

t

)−1

+
1

(tr(y))
2
3

)
d|µ|(y) +

∫

r(y)≤C
√
t

C

t
d|µ|(y).

Lemma A.4. L’intégrale de la partie r(y) > C
√
t est . ‖µ‖TV .

Proof. Calculs pas compliqués, on permute les intégrales, on intègre en temps et on fait un petit
changement de variable, c’est cool. �

Proposition A.5. Condition finale :
∫ 1
0

M(t)
t

dt < ∞ est suffisant (et en fait plus ou moins
CNS avec cette méthode en tout cas) pour avoir l’intégrabilité du champ de vitesses.

Appendix B. Réécrire légèrement la convergence rescalée

Avec

u =

∫

Ω
BS(Φy)dµ(y),

u(m) → ū = µ{y}BS(Φ̄).

Comme ça c’est plus joli, c’est une écriture unifiée.
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