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TRANSFORMED LÉVY PROCESSES AS STATE-DEPENDENT

WEAR MODELS
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Abstract

Many wear processes used for modeling accumulative deterioration in a reliabil-

ity context are non homogeneous Lévy processes and hence have independent

increments, which may not be suitable in an application context. We here

suggest to consider Lévy processes transformed by monotonous functions,

which allow to overcome this restriction and provides a new state-dependent

wear model. These transformed Lévy processes are first observed to remain

tractable Markov processes. Some distributional properties are derived. The

impact of the current state on the future increment level and on the overall

accumulated level is investigated from a stochastic monotonicity point of view.

Positive dependence properties and stochastic monotonicity of increments are

also studied.
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1. Introduction

Safety and dependability is a crucial issue in many industries, which has lead to

the development of a huge literature devoted to the so-called reliability theory. In the
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oldest literature, the lifetimes of industrial systems or components were usually directly

modeled through random variables, see, e.g., [2] for a pioneer work on the subject.

Based on the development of on-line monitoring which allows the effective measurement

of a system deterioration, numerous papers nowadays model the degradation in itself,

which often is considered to be accumulating over time. This is done through the use

of continuous-time stochastic processes, which are usually assumed to be monotonous

or with monotonous trend. Most common models include gamma processes [1, 8, 26],

Wiener processes with trend [10, 29] and inverse gaussian processes [27, 30] (see also [15]

for more references). All these models are (possibly non homogeneous) Lévy processes

and hence have independent increments. However, in an application context, one could

think that the current deterioration level of a system can have some influence on its

future deterioration development. Typically, when the deterioration rate is increasing

over time, one could expect that the more severe a system history is (and hence the

higher the current deterioration level is), the higher the future deterioration rate is.

Such a behavior cannot be modeled through processes with independent increments

and some new “state-dependent wear models” (according to the vocabulary of [11])

need to be developed.

Some interesting attempts have been made in the previous literature for taking into

account some stochastic dependence between the current state of a system and its

future deterioration, such as [18, 28], where the deterioration process is constructed as

the solution of a stochastic differential equation (see also [25]). However, these models

do not seem to be very tractable, and up to our knowledge, generic tools still need

to be developed for their practical use in an application context (such as estimation

procedures). See however [11] for a practical use of such models in a specific setting.

Another attempt has been made recently by Giorgio, Guida and Pulcini in a series

of papers [12, 13, 14] where they suggest to consider gamma processes transformed

by increasing functions. This provides a tractable Markovian state-dependent wear

process. We here propose to use a similar procedure for general Lévy processes, which

leads to a more generic state-dependent wear process that we call Transformed Lévy

process. The new process includes, e.g., Transformed gamma processes in the sense of

[12, 13, 14] but also classical geometric Brownian motion (see, e.g., [22]). As will be

seen, a Transformed Lévy process remains a tractable Markov process, for which the
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Markov kernel is easily obtained. This allows to derive the joint probability density

function of successive observations of a deterioration path, from where a classical

Maximum Likelihood Estimation procedure could easily be implemented (which is

beyond the scope of the present paper). The model hence has a clear potential for

practical use. For a better understanding of its modeling ability, we here focus on

stochastic monotonicity/comparison results and on positive dependence properties.

The paper is organized as follows. The transformed Lévy process is defined in

Section 2, and the first distributional properties are derived. Considering a system

with deterioration level modeled by a transformed Lévy process, Section 3 is devoted

to the study of the impact of the current state of the system on its future deterioration

level, from a stochastic monotonicity point of view. Positive dependence properties are

next developed in Section 4 and stochastic monotonicity of increments in Section 5.

Conclusive remarks end the paper in Section 6.

2. Definition and the first properties

Throughout the paper, the term Lévy process stands for a possibly non homogeneous

Lévy process. These processes are also called additive processes in the literature [23,

page 3]. We recall that a process (Xt)t≥0 is said to be a (non homogeneous) Lévy (or

additive) process as soon as:

• X0 = 0 almost surely (a.s.);

• (Xt)t≥0 has independent increments;

• (Xt)t≥0 is stochastically continuous;

• (Xt)t≥0 has right-continuous paths with left-side limits, almost surely.

We refer to [23, page 3] for more details.

Definition 1. Let (Xt)t≥0 be a Lévy process with range J where J = R, J = R+, or

J = R− and let g be a (strictly) increasing differentiable function such that g : I ⊂

R −→ J with g(I) = J . A process (Zt)t≥0 is called a TRansformed (TR) Lévy process

with baseline process (Xt)t≥0 and state function g if Zt = g−1 (Xt) for all t ≥ 0.

We first start with a well-known example.
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Example 1. Let (Xt)t≥0 be a time-scaled Wiener process with drift:

Xt = A (t) + σ WA(t),∀t ≥ 0,

where (Wt)t≥0 is a standard Wiener process such that Wt ∼ N (0, t) and A : R+ → R+

is increasing such that A (0) = 0 and limt→+∞A (t) = +∞. Such a function is called a

time-scaling function in the following. Then (Xt)t≥0 is a (non homogeneous) Lévy pro-

cess and each incrementXt−Xs is normally distributedN
(
A(t)−A(s), σ2 (A(t)−A(s))

)
,

where 0 ≤ s < t. Considering z0 > 0 and g (x) = ln
(
x
z0

)
for x ∈ R∗+, we have

g−1 (z) = z0 e
z and

Zt = g−1 (Xt) = z0 e
Xt = z0 e

A(t)+σ WA(t)

is a time-scaled geometric Brownian motion, which hence appears as a specific TR

Lévy process.

Note that if (Xt)t≥0 is a Lévy process, then (−Xt)t≥0 also is a Lévy process so

that (g (−Xt))t≥0 with g increasing is a TR Lévy process. Then, any (g (Xt))t≥0 with

g (x) = g (−x) decreasing is a TR Lévy process in the sense of the previous definition,

which hence includes the case of any strictly monotonic function g.

In all the following, we assume that Xt admits a probability density function (pdf)

with respect to Lebesgue measure denoted by fXt . The corresponding cumulative

distribution function (cdf) and survival function are denoted by FXt
and FXt

, respec-

tively. Similar notations are used for other random variables, without any further

notification.

We now come to the probabilistic structure of a TR Lévy process.

Proposition 1. With the notations of Definition 1, a TR Lévy process is a Markov

process with Markov transition kernel provided by:

P (s, t; z, dx) = P (Zt ∈ dx|Zs = z) = fZt|Zs=z (x) dx (1)

with

fZt|Zs=z (x) = g′ (x) fXt−Xs (g (x)− g (z)) (2)

and

P (s, t; z, (x,∞)) = FZt|Zs=z (x) = FXt−Xs
(g (x)− g (z))

for all 0 ≤ s < t and all x, z ∈ I.
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Proof. Based on the fact that the baseline process (Xt)t≥0 is a Markov process, it

is clear that a TR Lévy process
(
Zt = g−1 (Xt)

)
t≥0 also is a Markov process. Also:

P (s, t; z, (x,∞)) = P (Zt > x|Zs = z)

= P (Xt > g (x) |Xs = g (z))

= P (Xt −Xs > g (x)− g (z) |Xs = g (z))

= P (Xt −Xs > g (x)− g (z))

= FXt−Xs
(g (x)− g (z))

due to the independent increments of (Xt)t≥0 for the previous to last line.

The result for fZt|Zs=z (x) is next obtained through differentiation of P (Zt > x|Zs = z)

with respect to x, which ends the proof. �

Remark 1. In [12], the authors consider a Transformed gamma process (Zt)t≥0 which

they define as a Markov process such that the conditional survival function of Zt−Zs
given Zs = z is of the shape

FZt−Zs|Zs=z (x) = FXt−Xs
(g (z + x)− g (z))

for all 0 ≤ s < t and all x, z ≥ 0, where g : R+ −→ R+ and the baseline process (Xt)t≥0

is a gamma process. This means that their Transformed gamma process is defined as

a Markov process with Markov transition kernel provided by (1). However, in order

to get a consistent definition, it might have been necessary to show, as a preliminary

step, that formula (1) actually gives raise to a Markov transition kernel, namely that∫
{x∈I}

P (s, t; z, dx) = 1 (3)

and ∫
{x∈I}

P (s, t; z, dx)P (t, u;x, dy) = P (s, u; z, dy) (4)

for all 0 ≤ s < t and all z ∈ I. In our definition, this point is useless to be checked

because formula (1) is obtained by computing the kernel of a Markov process and as

a consequence, formulas (3) and (4) are necessary true. As a by-product, this shows

the coherency of the definition of a Transformed gamma process as proposed in [12].

Also, their definition leads to a similar notion to ours, in the specific context of gamma

processes.
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We now provide the conditional distribution of an increment of a TR Lévy process

given its present state. The proof is a direct consequence of Proposition 1 and it is

omitted.

Corollary 1. For all 0 ≤ s < t and x, z ∈ I, the conditional survival function of

Zt − Zs given Zs = z is

FZt−Zs|Zs=z (x) = FXt−Xs
(g (z + x)− g (z)) (5)

and the conditional pdf of Zt − Zs given Zs = z is

fZt−Zs|Zs=z (x) = g′ (x+ z) fXt−Xs (g (x+ z)− g (z)) . (6)

In a general setting, the increment Zt − Zs hence depends on its past through Zs,

and the increments of (Zt)t≥0 are not independent. However, it is easy to characterize

the case where the increments are independent, as in the following corollary.

Corollary 2. A TR Lévy process has independent increments if and only if g is of the

shape g (z) = az + b, with a > 0 and b ∈ R.

Proof. Assuming g (z) = az+ b, with a > 0, then Zt = g−1 (Xt) = Xt−b
a ,∀t ≥ 0 and

(Zt)t≥0 clearly has independent increments.

Conversely, assume the process (Zt)t≥0 to have independent increments. Then

FZt−Zs|Zs=z (x) is independent on z for all x ∈ I and all 0 ≤ s < t. Based on

Corollary 1, this entails that g (z + x)− g (z) is independent on z for all x ∈ I, which

means that g′ is a constant and provides the result. �

Considering the fact that a Lévy process is assumed to start from 0 (Z0 = 0), the

only case for which a TR Lévy process is a Lévy process hence corresponds to a linear

function g (x) = ax with a > 0 (which entails Zt = Xt

a ,∀t ≥ 0).

Corollary 1 allows to easily write down the joint pdf of increments of a TR Lévy

process on successive time intervals as in the following proposition, which could be

used for the development of a likelihood estimation procedure in a parametric setting,

based on successive observations of deterioration data. See, e.g. [12, 13] in the specific

case of transformed gamma processes.
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Proposition 2. Let 0 < t1 < · · · < tn and let Zti−1,ti = Zti −Zti−1 for i ∈ {2, . . . , n}.

The pdf of
(
Zt1 , Zt1,t2 , · · · , Ztn−1,tn

)
is equal to

f(Zt1
,Zt1,t2

,··· ,Ztn−1,tn) (z1, · · · , zn) = g′ (z1) fXt1
(g (z1)− g(0))

×
n−1∏
i=1

g′ (z1:i+1) fXti,ti+1
(g (z1:i+1)− g (z1:i))

where z1:i =
∑i
j=1 zj for 1 ≤ i ≤ n.

Proof. Using successive conditioning, we have:

f(Zt1
,Zt1,t2

,··· ,Ztn−1,tn) (z1, · · · , zn) = fZt1
(z1)×

n−1∏
i=1

fZti,ti+1
|∩i

j=1{Ztj−1,tj
=zj} (zi+1)

= fZt1
(z1)×

n−1∏
i=1

fZti,ti+1
|∩i

j=1{Ztj
=z1:j} (zi+1) ,

where, in the first line, t0 = 0. The Markov property now provides:

f(Zt1 ,Zt1,t2 ,··· ,Ztn−1,tn) (z1, · · · , zn) = fZt1
(z1)×

n−1∏
i=1

fZti,ti+1
|Zti

=z1:i (zi+1)

and the result follows from (2) and (6). �

We end this section by noticing that given the present state, the future increment

process still behaves according to a TR Lévy process. According the vocabulary of [6],

this means that a TR Lévy process possesses the “restarting property”.

Proposition 3. (Restarting property.) For a fixed s > 0, let us set Z
(s)
t = Zt+s−Zs,

for all t ≥ 0. Then given Zs = x, the process
(
Z

(s)
t

)
t≥0

conditionally is a TR Lévy

process with baseline Lévy process X(s) =
(
X

(s)
t = Xt+s −Xs

)
t≥0

and state function

g(x) = g (x+ ·)− g (x).

Proof. Let the symbol
D
= mean “is identically distributed as”. Then:

[(
Z

(s)
t

)
t≥0
|Zs = x

]
D
=
[
(Zt+s − Zs)t≥0 |Zs = x

]
D
=
[(
g−1 (Xt+s −Xs + g (x))− x

)
t≥0 |Xs = g (x)

]
D
=
(
g−1 (Xt+s −Xs + g (x))− x

)
t≥0
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based on the independent increments of (Xt)t≥0 for the last line. Hence, given Zs = x,

the process
(
Z

(s)
t

)
t≥0

conditionally is a TR Lévy process with baseline Lévy process

X(s) =
(
X

(s)
t = Xt+s −Xs

)
t≥0

and(
g(x)

)−1
(z) = g−1 (z + g (x))− x,

or equivalently g(x) (y) = g (x+ y)− g (x). �

Some of the results of the paper require the baseline Lévy process (Xt)t≥0 to be

non negative (or at least to keep a constant sign). We recall that this entails that

(Xt)t≥0 is non decreasing. In that case, (Zt)t≥0 is a non decreasing process with

range [g (0) , g (∞)). For easiness, we will also assume that g (0) = 0 (= Z0). These

assumptions will be referred to as “positive assumption” in the following. Note that

dual results could be written under a similar “negative assumption”.

3. Influence of the current state of a TR Lévy process on its future

In this section, we investigate the influence of the current state on an increment of the

future deterioration process and on its overall cumulated level. We refer to [20] and [24]

for the definition of the stochastic orders used in this section (usual stochastic order:

≺st, hazard rate order: ≺hr, reverse hazard rate order: ≺rh, likelihood ratio order:

≺lr), and to [19] for the aging properties (Increasing Hazard Rate: IHR, Decreasing

Hazard Rate: DHR, Decreasing Reverse Hazard Rate: DRHR, Increasing Reverse

Hazard Rate: IRHR).

3.1. Influence of the current state on an increment of the wear process

Lemma 1. Let 0 < s < t.

1. Then [Zt|Zs = z] increases in the usual stochastic ordering as z increases.

2. Assume g to be concave (resp. convex). Then, under the positive assumption,

[Zt − Zs|Zs = z] increases (resp. decreases) in the usual stochastic ordering as z

increases.

Proof. The function

FZt|Zs=z (x) = FXt−Xs (g (x)− g (z))
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increases with respect to z, which shows the first point.

For the second point, let us consider the case where g is concave. Let us observe

that, for all x ≥ 0,

FZt−Zs|Zs=z (x) = FXt−Xs
(g (z + x)− g (z))

increases with respect to z because g (z + x)− g (z) decreases with respect to z, which

shows the result. The convex case is similar and it is omitted. �

Remark 2. Based on the previous lemma, the future (cumulated) deterioration level

will be all the higher as the current observation is high. However, the monotony of the

future increment of deterioration with respect to the current observation depends on

the concavity/convexity of the state function. Assume for instance that g is concave,

or equivalently that g−1 is convex. Then the future increment of deterioration will be

all the higher as the current observation is high. This seems coherent with the fact

that Zt = g−1 (Xt) and that the rate of increasingness of the convex function g−1 is

increasing.

When the increment Xt −Xs has got some aging property, the previous result can be

strengthened as shown in the next proposition.

Proposition 4. Let 0 < s < t. Assume the positive assumption to hold and Xt −

Xs to have an Increasing Hazard Rate (IHR). Then if g is concave (resp. convex),

[Zt − Zs|Zs = z] increases (decreases) in the hazard rate (hr) ordering as z increases.

Proof. We only look at the convex case as the concave case is similar.

Let x, y ≥ 0 be fixed. The point is to show that

H (z) :=
FZt−Zs|Zs=z (x+ y)

FZt−Zs|Zs=z (x)
(7)

decreases with respect to z. Let z1 ≤ z2. We have

H (zi) =
FXt−Xs

(g (zi + x+ y)− g (zi))

FXt−Xs
(g (zi + x)− g (zi))

=
FXt−Xs

(ui + vi)

FXt−Xs
(vi)

with ui = g (zi + x+ y)− g (zi + x) ≥ 0 and vi = g (zi + x)− g (zi) for i = 1, 2.
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As Xt −Xs is IHR , we know that

FXt−Xs
(u+ v)

FXt−Xs
(v)

(8)

decreases with respect to v for any fixed u ≥ 0.

Also, as g is convex, z1 ≤ z2 and x ≥ 0, we have v1 ≤ v2 and hence:

H (z1) =
FXt−Xs

(u1 + v1)

FXt−Xs
(v1)

≥ FXt−Xs
(u1 + v2)

FXt−Xs
(v2)

.

Now, based again on the convexity of g, we have u1 ≤ u2, from which we now derive:

H (z1) ≥ FXt−Xs
(u2 + v2)

FXt−Xs
(v2)

= H (z2) ,

which achieves the proof. �

In the following example, we explore the hazard rate monotony of [Zt − Zs|Zs = z]

with respect to z, to see whether some dual results to Proposition 4 could be valid

under the Decreasing Hazard Rate (DHR) assumption for Xt −Xs instead of IHR.

Example 2. Let A : R+ → R+ be a time-scaling function as defined in Example 1

and let b > 0. Let (Xt)t≥0 be a non homogeneous gamma process with shape function

A(·) and rate parameter b (denoted by (Xt)t>0 ∼ G (A (·) , b)). Then (Xt)t≥0 is a Lévy

process such that each increment Xt − Xs (with 0 < s < t) is gamma distributed

G (A (t)−A (s) , b), where the gamma distribution G (a, b) (with a > 0, b > 0) admits

the following pdf

f(x) =
1

Γ(a)
baxa−1 exp{−bx}, ∀x ≥ 0.

The positive assumption holds and, if A (t) − A (s) ≥ (≤) 1, the random variable

Xt − Xs is IHR (DHR). Considering A (t) = tβ (β > 0) and b = 1, the ratio H (z)

defined in (7) is plotted with respect to z in Figure 1 for x = 0.5, y = 0.5 with s = 1,

t = 1.25, β = 0.75 for cases (a) and (c), with g(x) = x1{x<2} + (1.5x − 1)1{x≥2} for

case (a) and g(x) = x1{x<2} + (0.5x + 1)1{x≥2} for case (c). We next take s = 0.25,

t = 1.75, β = 2 for cases (b) and (d) with g(x) = x2 for case (b) and g(x) = x0.5

for case (d). This leads to A (t) − A (s) ' 0.18 (DHR) for cases (a) and (c), and to

A (t) − A (s) = 3 (IHR) for cases (b) and (d). In Figure 1, we observe that H(z)

decreases with z for case (b), whereas it increases for case (d). This is coherent with

what could be expected from Proposition 4 whenever g is convex (case (b)) or concave
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0.995
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Figure 1: H (z) with respect to z (when Xt ∼ G
(
tβ , 1

)
) for x = 0.5, y = 0.5 with s = 1,

t = 1.25, β = 0.75 for cases (a) and (c), and s = 0.25, t = 1.75, β = 2 for cases (b) and (d)

(and the function g is defined on each plot), Example 2.

(case (d)), under the IHR assumption for Xt−Xs. Now, when Xt−Xs is DHR, it can

be seen from cases (a) and (c) in Figure 1 that the ratio H (z) is not monotonous with

respect to z, neither for a convex function g (case (a)) nor for a concave function g (case

(c)). Hence, it seems that nothing more can be said than the results of Proposition 4

in a general setting.

We next look at a similar example to the previous one, now considering an inverse

Gaussian process instead of a gamma process. Note that the inverse Gaussian distri-

bution is known not to have a monotonic hazard rate in a general setting (that is, it is

neither IHR nor DHR, see [7]) so that the conclusions of Proposition 4 do not apply

in this case.

Example 3. Let A : R+ → R+ be a a time-scaling function and let b > 0. Let

(Xt)t≥0 be a non homogeneous inverse Gaussian process with mean function A(t) and
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Figure 2: H (z) for x = 0.5, y = 0.5 with respect to z (when Xt ∼ IG
(
tβ , 1

)
) with s = 1,

t = 1.25, β = 0.95 for case (a), and with s = 0.5, t = 1.5, β = 2 for case (b) (and the function

g is defined on each plot), Example 3.

rate parameter b (denoted by (Xt)t>0 ∼ IG (A (·) , b)). Then (Xt)t≥0 is a Lévy process

such that each increment Xt − Xs (with 0 < s < t) is inverse Gaussian distributed

IG (A (t)−A (s) , b), where the inverse Gaussian distribution IG (a, b) (with a > 0, b >

0) admits the following pdf

f(x) =

√
b

2π
x−

3
2 exp{−b(x− a)2

2a2x
}, ∀x > 0

and the positive assumption holds. Considering A (t) = tβ and b = 1, the ratio

H (z) defined in (7) is plotted with respect to z in Figure 2 for x = 0.5, y = 0.5

with s = 1, t = 1.25, β = 0.95 (which leads to A(t) − A(s) ' 0.24) and g(x) =

x1{x<1}+ (0.975x+ 0.025)1{x≥1} for case (a), and with s = 0.5, t = 1.5, β = 2 (which

leads to A(t) − A(s) = 2) and g(x) = x1{x<1} + (1.25x − 0.25)1{x≥1} for case (b). In

Figure 2, we observe that H(z) is not monotonic with respect to z neither when g is

concave (case (a)) nor convex (case (b)). It is easy to check that in those two cases,

Xt − Xs is not IHR (nor DHR). The IHR assumption hence appears as necessary to

derive the results in Proposition 4.

We next look at aging properties (IHR/DHR) of an increment of a TR Lévy process.

Proposition 5. Let 0 < s < t.

1. Assume that Xt − Xs has Increasing Hazard Rate (IHR) and that g is convex.
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Then [Zt − Zs|Zs = z] is IHR.

2. Assume that Xt−Xs has Decreasing Hazard Rate (DHR) and that g is concave.

Then [Zt − Zs|Zs = z] is DHR.

Proof. We only look at the first point as the second one is similar. Let y ≥ 0 and z

be fixed. We have to show that

G (x) :=
FZt−Zs|Zs=z (x+ y)

FZt−Zs|Zs=z (x)
(9)

decreases with respect to x. This can proved in a similar way as for the proof of

Proposition 4 and it is omitted. �

Remark 3. Note that contrary to Proposition 4, the results in Proposition 5 do

not require the positive assumption to hold. However, it is well-known that DHR

distributions have a bounded support from below (see, e.g., [2]), so that the second

point is useless in case of a baseline Lévy process with R as support (such as a Wiener

process).

The first point of Proposition 5 is now illustrated considering a Wiener process as

baseline Lévy process.

Example 4. Let (Xt)t≥0 be a time-scaled Wiener process with drift as defined in

Example 1, where Xt ∼ N
(
tβ , σ tβ

)
with σ = 1 and β = 0.75. The ratio G (x) defined

in (9) is plotted with respect to x in Figure 3 for y = 0.5, z = 0.5, s = 1 and t = 1.25

with g(x) = (x − 1)3 + 1 for case (a), and g(x) = x1.5 for case (b). Recall from [3]

that any normal random variable is IHR so that Xt −Xs is IHR. In case (b), we can

see that G(x) is decreasing with respect to x. This is coherent with Proposition 5

based on the fact that g is convex. In case (a), the function g is neither convex nor

concave and nothing can be said from Proposition 5. It can be observed that indeed, G

is not monotonic. This shows that the convexity/concavity assumption is required in

Proposition 5 in order to derive the conditional IHR/DHR property of an increment.

Remark 4. One may also be interested in the unconditional aging property of Zt−Zs.

Actually, Zt − Zs can be regarded as the mixture of [Zt − Zs|Zs = z] with respect to

the mixture distribution of Zs. It is well known that the mixture of DHR r.v.s is DHR.

Thus, from the second point of Proposition 5, we can conclude that Zt − Zs is DHR
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Figure 3: G (x) with respect to x (when Xt ∼ N
(
t0.75, t0.75

)
) for y = 0.5, z = 0.5, s = 1

and t = 1.25 with g(x) = (x− 1)3 + 1 for case (a), and g(x) = x1.5 for case (b), Example 3.

as soon as Xt−Xs is DHR and g is concave. However, the mixture of IHR r.v.s is not

necessarily IHR and nothing can be said on the IHR property of Zt − Zs in general.

3.2. Influence of the current state on the future deterioration level

Proposition 6. Let 0 < s < t. If Xt −Xs is IHR (DHR), then [Zt|Zs = z] increases

(decreases) in the hazard rate (hr) ordering as z increases, whatever g is.

Proof. We only look at the IHR case as the DHR case is similar.

Let x and y be fixed (y ≥ 0). The point is to show that

J (z) :=
FZt|Zs=z (x+ y)

FZt|Zs=z (x)
(10)

increases with respect to z, which can be shown similarly as in the proof of Proposition

4. �

Proposition 7. Let 0 < s < t. If Xt −Xs is Decreasing/Increasing Reverse Hazard

Rate (DRHR/IRHR), then [Zt|Zs = z] decreases/increases in the reverse hazard rate

(rh) ordering as z increases, whatever g is.

Proof. We only look at the DRHR case as the IRHR case is similar.

Let x and y be fixed (y ≥ 0). The point is to show that

K (z) :=
FZt|Zs=z (x+ y)

FZt|Zs=z (x)
(11)

decreases with respect to z. Let z1 ≤ z2. We have

K (zi) =
FXt−Xs

(g (x+ y)− g (zi))

FXt−Xs (g (x)− g (zi))
=
FXt−Xs

(u+ vi)

FXt−Xs
(vi)
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with u = g (x+ y)− g (x) ≥ 0 and vi = g (x)− g (zi) for i = 1, 2.

As g is increasing, we have v1 ≥ v2. Assuming Xt −Xs to be DRHR, we get:

K (z1) =
FXt−Xs

(u+ v1)

FXt−Xs
(v1)

≤ FXt−Xs
(u+ v2)

FXt−Xs
(v2)

= K (z2) ,

which achieves the proof. �

Proposition 8. Let 0 < s < t. If the pdf of Xt −Xs is log-concave (log-convex), then

[Zt|Zs = z] increases (decreases) in the likelihood ratio (lr) ordering as z increases,

whatever g is.

Proof. We only look at the log-concave case as the log-convex case is similar. Let

z1 ≤ z2. We have to show that

L (x) :=
fZt|Zs=z2 (x)

fZt|Zs=z1 (x)
=
fXt−Xs

(g (x)− g (z2))

fXt−Xs (g (x)− g (z1))
(12)

increases with respect to x. Based on the log-concavity of fXt−Xs
, we know that

fXt−Xs
(u+ h)

fXt−Xs
(v + h)

(13)

increases with respect to h whenever u ≤ v. Considering h = g (x) − g (z2), u = 0 ≤

v = g (z2) − g (z1), we derive that L (x) increases with respect to h and hence with

respect to x, which completes the proof. �

4. Positive dependence properties

We now come to positive (negative) dependence properties and we first look at the

dependence properties between the increments of a transformed Lévy process.

Proposition 9. Under the positive assumption:

1. Assume g to be concave. Then, for all t0 = 0 < t1 < · · · < tn, the random vector(
Zt1 , Zt2 − Zt1 , · · · , Ztn − Ztn−1

)
is Conditionally Increasing in Sequence (CIS),

namely:[
Zti − Zti−1

|Zt1 = z1, Zt2 − Zt1 = z2 · · · , Zti−1
− Zti−2

= zi−1
]

≺st
[
Zti − Zti−1 |Zt1 = z′1, Zt2 − Zt1 = z′2 · · · , Zti−1 − Zti−2 = z′i−1

]
(14)

for all i ∈ {2, · · · , n} and all zj ≤ z′j, j ∈ {1, · · · , i− 1}, see, e.g., [9, Def

5.3.22.].
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2. Assume g to be convex. Then, for all t0 = 0 < t1 < · · · < tn, the random

vector
(
Zt1 , Zt2 − Zt1 , · · · , Ztn − Ztn−1

)
is Conditionally Decreasing in Sequence

(CDS), namely the inequality in (14) is reversed.

Proof. We only look at the concave case, as the convex case is similar. The point is

to show (14).

Based on the Markov property, we know that

[
Zti − Zti−1

|Zt1 = z1, Zt2 − Zt1 = z2 · · · , Zti−1
− Zti−2

= zi−1
]

D
=
[
Zti − Zti−1 |Zti−1 = z1:i−1

]
with

z1:i−1 =

i−1∑
j=1

zj .

As zj ≤ z′j , j ∈ {1, · · · , i− 1}, we also have z1:i−1 ≤ z′1:i−1 (similar notation).

Due to the second point of Lemma 1, we derive that

[
Zti − Zti−1

|Zti−1
= z1:i−1

]
≺st

[
Zti − Zti−1

|Zti−1
= z′1:i−1

]
.

Then
(
Zt1 , Zt2 − Zt1 , · · · , Ztn − Ztn−1

)
is CIS. �

Remark 5. As CIS is closed under marginalization (consequence of [20, Thm 3.10.19.]),

we can derive that when g is concave, the random vector
(
Zt1 , Zt3 − Zt2 , · · · , Zt2n+1

− Zt2n
)

is CIS. This shows that when g is concave, the CIS property is still true for non

overlapping but non necessarily consecutive intervals. However, up to our knowledge,

CDS is not known to be closed under marginalization. The question hence remains

open whether CDS property is true for increments of a TR Lévy process over non

overlapping intervals.

Remark 6. Let us recall that a random vector V = (V1, V2, · · · , Vn) is said to be

(positively) associated if

E[h(V)w(V)] ≥ E[h(V)] E[w(V)],

for all non decreasing functions h and w such that E[h(V)], E[w(V)] and E[h(V)w(V)]

exist, see, e.g., [20]. Furthermore, a random vector V = (V1, V2, · · · , Vn) is said to be
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Positive Upper (Lower) Orthant Dependent (PUOD/PLOD) if

P [Vi > (≤)vi, i = 1, 2, · · · , n] ≥
n∏
i=1

P [Vi > (≤)vi] , (15)

for all vi, i = 1, 2, · · · , n. If the inequality “≥” in (15) is reversed, the random

vector V = (V1, V2, · · · , Vn) is said to be Negative Upper (Lower) Orthant Depen-

dent (NUOD/NLOD). We recall that CIS implies association, which itself implies

PUOD/PLOD properties, see, e.g., [9, Property 7.2.11]. The previous result hence

shows that when g is concave, the random vector

(Zt1 , Zt2−Zt1 , · · · , Ztn−Ztn−1
) is associated, and consequently both PUOD and PLOD.

As for negative dependence properties, it is known from [21] that CDS implies Negative

Lower Orthant Dependence (NLOD) property. Then, if g is convex, the random vector(
Zt1 , Zt2 − Zt1 , · · · , Ztn − Ztn−1

)
is NLOD. However, up to our knowledge, it seems

that nothing else can be derived from the CDS property.

We now come to positive (negative) dependence properties for successive overall dete-

rioration levels in a TR Lévy process.

Proposition 10. For all 0 < t1 < · · · < tn, the random vector (Zt1 , Zt2 , · · · , Ztn) is

Conditionally Increasing in Sequence (CIS), and hence associated and PUOD/PLOD,

whatever g is.

Proof. The point is to show that

[
Zti |Zt1 = z1, Zt2 = z2 · · · , Zti−1 = zi−1

]
≺st

[
Zti |Zt1 = z′1, Zt2 = z′2 · · · , Zti−1

= z′i−1
]

for all i ∈ {2, · · · , n} and all zj ≤ z′j , j ∈ {1, · · · , i− 1}, where we set t0 = 0 and

Zt0 = 0.

Based on the Markov property, we know that:

[
Zti |Zt1 = z1, Zt2 = z2 · · · , Zti−1

= zi−1
] D

=
[
Zti |Zti−1

= zi−1
]

which stochastically increases with respect to zi−1, based on Lemma 1. This achieves

the proof. �
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Before going to the last positive (negative) dependence result, let us recall that a

function f : Rn 7−→ R+ is said to be Multivariate Totally Positive of order 2 (MTP2)

as soon as

f(x)f(y) ≤ f(x ∨ y)f(x ∧ y),∀x, y ∈ Rn

where ∨ and ∧ are the max and min component-wise operations, respectively. The

function f is said to be Multivariate Reverse Rule of order 2 (MRR2) when the previous

inequality is reversed, see [16, 17] for more details on these notions.

Proposition 11. Let t0 = 0 < t1 < · · · < tn. If the pdf of Xti −Xti−1
is log-concave

(log-convex) for each i ∈ {1, · · · , n}, then (Zt1 , Zt2 , · · · , Ztn) is MTP2 (MRR2), what-

ever g is.

Proof. We only look at the log-concave case, as the log-convex case is similar.

We have:

f(Zt1
,Zt2

,··· ,Ztn) (z1, · · · , zn) = fZt1
(z1)

n−1∏
i=2

fZti
|Zti−1

=zi−1
(zi) .

Based on Proposition 8, we know that
[
Zti |Zti−1

= xi−1
]
≺lr

[
Zti |Zti−1

= zi−1
]

for

all xi−1 ≤ zi−1 so that

fZti
|Zti−1

=zi−1
(xi) fZti

|Zti−1
=xi−1

(zi) ≤ fZti
|Zti−1

=zi−1
(zi) fZti

|Zti−1
=xi−1

(xi)

for all xi−1 ≤ zi−1 and xi ≤ zi. This shows that fZti
|Zti−1

=zi−1
(zi) is TP2 in

(zi−1, zi) and hence MTP2 as a function of (z1, · · · , zn). Also fZt1
(z1) is MTP2 as

it is a univariate function of (z1, · · · , zn). As a product of MTP2 functions is MTP2,

f(Zt1
,Zt2

,··· ,Ztn) (z1, · · · , zn) hence is MTP2. �

Under log-concavity assumption on the increments of the baseline Lévy process

(Xt)t≥0, the successive deterioration levels of the TR Lévy process (Zt)t≥0 hence fulfills

the MTP2 property, so that they are strongly positively dependent. (We recall that,

among others, the MTP2 property implies CIS). However, when the increments of the

baseline Lévy process are log-convex, the successive deterioration levels of the TR Lévy

process fulfill the MRR2 property, which is a negative dependence property. This was

not necessarily expected, as from Proposition 10, this vector also exhibits CIS, which is

a positive dependence property. These results are illustrated in the following example.
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Example 5. Let g(x) = x1.5 and Xt ∼ G (t, 1). Then Xt − Xs ∼ G (t− s, 1) for

0 < s < t and if t− s < (>)1, the pdf of Xt −Xs is log-convex (log-concave), see, e.g.,

[5]. Two cases are considered: t1 = 0.25 < t2 = 1.2, x2 = 1.5 > y2 = 1 > x1 = 0.25

and t1 = 1.35 < t2 = 2.75, x2 = 3 > y2 = 2 > x1 = 1, which leads to log-convex and

log-concave pdf for both Xt1 and Xt2 −Xt1 in the first and second cases, respectively.

The function

d(x1,x2,y2)(y1) = f(Zt1
,Zt2

)(x1, x2)f(Zt1
,Zt2

)(y1, y2)− f(Zt1
,Zt2

)(x1, y2)f(Zt1
,Zt2

)(y1, x2)

is plotted for y1 ∈ [x1, y2] in Figures 4 (a) and (c), whereas F̄Zt2
|Zt1

=y1(y2) is plotted

as a function of y1 in Figures 4 (b) and (d) for y2 = 1 and y2 = 2, respectively. Figures

4 (a) and (b) correspond to the first case, and (Zt1 , Zt2) is observed to be both MRR2

and CIS. Figures 4 (c) and (d) correspond to the second case, and (Zt1 , Zt2) is observed

to be both MTP2 and CIS. All figures hence are in coherence with what was expected

from the previous results.

5. Stochastic monotonicity of increments

Proposition 12. Assume the positive assumption to hold and let h > 0 be fixed.

Assume further that g is convex (concave) and that Xt+h − Xt decreases (increases)

in the sense of the usual stochastic order with respect to t. Then Zt+h − Zt decreases

(increases) in the sense of the usual stochastic order with respect to t (with h > 0

fixed).

Proof. We only consider convex case, as the concave one is similar.

Let h > 0 and x ≥ 0 be fixed. For t ≥ 0, we have

P (Zt+h − Zt > x) = E (ϕt (Zt))

with

ϕt (z) = P (Zt+h − Zt > x|Zt = z)

= FXt+h−Xt
(g (z + x)− g (z)) .

Now let t1 < t2. Let us note that, under the positive assumption, then Xt1 ≤ Xt2

and hence Xt1 ≺st Xt2 . Also Xt1+h − Xt1 �st Xt2+h − Xt2 by assumption. Then
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Figure 4: d(x1,x2,y2)(y1) and F̄Zt2
|Zt1

=y1(y2) as a function of y1 with (x1, x2, y2) fixed,

Example 5

ϕt1 ≥ ϕt2 and

P (Zt1+h − Zt1 > x) = E (ϕt1 (Zt1)) ≥ E (ϕt2 (Zt1)) .

As ϕt2 (z) decreases with respect to z (because g is convex and x ≥ 0) and as Zt1 =

g−1 (Xt1) ≺st Zt2 = g−1 (Xt2) (because Xt1 ≺st Xt2 and g−1 increases), we derive that

E (ϕt2 (Zt1)) ≥ E (ϕt2 (Zt2)) and consequently

E (ϕt1 (Zt1)) ≥ E (ϕt2 (Zt2)) ,

which achieves the proof.

�

Example 6. Let (Xt)t>0 ∼ IG (A (·) , 1). Considering the expression of the failure

rate of an IG distribution given in [7, top of page 463], it is easy to check that IG(a, b)
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increases in the hazard rate ordering when a increases with b fixed. This entails that,

if A (·) is convex (concave), then Xt+h − Xt increases (decreases) in the hazard rate

ordering and hence in the usual stochastic ordering [20]. We take A(t) = tβ , g(x) = tγ ,

h = 0.5, x = 0.5 and the survival function FZt+h−Zt
(x) is plotted with respect to t in

Figure 5 for β = 0.5 and γ = 2 in case (a), β = γ = 2 in case (b), β = 0.65 and γ = 0.5

in case (c) and β = 1.25 and γ = 0.5 in case (d). Case (a) (case (d)) corresponds to

the case where A (·) is concave (convex) and g (·) is convex (concave). The results are

coherent with what was expected from Proposition 12. Cases (b) and (c) correspond

to the cases where A (·) and g (·) are both convex and both concave, respectively. As

can be seen on the two plots, Xt+h−Xt is not stochastically monotonous with respect

to t and hence, it seems that nothing more can be said than the results of Proposition

12 in a general setting.

6. Stochastic comparison of two transformed Lévy processes

We here consider stochastic comparison of two transformed Lévy processes keeping

the same baseline process or the same state function for both processes, which allows

a better understanding of the influence of each item (baseline process/state function)

on the behavior of the resulting TR Lévy process.

6.1. Common baseline process with different state functions

Proposition 13. Consider two processes (Z1t)t≥0 and (Z2t)t≥0 having a common

baseline process (Xt)t≥0 and corresponding state functions g1(x) and g2(x), respectively.

Assume the positive assumption to hold for both processes.

1. If one among gi(x), i = 1, 2 is concave and g1(z+x)− g1(z) ≤ g2(z+x)− g2(z),

for all z ≥ 0, x > 0, then Z1t − Z1s �st Z2t − Z2s, for any 0 ≤ s < t.

2. If one among gi(x), i = 1, 2, is convex and g1(z+ x)− g1(z) ≥ g2(z+ x)− g2(z),

for all z ≥ 0, x > 0, then Z1t − Z1s ≺st Z2t − Z2s, for any 0 ≤ s < t.

Proof. We only deal with the first point, as the second one is similar.

As a first step, assume g1 to be concave. Then, for any fixed x ≥ 0,

FZ1t−Z1s|Z1s=z(x) = FXt−Xs(g1(z + x)− g1(z))
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Figure 5: FZt+0.5−Zt (0.5) with respect to t (when Xt ∼ IG
(
tβ , 1

)
) for g(x) = xγ with

β = 0.5 and γ = 2 (case (a)), β = γ = 2 (case (b)), β = 0.65 and γ = 0.5 (case (c)) and

β = 1.25 and γ = 0.5 (case (d)), Example 6

.

is increasing in z. Furthermore, under the positive assumption, g1(0) = g2(0) = 0,

which implies FZ1s
(x) = FXs

(g1(x)) ≥ FZ2s
(x) = FXs

(g2(x)), i = 1, 2, and Z1s �st
Z2s. Therefore,

FZ1t−Z1s
(x) = E[FXt−Xs

(g1(Z1s + x)− g1(Z1s))]

≥ E[FXt−Xs
(g1(Z2s + x)− g1(Z2s))].

Now, as g1(z + x)− g1(z) ≤ g2(z + x)− g2(z) by assumption, we get:

FZ1t−Z1s
(x) ≥ E[FXt−Xs

(g2(Z2s + x)− g2(Z2s))]

= FZ2t−Z2s(x).
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As a second step, assume g2 to be concave. Using similar arguments, we have:

FZ1t−Z1s(x) = E[FXt−Xs(g1(Z1s + x)− g1(Z1s))]

≥ E[FXt−Xs
(g2(Z1s + x)− g2(Z1s))]

≥ E[FXt−Xs
(g2(Z2s + x)− g2(Z2s))]

= FZ2t−Z2s
(x).

�

Proposition 14. Consider two processes (Z1t)t≥0 and (Z2t)t≥0 having a common

baseline process (Xt)t≥0 and corresponding state functions g1(x) and g2(x), respectively.

Assume the positive assumption to hold for both processes, Xt to be Increasing Hazard

Rate (IHR) and g2 − g1 to be non decreasing. Then Z1t �hr Z2t, for any t > 0.

Proof. Let λXt stand for the hazard rate of Xt. As g1(0) = g2(0) under the positive

assumption, observe that

r (x) =
FZ1t(x)

FZ2t(x)
=
FXt(g1(x))

FXt(g2(x))
=

exp
{
−
∫ g1(x)
0

λXt
(u)du

}
exp

{
−
∫ g2(x)
0

λXt(u)du
}

= exp

{∫ g2(x)−g1(x)

0

λXt
(v + g1 (x))dv

}
.

As g2−g1 is non decreasing with g1(0) = g2(0) = 0, then g2(x)−g1 (x) ≥ 0, ∀x ≥ 0.

As g1 and λXt
also are non decreasing (because Xt is IFR), we derive that r (x) is non

decreasing, which achieves the proof. �

6.2. Common state function with different baseline processes

Proposition 15. Consider two processes (Z1t)t≥0 and (Z2t)t≥0 having a common

state function g(x) and corresponding baseline processes (X1t)t≥0 and (X2t)t≥0, re-

spectively. Assume the positive assumption to hold for both processes and the common

state function g to be concave. Let 0 ≤ s < t. Then, if X1t −X1s ≺st X2t −X2s and

X1s ≺st X2s, we have Z1t − Z1s ≺st Z2t − Z2s.
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Proof. Observe that, as X1t −X1s ≺st X2t −X2s:

FZ1t−Z1s|Z1s=z(x) = FX1t−X1s
(x)(g(z + x)− g(z))

≤ FX2t−X2s
(x)(g(z + x)− g(z))

= FZ2t−Z2s|Z2s=z(x),

for all x, z ≥ 0. Furthermore, as X1s ≺st X2s and g−1 increases, Z1s = g−1(X1(s)) ≺st
Z2s = g−1(X2(s)). Also, as g is concave, FZ1t−Z1s|Z1s=z(x) is increasing in z for all

x ≥ 0. Thus

FZ1t−Z1s
(x) =

∫ ∞
0

FZ1t−Z1s|Z1s=z(x)fZ1s
(z)dz

≤
∫ ∞
0

FZ1t−Z1s|Z1s=z(x)fZ2s(z)dz

≤
∫ ∞
0

FZ2t−Z2s|Z2s=z(x)fZ2s
(z)dz

= FZ2t−Z2s
(x).

�

Note that similar results would not be valid for a convex function g. This is

illustrated in Example 7.

Example 7. Let Xit ∼ G
(
(t+ 1)βi − 1, 1

)
, i = 1, 2 with β1 = 1, β2 = 2. Then, it can

be checked that X1s ≺st X2s and X1t − X1s ≺st X2t − X2s for all 0 ≤ s ≤ t. The

survival functions of Zit − Zis, i = 1, 2 are plotted with respect to x in Figure 6 for

s = 4.5, t = 4.53, g(x) = x2 in case (a) (left) and for s = 3, t = 3.03, g(x) = x0.8 in case

(b) (right). It can be seen that, as expected from Proposition 15, when g is concave

(case (b)), we have Z1t − Z1s ≺st Z2t − Z2s. However, in the convex case (case (a)),

Z1t−Z1s and Z2t−Z2s are not comparable with respect to the usual stochastic order.

7. Conclusion and perspectives

A new class of state-dependent wear models has been proposed in this paper, which

includes the transformed gamma process proposed in [12] and the classical geometric

Brownian motion. Transformed Lévy process allows to overcome the independent
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Figure 6: Survival functions of Zit − Zis, i = 1, 2 with respect to x, Example 7

increments property of standard Lévy processes, and hence enlarge their modeling

ability. They however remain tractable Markov processes. Several results provide

some insight in the influence of the current state of a TR Lévy process on its future,

which typically differs according to the (log-)concavity/convexity property of the state

function. Some positive (negative) dependence properties have also been highlighted

for the increments of deterioration and for the overall deterioration levels of a TR

Lévy process, which here again are highly dependent on the (log-)concavity/convexity

property of the state function. In case of a (log-)concave state function, we observe

strong positive dependence properties (such as MTP2). This seems to be in coherence

with wear phenomena where the rate of deterioration increases over time. When the

state function exhibits a (log-)convex property, we observed that some positive and

negative dependence properties can hold on the same process (see the end of Section

5). Also, there remain open questions about negative dependence properties (see,

e.g., Remarks 5 and 6). This is coherent with the previous literature where it has

already been observed that negative dependence properties are much more involved

than positive dependence ones, see, e.g., [4], or [17], where the authors exhibit a 3-
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dimensional MRR2 vector with a 2-dimensional MTP2 vector as margin.

Clearly, there remains many work to do on the new Transformed Lévy process. For

instance, even if a first study can be found in [12] in a specific parametric setting,

generic estimation procedures still require to be developed.

Acknowledgements

The authors would like to thank the referees for valuable comments and suggestions.

The corresponding author of this paper is Ji Hwan Cha (jhcha@ewha.ac.kr). The work

of Ji Hwan Cha was supported by the National Research Foundation of Korea (NRF)

grant funded by the Korea government (MSIP) (No. 2016R1A2B2014211).

References

[1] Abdel-Hameed, M. (1975). A gamma wear process. IEEE Trans. Rel. 24,

152–153.

[2] Barlow, R. E. and Proschan, F. (1965). Mathematical theory of reliability

vol. 17 of Classics in Applied Mathematics. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA. With contributions by Larry C. Hunter,

1996.

[3] Belzunce, F., Riquelme, C. M. and Mulero, J. (2016). An introduction to

stochastic orders. Academic Press.

[4] Block, H. W., Savits, T. H. and Shaked, M. (1982). Negative dependence

vol. 2 of Lecture Notes–Monograph Series. Institute of Mathematical Statistics,

Hayward, CA. pp. 206–215.

[5] Borzadaran, G. M. and Borzadaran, H. M. (2011). Log-concavity property

for some well-known distributions. Surveys in Mathematics and its Applications

6, 203–219.

[6] Cha, J. H. (2014). Characterization of the generalized Pólya process and its

applications. Advances in Applied Probability 46, 1148–1171.
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