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A B S T R A C T

A multilayer film composed of alternating layers of polycarbonate (PC) and poly(m-xylene adipamide) (MXD6) was elaborated by using an innovative multilayer
coextrusion process. Quasi-continuous thin MXD6 layers (nanolayers) alternating with PC layers were successfully obtained. The PC/MXD6 multilayer film showed a
confining effect of MXD6 exerted by PC layers leading to an improvement of barrier properties despite a low degree of crystallinity (Xc < 10wt%). In order to further
improve the barrier performances, crystallization treatments induced by water and by heating were then applied on the multilayer film and allowed reaching around
30 wt% of crystallinity in MXD6 layers. To decouple crystallization and geometrical constraint effects on the barrier properties in the multilayer films, the two
treatments were also applied on MXD6 films. Surprisingly, despite an increase of the degree of crystallinity from 6 to 26%, water crystallization did not permit to
improve gas barrier performances of the MXD6 film nor into the PC/MXD6 multilayer film. On the other hand, thermal crystallization of MXD6 in the multilayer film
seems to be a more efficient route to strongly decrease the gas and moisture permeability, up to 75% for nitrogen, 58% for oxygen, 84% for carbon dioxide and 43%
for water.

1. Introduction

Polymer films or membranes are present in our daily environment
and used in several industrial fields like energy, transport, aircraft,
building, biomedical, protective coatings or packaging for example. For
technological and economic reasons, both lightening polymeric mate-
rials and enhancing their thermo-mechanical and barrier properties, are
increasingly desired industrial goals [1–3].

An innovative process, multilayer coextrusion, has been developed
for producing thin multilayer films, which consist of hundreds to
thousands alternating layers of two polymers. This technique is based
on the use of layer multiplying elements (LME) placed at the output of a
conventional coextrusion process. The layer multiplying elements ver-
tically separate the flow of polymer melts in two parts and subsequently
recombine them by stacking. While keeping constant the whole thick-
ness, after each passage through layer multiplying elements the number
of layers is multiplied by 2, hence their individual thickness is divided
by 2. Thus, depending on the number of multiplying elements, the final
structure can be composed of a very large number of alternating layers.
With the multiplication of nanolayers, new polymer morphologies in
the film can be induced by crystallization under confinement arising
from the forced assembly phenomenon [4,5]. Such morphologies led to

much improved barrier properties for many polymer pairs [6–8],
compared to properties resulting from conventional polymer blends or
micronic multilayer structures. Indeed, it has been shown that the best
barrier properties are obtained when the crystallization of semi-crys-
talline polymers in a confined space leads to the formation of crystalline
lamellae oriented in the in-plane direction [9–12], that is to say per-
pendicular to the diffusing molecule pathway, thus creating a very high
barrier layer. The development of polymer films made of ultra-thin
alternating layers is then a new challenge both from the technological
point of view and from the implementation of characterization tools
suited to these new materials.

In a previous paper on the elaboration of a polycarbonate (PC)/poly
(m-xylene adipamide) (MXD6) multilayer film [13], an improvement of
the MXD6 barrier performances was obtained due to a confinement
effect induced by the PC under multilayer form. Even if the degree of
crystallinity of MXD6 was close to only 8%, the barrier properties of the
MXD6 were improved by a factor of 60% in the case of nitrogen and
oxygen and 13% in the case of water as permeant molecules. Knowing
that the MXD6 can crystallize until∼30% [14], it became interesting to
reach this maximum amount by increasing the crystalline phase frac-
tion and to see at which point the barrier performances of the multi-
layer film can be enhanced by post-processing treatment. Therefore,
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two types of crystallization treatments have been applied on the PC/
MXD6 multilayer film. The first crystallization treatment consists in
heating the multilayer film at the crystallization temperature of the
MXD6 and the second one in immersing the sample into liquid water as
MXD6 is able to crystallize in contact with water [13]. It has already
been demonstrated that the water sorption into MXD6 produced a glass-
to-rubber transition, which facilitated the crystallization of the poly-
amide thanks to the rearrangement of the polymer chains [15].
Nowadays, few works about the crystallization of MXD6 films by water
or thermal treatments have been published and they lead to an im-
provement of the water and oxygen permeability [14,16,17] Gas (N2,
O2, CO2) and water behaviors of these multilayer PC/MXD6 films were
analyzed from flux permeation kinetics and the resulting barrier
properties were correlated to the morphological and structural changes
induced by these crystallized multilayer films. Because both the con-
finement effect induced in the multilayer and the crystallization may
have concomitant effects on the barrier properties, the structure and
transport properties of MXD6 film were also investigated.

2. Experimental

2.1. Materials

PC, referenced as LEXAN 121R (Mw=33,050 g/mol, Tg=145 °C),
was obtained from SABIC and MXD6, under the grade 6007
(Mn=25,900 g/mol, Tg=85 °C, Tm=237 °C) was supplied by
Mitsubishi Gas Chemical. The PC and MXD6 pellets were dried at 120 °C
overnight and the residual moisture before processing was found to be
less than 0.02% for PC and 0.1% for MXD6. In the typical range of shear
rates occurring in the extruders (1–100 s−1) at a processing tempera-
ture of 240 °C, the viscosity ratio (ηMXD6/ηPC) between the two poly-
mers was close to 2.

2.2. Films preparation

The layer-multiplying coextrusion process is illustrated in Fig. 1. It
consists in melting each polymer in an extruder and combining them as
a 3-layers polymer flow into a classical A/B/A coextrusion feedblock.
Then, the 3-layer flow goes through a series of layer multiplying ele-
ments (LME). By taking into account the number of multiplying ele-
ments noted n, the total number of layers can be determined with the
following equation:

= +
+Number of layers N 2 1n( 1) (1)

The PC/MXD6 multilayer film, containing 80wt% of PC and 20wt%
of MXD6, was prepared by melting each polymer in an extruder (profile

temperature of the PC extruder from the hopper to the die: 310/280/
260/260 °C, screw speed of 31 rpm; profile temperature of the MXD6
extruder: 310/280/260/260 °C, a screw speed of 31 rpm), and then
combined using 9 multiplying elements (giving rise theoretically to
1025 layers) at 240 °C. Then a flat die at 240 °C followed by a chill roll
set at 130 °C were used to obtain a final film having a total thickness of
200 µm.

The MXD6 monolayer film was obtained using a classical single-
screw extruder (Scamex extruder with a diameter 20mm and a length-
to-diameter ratio of 20) with a screw speed of 40 rpm and a tempera-
ture profile of 310/280/260/260 °C. The chill-roll temperature was
90 °C and the final thickness of the film was 260 µm.

All the films were stored in a desiccator with P2O5 under vacuum to
prevent moisture recovery before further characterizations.

2.3. Crystallization treatments

The crystallization of MXD6 induced by water in the PC/MXD6 film
was performed by immersing the samples directly in liquid water (milli-
Q water) at 25 °C for 48 h. This duration time was determined from the
water sorption kinetic curve which reaches an equilibrium state (pla-
teau) after 24 h, indicating no further absorption of water. The samples
were left one more day in water to ensure a complete crystallization.
The samples were thereafter dried under vacuum at 45 °C for 24 h to
remove all the water molecules still present in the films.

The thermally induced crystallization of MXD6 in the PC/MXD6
film was carried out by directly hot-pressing the samples (under hy-
draulic pressure, P= 20MPa) at 140 °C for 5min, i.e. until the dis-
appearance of the cold crystallization peak (around 120 °C). The tem-
perature of 140 °C during pressing was selected close to the cold
crystallization temperature of MXD6 and below the glass transition
temperature of PC in order to preserve as much as possible the multi-
layer structure. Films that have not been thermally treated will be noted
as ‘initial films’ in the paper.

2.4. Morphological characterization

The morphology of the monolayer MXD6 films (thermally and water
crystallized) was observed by using an Hitachi 4800 Scanning Electron
Microscope. The observed section was obtained after a cryo-fracture
and a fine deposit of gold was made to increase the conductivity of the
polymer.

The multilayer structure was observed by using a transmission
electron microscope Tecnai G2 (Philips) with an 80 kV acceleration
voltage. The samples were cut at ambient temperature using an ultra-
microtome (LKB BROMMA 2088 Ultramicrotome) equipped with a
diamond knife to obtain ultra-thin sections subsequently transferred to
G200-Cu grids. A treatment with ruthenium tetroxide (RuO4) vapour
was applied on the samples during 10min in order to improve the
contrast between the PC and MXD6 layers.

2.5. Structural characterizations

Thermal properties of the films were analyzed from a DSC Q2000
from TA Instruments at a heating/cooling rate of 10 °C/min from −10
to 300 °C. The degree of crystallinity, determined from the first heating
step (which corresponds to the physical state in which the samples were
during the permeation measurements), was calculated from the fol-
lowing equation:

=
−

∗X H H
H

(%) Δ Δ
Δ

100c
m cc

m
0 (2)

where HΔ cc is the enthalpy of crystallization, HΔ m is the enthalpy of
melting, and HΔ m

0 is the theoretical enthalpy of melting for a 100%
crystalline polymer. In the case of MXD6, HΔ m

0 is equal to 175 J/g [16].
WAXS patterns were obtained by using a SAXS/WAXS laboratoryFig. 1. Schematic principle of the layer-multiplying coextrusion process.



beamline composed of GeniX3D Cu ultra low divergence microsource
operated at 50 kV and 0.6mA. The Cu–Kα radiation (λ=1.54 Å) was
collimated with a FOX2D mirror and two pairs of Scatterless slits from
Xenocs. Through- and edge-views 2-D WAXS patterns were recorded on
a Pilatus 200 K detector. Radial intensity profiles I(2θ) were obtained
by using FIT2D software which allows to an azimuthal integration of the
2D-patterns. To characterize the crystalline phase, the average WAXS
diffractogram is calculated from normalized radial intensity profiles I
(2θ) recorded in the three principal directions of film. Crystal index was
determined using the PeakFit software, and assuming Pearson profiles
for all scattering peaks and amorphous halo. The assignments of the
crystalline peaks were based on previous works of Ohta et al. [18].
Small Angle X-ray scattering (SAXS) experiments were performed to
reveal the presence of a long period Lp corresponding to the periodic
stacking of alternating amorphous and crystalline regions thanks to the
electron density contrast between these two phases.

2.6. Transport properties

2.6.1. Gas permeation
Gas permeation measurements were carried out at 25 °C by using

the typical “time-lag technique” based on the barometric method
[19,20] and the measurements were made at least 2 times. A film was
placed between the two compartments (the upside and the downside
compartments) of the permeation cell. Before starting the measurement
to obtain the gas permeation kinetics, a preliminary purge step was
performed by applying a vacuum to the system for 15 h. Then, after
feeding the upside compartment with the selected gas (N2, O2, or CO2)
at a pressure of 4 bars, the increase of pressure in the downside com-
partment of the permeation cell, caused by the diffusion of gas mole-
cules through the film, was monitored by a pressure sensor. The slope α
of the kinetic curve (increase of pressure as a function of time) at long
time allowed the determination of the stationary flux, noted Jst , from
the following equation:

=
∗

∗ ∗

Jst α V
A R T (3)

with V is the volume of the downside compartment, R is the ideal gas
constant, A is the surface of film exposed to gas and T is the experi-
mental temperature.

Knowing the value of the stationary flux Jst , the permeability
coefficient P can be determined according to:

=
∗P Jst L
pΔ (4)

where L is the film thickness and pΔ is the difference of pressure be-
tween the upstream and the downstream compartments. Usually, for
gas barrier properties, the permeability unit is in Barrer (1
Barrer= 10−10 cm3(STP)·cm·cm−2·s−1·cmHg−1). STP for Standard
conditions of Temperature and Pressure.

2.6.2. Water permeation
Water permeation measurements were achieved at 25 °C with a

home-made apparatus, which is composed of a permeation cell con-
taining an upstream and a downstream compartments separated by the
tested film. The quantity of transferred water molecules within the film
accumulating in the downside compartment was monitored by a chilled
mirror hygrometer (Elcowa®, France, General Eastern Instruments)
giving the dew point temperature of the sweeping gas. To eliminate the
moisture in the cell, the two compartments were initially swept with
dry nitrogen until reaching a low dew point temperature around
−70 °C (∼2.5 ppmV). Then, while the downside compartment was
continuously swept by nitrogen flux, the upside compartment was filled
with liquid water (milli-Q water). Due to the water gradient con-
centration (driving force) between both sides of the film, water mole-
cules diffuse through the film and their quantity was measured by

following the variation of the dew-point temperature as a function of
time. The water permeation flux J occurring through the film is then
determined from the following equation [21]:

=
−

−

J
f X X

S R T
p

·10 ( )
· ·

·w
out

w
in

t

6

(5)

where f is the flow rate of the sweeping gas (9.3 cm3 s−1), −X Xw
out

w
in is

the water concentration calculated from the dew point temperature Tdp

of the sweeping gas (Xw= exp(−6185.6/Tdp+ 31.4)), S is the film
surface area (2.5 cm2), R is the ideal gas constant, T is the temperature
of the experiment (298 K) and pt is the total pressure in the cell (1 atm).

At the stationary state, the permeability coefficient P was calculated
according to:

=
∗P Jst L
aΔ (6)

with Jst is the stationary flux, L is the thickness of the film and aΔ is the
difference of water activity between the two compartments of the
permeation cell (in our case aΔ =1).

In addition to the water permeability coefficient, the water diffu-
sivity D was also determined from the transient regime of the per-
meation kinetic. In the particular case of MXD6 able to plasticize and to
crystallize during the water permeation process, and on the basis of the
water-concentration dependent diffusion coefficient [13], the diffusion
coefficient was calculated at the beginning of transient period, at 24%
of the maximum of the flux, i.e. with an effect of water concentration
that can be neglected [16]:

=
×D L
t

0.0912

0.24 (7)

This coefficient also corresponds to the inflection point of the the-
oretical curve for D constant, on the basis of Fick’s law [22].

To compare the permeability results and to show the gain in barrier
properties, a Barrier Improvement Factor (named BIF) was calculated as
the difference between the permeability of a polymer in monolayer and
multilayer form, divided by the permeability of the polymer under
monolayer form:

=

−

BIF
P P

P
(%) MXD monolayer MXD into PC MXD film

MXD monolayer

6 6 / 6

6 (8)

3. Results and discussion

3.1. Impact of crystallization treatments on MXD6 monolayer film

3.1.1. Morphology
SEM experiments were carried out on the thermally and the water

crystallized MXD6 films in order to verify if the structure of the film has
been changed during the crystallization. As observed in Fig. 2, the cross
section of the MXD6 water crystallized (Fig. 2.a) is not regular com-
pared to the MXD6 film thermally crystallized (Fig. 2.b) which presents
a flat and smooth surface. SEM images reveal that the water crystallized
film has some empty spaces, similar to pinholes, which are located in
the core of the film while the MXD6 thermally crystallized film does not
present such microvoids. It is very likely that the presence of these
microvoids will affect the diffusion of penetrant species at point to
modify the barrier properties of the films. This point will be discussed
later.

3.1.2. Structure characterization
DSC measurements were performed first on the MXD6 films, before

and after they have undergone the crystallization treatments. The
samples characteristic temperatures (the glass transition temperature
Tg, the crystallization temperature Tcc and the melting temperature Tm)
and the degree of crystallinity are gathered in Table 1, while the cor-
responding curves can be found in Supporting Information. By



comparing the two crystallized MXD6 films with the reference MXD6
film, no significant variation of the characteristic temperatures can be
observed, excepted for the cold crystallization which disappears in the
case of the crystallized films. This result can be correlated to the fact
that all the crystals were formed during the thermal or the water
crystallization. Indeed, an increase in the degree of crystallinity from
6% to about 30% was obtained after the two crystallization treatments,
the highest degree of crystallinity being obtained in the case of the
thermal treatment. From these structural changes, it can be expected
that the barrier properties of the annealed MXD6 films should be better
than those of the initial MXD6 film.

XRD analyses were performed on the thermally and water crystal-
lized MXD6 films to check if there is a difference of microstructure
between the two types of crystallized MXD6. The comparison of the two
diffractograms (Fig. 3a) reveals a similar crystalline structure with a
crystal index of about 40%. The deconvolution of WAXS diffractograms
for the two films (Fig. 3b and c) suggests a slightly smaller size of
coherence domains for water crystallized MXD6 film. SAXS experiments
reveal a long period of about 8 ± 1 nm for both thermally and water
crystallized MXD6 films, showing that lamellae are regularly stacked
whatever the crystallization treatment. To sum up, the X-ray analysis
seems to reveal similar crystalline structure whatever the treatment at a
nanometer scale.

3.1.3. Barrier properties to gas and to water
Gas permeability coefficients of the MXD6 films were calculated

from the stationary permeation fluxes and the obtained values for the
three films are displayed in Fig. 4. First, the obtained gas permeability
coefficients are found higher than those given in the literature (per-
meability to oxygen at 0%HR close to 0.003–0.004 Barrer [23,24] and
0.008 Barrer [25]) and than those already measured to CO2 from an-
other MXD6 film (0.001 Barrer) in a previous study [17]. However,
according to the literature, it must be considered that the gas perme-
ability of MXD6 is strongly dependent not only on the structure (crys-
tallinity, orientation, molecular weight) but also on the hydration state
as it can easily plasticize with low water concentration [13]. Con-
cerning the reference (black) and the thermally crystallized (orange)
MXD6 films, the value of the permeability coefficient was similar for
the three gases (0.03 and 0.02 Barrer respectively). Better barrier
properties were obtained for the thermally-crystallized MXD6 film
compared to the reference film: the barrier effect was increased by 35%

for nitrogen, 38% for oxygen and 41% for carbon dioxide. This result is
consistent with the increase of the degree of crystallinity (from 6% to
33%) considering crystals as impermeable obstacles to diffusing spe-
cies. Surprisingly, the water-crystallized MXD6 film possesses lesser
barrier properties than the reference film while the degree of crystal-
linity is higher (26 vs. 6%) and close to that of the thermally-crystal-
lized film. This phenomenon could be associated with the drying step,
performed after the water-crystallization treatment (done to remove all
the water molecules trapped inside the film because of the strong in-
teractions between amide groups), which has created some microvoids
in the structure, as shown previously on Fig. 2, helping the diffusion of
molecules through the film. Note that the water crystallized film is
whiter than the thermally-crystallized one. This observation is in good
agreement with the presence of larger cavities in this film. Indeed, as
reported in literature, microvoids may cause light scattering leading to
whitening of materials [26]. Despite the lack of barrier effect to O2 and
CO2, it would however explain the slight barrier effect to N2 which has
the higher dynamic diameter (3.64 Å) compared to O2 (3.46 Å) and to
CO2 (3.30 Å) [27]. Moreover, contrary to the tendency usually observed
in the literature [28] about the gas permeability ranking, PCO2 > PO2,
the water-crystallized MXD6 film displayed PCO2 < PO2. There is no
clear explanation to explain such permeability ranking between CO2

and O2. On the one hand it seems that the permeability of water-crys-
tallized film to oxygen is relatively high and on the other hand we can
hypothesize that there is a condensation phenomenon of some carbon
dioxide molecules in the microvoids as they can be trapped due to well-
known affinity for amine groups present in MXD6, and consequently to
a slower diffusion pathway, generating a lower permeability coeffi-
cient.

Water permeation kinetic measurements were performed on the
MXD6 samples and the water permeation flux curves are plotted in
Fig. 5 using a reduced scale (J.L versus t/L2) to get rid of the film
thickness influence. As previously reported [13,17], an atypical re-
duced water permeation curve was observed for the reference MXD6
film. During the first permeation measurement (noted first passage of
water, see Fig. 5) applied to the film, the flux curve was characterized
by a maximum followed by a decrease as a function of time until
reaching the stationary flux which corresponds to the steady state of
permeation. This decrease is due to the crystallization induced by
permeant water molecules, as confirmed by the increase from 6% to
30% in the degree of crystallinity (Table 2), which was measured at the

Fig. 2. SEM images of the cross section of the (a) water crystallized and (b) thermally crystallized MXD6 films.

Table 1
Thermal properties of the MXD6 monolayer films before and after crystallization treatments.

TgMXD6 (°C) TccMXD6 (heat) (°C) TmMXD6 (°C) XcMXD6 (%)

MXD6 film 50 ± 2 121 ± 2 236 ± 2 6 ± 4
MXD6 film Water-crystallized 52 ± 2 – 235 ± 2 26 ± 4
MXD6 film Thermally-crystallized 52 ± 2 – 236 ± 2 33 ± 4



end of the first passage of water. It has already been shown that this
solvent-induced crystallization was possible because of the plasticiza-
tion effect inherent of water in MXD6, which leads to an increase of the
free volume and so in the chain segment mobility [13,16]. Then, a
second permeation measurement (noted second passage of water, see
Fig. 5) was applied to the same film but in which the water-induced
crystallization has already occurred (during the first passage). As shown
in Fig. 5, the two curves of the MXD6 film did not exhibit similar
profile; the second curve exhibiting the typical permeation curve
without dependence of time. Because of the crystallization phenom-
enon induced by water, the barrier properties of the film became better
(lower stationary flux).

So, it became interesting to compare this behavior of the reference
MXD6 film with that of the water-crystallized MXD6 film (immersion in
water during 48 h). As shown in Fig. 5 and Table 2, the value of the

permeability coefficient (183 Barrer) was lower to that of the reference
MXD6 film obtained after the two passages of water (489 Barrer).
Moreover, we can note a reduction of the diffusion coefficient by a

Fig. 3. WAXS diffractograms for the MXD6 film thermally and water-crystallized. (a) Comparison of the two crystallized MXD6 films, (b) deconvolution of WAXS
diffractograms for MXD6 thermally-crystallized and (c) for the MXD6 water-crystallized.

Fig. 4. Impact of the crystallization treatments on gas permeability coefficients
for the MXD6 film.

Fig. 5. Reduced water permeation curves for the MXD6 film before and after
crystallization treatments.

Table 2
Liquid water permeation parameters for the MXD6 monolayer films.

Xc MXD6 (%) P (Barrer) D (10−10 cm2·s−1)

MXD6 film – 1st passage 6 640 ± 50 9.8 ± 3.0
MXD6 film – 2nd passage 30 489 ± 20 5.6 ± 1.0
MXD6 water-crystallized 26 183 ± 20 2.9 ± 0.1
BIF (%)* – 71 –
MXD6 thermally-crystallized 33 165 ± 17 3.5 ± 0.8
BIF (%)* – 74 –

* Calculated from the MXD6 film with a crystallinity degree of 6%.



factor of two for the water-crystallized MXD6 film. This decrease of
diffusivity can be explained by a difference in the penetration of the
water molecules in the films. Indeed, during the permeation measure-
ments, the water was in contact with a single face of the film contrary to
the water-crystallization by immersion in water of the sample where
the two faces of the film were in contact with the water molecules. In
the first case, with the reference MXD6 film crystallized during the first
passage of water, a front of formed crystals is moving along the film
thickness, creating a gradient of structure through the material, as al-
ready observed by Buquet et al. [17] in a previous study. Thus, due to
this non-symmetrical crystallization along the total film thickness, the
structure was not homogenous, much more crystallized at the upside
face of the film. The passage of water was slowed down at the beginning
of the film and then less and less as the permeant water molecules pass
through the film [17]. In the case of the water-crystallized MXD6 film
(symmetrical crystallization), the structure was more homogeneous,
reducing accordingly the mobility of the water molecules over the en-
tire thickness of the film and thus allowing a larger improvement of the
barrier properties (lower permeability).

By comparing the two crystallization treatments, it can be observed
that both MXD6 films have practically the same water behavior but the
barrier effect is slightly improved for the thermally-crystallized film.
The amount of crystalline phase slightly higher for this film could ex-
plain this result. At this stage of the discussion, it is relatively surprising
to note a water barrier effect improvement brought by the increased
crystallinity with the water-crystallization treatment while for gas
permeation, in particular for O2 and CO2, no barrier improvement was
obtained. In the case of water, the situation is more complex as water
molecules can interact with not only the polar components of MXD6 but
also with themselves, leading to water clusters. The steric effect in-
duced by water is thus different and higher than for gas molecules and,
as a consequence, crystallinity plays here a key role. From that, the
presence of cavities in the water crystallized MXD6 film is in agreement
with the higher water permeability compared to that of the thermally-
crystallized film (Table 2).

Finally, from water permeation results, we have shown that by
applying a crystallization treatment, induced by heating or by water,
the barrier properties of the MXD6 film were strongly improved around
70%. Moreover, symmetric crystallization gives rise to a more homo-
genous crystallization in the film thickness, and consequently to a
larger barrier effect.

In a previous study on a PC/MXD6 multilayer film [13], we have
shown that the barrier properties of the MXD6 layers constrained by PC
layers were improved while the degree of crystallinity of MXD6 was
only 8%.

In this work, because the barrier properties of MXD6 are dependent
on the crystallization treatment used (thermally or water induced-
crystallization), it became interesting to see if the multilayer coextru-
sion process could further improve the barrier performances of the
crystallized MXD6 layers (constrained by PC) and what would be the
effect of the multilayer assembly on the crystallization treatment of
MXD6 and the resulting transport properties.

3.2. Impact of crystallization treatments on PC/MXD6 multilayer film

3.2.1. Morphology
To determine the influence of the two crystallization treatments on

the morphology of the PC/MXD6 (80/20 wt%) multilayer films, trans-
mission electronic microscopy (TEM) was performed and the resulting
images are displayed in Fig. 6. The multilayer structure is clearly ob-
served, with PC layers appearing in dark and MXD6 layers in grey,
showing some areas with continuous layers (thickness around
300–700 nm) but also some areas with defects (broken and/or coa-
lesced layers). In fact, for the three films (initial, thermally and water
crystallized), some parts of the films exhibit continuous and homo-
geneous structure while other part present some discontinuities or some

breakups in the MXD6 layers. The pre-treated films having already ir-
regularities, it seems that the treatments have not impacted sig-
nificantly the multilayer structure. As the layers’ thicknesses are on the
order of several hundred nanometers, i.e. smaller than the typical size
of the MXD6 spherulites, geometrical restriction (inducing preferential
orientations for example) may occur, but significant effects due to
confinement cannot be expected as they are usually observed for
thicknesses below ∼100 nm [4,29,30].

3.2.2. Structure characterization
DSC analyses were carried out on the non-crystallized and crystal-

lized PC/MXD6 multilayer films in order to confirm an increase in
crystallinity of MXD6. No change in the PC glass transition and in the
MXD6 melting temperature was observed, as revealed by the values
gathered in Table 3. However, as above-mentioned in the case of the
MXD6 films, the disappearance of the MXD6 cold crystallization was
noted, which is explained by the fact that all the crystals were formed
during the two crystallization treatments. The degree of crystallinity of
MXD6, noted XC (calculated from the weight fraction of MXD6 in the
film), was increased from 8% to more than 30% for both crystallization
treatments. The amount of amorphous phase was accordingly decreased
and it became very difficult to distinguish the glass transition of the
MXD6, which was present at only 20 wt% in the PC/MXD6 multilayer
film. Again, the higher degree of crystallinity of MXD6 was obtained for
the thermally-crystallized treatment, as previously obtained for the
MXD6 monolayer film.

3.2.3. Barrier properties to gas and to water
In terms of barrier properties, to evaluate the impact of the multi-

layer structure and of the crystallization treatments on the MXD6 when
it was constrained by the PC under the multilayer form, the transport
properties of the PC/MXD6 multilayer film were determined and ana-
lyzed by taken into account the water and gas permeability coefficients
of the monolayer films of MXD6 and of PC. In a previous study [13], gas
and water permeability coefficients of PC were measured (0.32 barrer
for N2, 1.5 barrer for O2, 7 barrer for CO2 and 1730 barrer for H2O). The
low values so obtained indicate good barrier properties of the PC but
which remain lower than ones of MXD6.

Considering that the amorphous structure of polycarbonate was not
modified by the water sorption and nor by the thermal treatment which
was performed at temperature under its glass transition temperature
(Tg= 145 °C), it is assumed that both crystallization treatments have
effects only on the MXD6 into the multilayer film.

The influence of the crystallization treatments on the barrier prop-
erties of the PC/MXD6 multilayer film was analyzed from gas and water
permeation kinetic measurements. First, gas permeation measurements
were performed on the initial and the two crystallized PC/MXD6 mul-
tilayer films. The obtained permeability coefficients are compared in
Fig. 7. As above-mentioned for the MXD6 monolayer film, the thermal
crystallization treatment led to decrease the gas permeability coeffi-
cient. Indeed, as shown in Table 4, the thermal crystallization of the
MXD6 polymer within the PC/MXD6 multilayer film allows the MXD6
barrier effect to be improved. However, like for the MXD6 monolayer
film, the water crystallization treatment has contributed to decrease
barrier properties of the PC/MXD6 multilayer film. A similar explana-
tion can be proposed, that is to say an increase of the free volume due to
the microvoid formation when removing the residual water molecules
during the drying step by heating of the film. Again, this argument is
supported by the more pronounced whitening of the water crystallized
PC/MXD6 films.

In order to quantify the improvement of the barrier performances of
the MXD6 layers within the PC/MXD6 multilayer film, assuming no
geometrical constraint effect on amorphous PC, the permeability coef-
ficient of the MXD6 layers was calculated by applying the series model
equation [5,6,10,31,32], and taking into account the experimental
permeability coefficients of the multilayer film and of the PC monolayer



film. The equation is as follows:

=

−
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φ
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MXD6
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1
Film
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with φPC and φMXD6 the volume fraction of PC (0.803) and MXD6
(0.197) within the multilayer film, respectively.

Doing so, the calculated permeability coefficients for the MXD6 are
gathered in Table 4 and compared to the value of a reference film,
which allows the barrier improvement factor, noted BIF, to be calcu-
lated. Thus, for the thermally-crystallized PC/MXD6 multilayer film,
due to the presence of crystals within the MXD6 layers, a high gas
barrier effect improvement for MXD6 was obtained (see value of BIF-1).
Then, from a structural point of view, it is interesting to put forward the
influence of the multilayer structure and then to see how the crystalline
phase generated in the confined layers may change the barrier prop-
erties of the resulting film. First, from BIF-2, the inferred permeability
of MXD6 in the as-extruded multilayers is lower than the one of the

plain MXD6 film except for CO2. Such an improvement without an in-
crease in crystallinity has already been observed in some multilayer
films [4,12,33]. Also, from BIF-3, the inferred permeability of crystal-
lized MXD6 in the multilayer is lower than in the plain crystallized film,
although the crystallinity degree is similar. Again, the multilayer
structure leads to increase the barrier effect of MXD6 constrained
layers. In the case of crystallized MXD6, the improvement is at point
that the barrier effect to CO2 is now obtained while it was not the case
for the non-crystallized MXD6 layers within the multilayer film. Even if
such effects are usually observed for lower thicknesses, it can be pos-
sible that the amorphous phase of MXD6 is much more constrained in
thin layers, and the increased densification of this phase would reduce
the molecular mobility of chains at the vicinity of the crystalline phase.
Another explanation would be the presence of stronger hydrogen bonds
in the structure favors by the multilayer structure. To see the possible
orientation of crystals in the constrained MXD6 layers, XRD analyses
were carried out on the face and on the cross section of the crystallized

Fig. 6. TEM images for the initial and the crystallized PC/MXD6 multilayer films (PC: dark grey; MXD6: light grey).

Table 3
Thermal properties of the initial and the crystallized PC/MXD6 multilayer films.

TgMXD6 (°C) TgPC (°C) TcMXD6 (heat) (°C) TmMXD6 (°C) Xc MXD6 (%)

PC/MXD6 film 50 142 131 235 8
PC/MXD6 film water-crystallized – 142 – 233 31
PC/MXD6 film thermally-crystallized – 140 – 233 35



films However, the obtained results displayed in Fig. 8 do not show any
particular orientation of the crystals of MXD6 into the PC/MXD6 mul-
tilayer film.

In terms of barrier performances, comparing BIF-2 and BIF-3 put
forward that the arrangement of the rigid MXD6 polymer chains in very
thin layers appears as an efficient way to improve the barrier proper-
ties, and much more when MXD6 is crystallized. Also, by comparing the
effect of the crystallization treatment to the multilayer structure on the
barrier properties of MXD6, it appears that the geometrical restriction
of MXD6 chains leads to better gas resistance than crystallized MXD6.

From that, the question is about water, knowing that water molecules
differ from gas molecules because interacting with polar groups of
MXD6 and so not only structure-dependent.

Water permeation measurements were performed on the initial and
crystallized PC/MXD6 multilayer films and the obtained curves are
plotted in Fig. 9. In all cases, a typical water permeation curve was
obtained. The water permeation kinetics through the water-crystallized
multilayer film has reached a plateau at the same level as the non-
crystallized PC/MXD6 multilayer film after two consecutive passages of
water. This result would mean that, unlike the MXD6 monolayer film,
the water crystallization treatment would have the same effect as two
water permeations. However, there is a difference in terms of crystal-
linity degree. Indeed, after the first passage to water, the multilayer film
presents a degree of crystallinity of 15% while the water-crystallized
multilayer film exhibits 31% of crystallinity. It is therefore very sur-
prising that the two films have a similar coefficient of permeability to
water, around 1200 Barrer. It was expected that the water-crystallized
multilayer film has a lower permeability coefficient, which should be
close to the thermally-crystallized film one since it has a similar degree
of crystallinity. Nevertheless, it can be noted that this lack of barrier
effect of the water-crystallized multilayer film is associated with greater
water diffusivity. Everything happens as if the transfer of water mole-
cules was facilitated despite a greater presence of crystals. In fact, after
water crystallization treatment, as previously mentioned for the MXD6
monolayer film, the presence of some microvoids or larger cavities in
the MXD6 explain easily the increase of diffusivity and so the increase
of water permeability.

However, with the PC/MXD6 multilayer film, unlike the MXD6
monolayer film, we get a significant difference between the two crys-
tallization treatments (Table 5). Indeed, if the BIF of the thermally-
crystallized PC/MXD6 film is relatively high (43%) as the coefficient of
water permeability is two times reduced, in the case of the water-
crystallized PC/MXD6 film, the low value of the BIF indicates not so

Fig. 7. Impact of the crystallization treatments on gas permeability coefficients
for the PC/MXD6 multilayer films.

Table 4
Gas permeability coefficients of the MXD6 monolayer film and the PC/MXD6
multilayer films and the corresponding BIF factor of the MXD6. (*predicted
values from series model).

N2 O2 CO2

Permeability (in
barrer)

MXD6 monolayer film
– non-crystallized 0.031 0.029 0.029
– thermally crystallized 0.020 0.018 0.017

PC/MXD6 multilayer film

• MXD6 before crystallization 0.012 0.012 0.031

• MXD6 thermally crystallized 0.003 0.005 0.005
BIF-1 MXD6 into the PC/MXD6 film after

thermal crystallization
75% 58% 84%

BIF-2 MXD6 into the non-crystallized PC/
MXD6 film (compared to the non-
crystallized MXD6 monolayer film)

61% 59% –

BIF-3 MXD6 into the thermally crystallized
PC/MXD6 film (compared to the
thermally crystallized MXD6
monolayer film)

85% 72% 71%

Fig. 8. WAXS patterns for the PC/MXD6 multilayer films thermally and water-
crystallized, performed in the face and the cross section of the film.

Fig. 9. Reduced water permeation curves for the initial and the crystallized PC/
MXD6 multilayer films.

Table 5
Liquid water permeation parameters for the PC/MXD6 multilayer film.

Xc (%) P (Barrer) D (10−9 cm2·s−1)

PC/MXD6 multilayer – 1st passage 8 1225 ± 250 6 ± 0.9
PC/MXD6 multilayer – 2nd passage 15 1210 ± 110 5.5 ± 0.8
PC/MXD6 multilayer – water

crystallized
31 1162 ± 100 6.7 ± 1

BIF* – 5% –
PC/MXD6 multilayer – thermally-

crystallized
35 697 ± 16 4.3 ± 0.5

BIF* – 43% –

* Calculated from the PC/MXD6 multilayer film presenting a degree of
crystallinity of 8%.



much effect of the presence of crystals, the microvoids having an op-
posite effect which favors water diffusivity. This trend is in agreement
with the gas permeation results. For the thermally-crystallized PC/
MXD6 film, the decrease of the water diffusion coefficient is char-
acteristic of a longer mean diffusion pathway that is expected since the
increase in the crystallinity level (from 8% to 35% after annealing)
made more tortuous the passage of the diffusing species. The barrier
effect improvement is very encouraging because we must keep in mind
that the multilayer film contains only 20 wt% of MXD6 and that the
thermal treatment has only an effect on the semi-crystalline MXD6
polymer without acting on the amorphous polycarbonate composing
the multilayer film.

4. Conclusion

In this work, we report the crystallization of a PC/MXD6 film
composed of a thousand micrometric layers, in order to further improve
its barrier performances. Two crystallization treatments have been ap-
plied on this multilayer system, the first one by heating and the second
one by immersing the sample in water because of the capacity of MXD6
to crystallize in contact with it. If both treatments led to the same de-
gree of crystallization around 30%, the improvement in the gas and
water barrier properties of films was found different. For the films
crystallized by water, the improvement of barrier properties was lower
despite the similar increase in the degree of crystallinity. This result was
due to the creation of microvoids in MXD6 induced by the water im-
mersion while in the case of the thermally crystallized MXD6, the initial
structure of the film was maintained, that means without formation of
microvoids, and that allowed a higher improvement in barrier proper-
ties. It was then interesting to constrain crystallized MXD6 film in thin
layers to see at which point the barrier effect can be enhanced. Thus,
the use of the forced assembly process for preparing PC/MXD6 multi-
layer film was clearly evidenced, PC being used as a confiner polymer.
PC/MXD6 multilayers composed of 1025 layers alternating PC layers
and MXD6 layers were successfully realized. The geometrical constraint
effect induced by PC associated with the increase in crystallinity of the
MXD6 layers allowed a significant improvement of the gas and water
barrier properties. This procedure appears as a promising way to de-
velop new materials with enhanced properties and which can be im-
plemented at the industrial scale.

5. Supporting information

Comparison of the DSC curves for the initial MXD6 film and the
MXD6 films thermally and water crystallized.
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