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LIMIT THEOREMS FOR SOME FUNCTIONALS WITH HEAVY TAILS

OF A DISCRETE TIME MARKOV CHAIN.

PATRICK CATTIAUX ♠ AND MAWAKI MANOU-ABI ♠

♠ Université de Toulouse

Abstract. Consider an irreducible, aperiodic and positive recurrent discrete time Markov
chain (Xn, n ≥ 0) with invariant distribution µ. We shall investigate the long time behaviour
of some functionals of the chain, in particular the additive functional Sn =

∑n
i=1 f(Xi) for a

possibly non square integrable function f . To this end we shall link ergodic properties of the
chain to mixing properties, extending known results in the continuous time case. We will
then use existing results of convergence to stable distributions, obtained in [13, 21, 16, 4] for
stationary mixing sequences. Contrary to the usual L2 framework studied in [6], where weak
forms of ergodicity are sufficient to ensure the validity of the Central Limit Theorem, we will
need here strong ergodic properties: the existence of a spectral gap, hyperboundedness (or
hypercontractivity). These properties are also discussed. Finally we give explicit examples.

Keywords: Markov chains, stable limit theorems, stable distributions, log-Sobolev inequality,
additive functionals, functional limit theorem.

MSC 2010: 60F05, 60F17,60J05, 60E07.

1. Introduction.

On some probability space (Ω,P), consider a discrete time Markov chain {Xn, n ≥ 0} with
transition kernel P , which is irreducible, aperiodic and positive recurrent with invariant
probability measure µ, assumed to be ergodic. As usual we denote by Px the conditional
distribution of P knowing that X0 = x. Let f be a µ integrable function such that

∫
fdµ = 0.

According to the ergodic theorem the normalized additive functional

Sn
n

=
1

n

n∑
i=1

f(Xi)

goes to 0 as n goes to infinity, both in L1(µ) and Pµ almost surely.

When f ∈ L2(µ), it is expected that Sn/
√
n (or Sn/

√
Varµ(Sn)) converges in distribution to

some gaussian limit (Central Limit Theorem). We refer to [6] for an account of the impressive
literature on the subject, as well as results including an anomalous behavior of the Variance
(i.e. Varµ(Sn) is not of order n), or an anomalous rate of convergence (i.e. different of the
two aforementioned normalization rates). The functional version (convergence of the full law
of the process to some Brownian motion) is also discussed therein. We shall recall some of
the relevant results in our situation in section 3.
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2 P. CATTIAUX AND M. MANOU-ABI

As noticed in [6], the key tool is the rate of convergence of ‖ Pnf ‖L2(µ) to 0. This rate of
convergence is connected to the mixing properties of the sequence f(Xn) so that one can use
the massive literature relying mixing and central limit properties.

In the context of [6], the chain comes from a time continuous Markov process, so that this
rate of convergence is studied by using recent results on various functional inequalities. At
some point, the derivation of these inequalities strongly uses the time continuous setting,
allowing us to consider time derivatives.

In particular, if f ∈ Lp(µ) for some p > 2, one can use weak Poincaré inequalities furnishing
a quick enough but non exponential decay of the Variance of Pnf , controlled by the initial
Lp(µ) norm of f . When f does not belong to any Lp(µ) for p > 2, one has to assume the
existence of a spectral gap.

The goal of the next section 2 is, after recalling standard mixing properties, to extend the
relevant inequalities to the discrete time setting. In particular we extend the notion of weak
Poincaré inequality yielding non exponential decays for the L2 norm of Pnf . This can be
used to mimic what is done in [6] in the situation of a discrete time Markov chain.

If f is not square integrable, the situation for the additive functional, is much more delicate,
even in the i.i.d. case. CLT analogues have been proved by Gnedenko, the limiting distribu-
tion being a stable one, but require rigid assumptions on the tails of f(Xi). A few extensions
to weakly dependent cases, essentially mixing cases, have been obtained in [13, 14, 21, 4, 16],
for both the usual and the functional versions. Let us also mention the recent [15] dealing
with Markov chains and the very recent [3] which contains some new results on the general
stationary case but merely difficult to explicitly explain in our situation.

It is thus natural to show how to apply these mixing results to the case of a Markov chain.
Other methods (martingale method, coupling ...) are available (see [15]).

Our results for this problem, contained in section 3, substantially improve upon the ones
in [15] on many points, but not on all (see the detailed discussion in remark 3.10 and the
final section). But, presumably, the main interest here is the method. Actually, once the
correspondence between ergodicity and mixing is understood, the only thing to do in order
to apply stable convergence results for mixing sequences, is to check the so called “anti-
clustering” condition. It is at this point that the contraction property introduced in [15]
(i.e. Pf belongs to a strictly smaller Lebesgue space than f itself) appears as a natural
assumption in order to control covariances.

The price to pay (at least if f ∈ Lp(µ) for 1 ≤ p < 2), as in [15] or for the L2 case is that
we have to assume the existence of a spectral gap. This is due to the fact that, contrary
to the case p > 2, we have to precisely control the tails, not only from above but also from
below since what is required is an equivalent for these tails; i.e. controlling the Lp norm of
Pnf by the stronger Lp′ norm of f for some p′ > p is not enough to get the correct rate of
convergence to a stable distribution. Notice that deviation bounds are studied in [7].

The aforementioned contraction property for f is not easy to prove for one chosen function.
A stronger form of this contraction property, is that P maps continuously Lp(µ) into Lp′(µ)
for some (or for all) p′ > p. This is a well known property called “hyperboundedness”
(or hypercontractivity). For continuous time semi-groups this property is equivalent to a
logarithmic Sobolev inequality. Again in the discrete time setting, these connexions are
not so clear. The final section is devoted to describe typical situations where we can show
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hyperboundedness. The standard situation of the usual birth and death chain on the half
line is finally described. In this case, generically, the stable invariance principle does not
hold.

Acknowledgements. The authors are indebted to two anonymous referees for their valuable
comments and criticism on a first version of this paper.

2. Mixing and quantitative ergodicity for Markov chains.

As said in the introduction we shall recall in this section the relationship between mixing
and quantitative ergodic properties of the chain. We then will give some explicit conditions
ensuring the control of the decay to equilibrium, in terms of functional inequalities.

2.1. Mixing and quantitative ergodicity. Recall some usual mixing coefficients :

Definition 2.1. Let Fj ( resp. Gj) be respectively the backward (or the past) and the forward
(or the future) σ-fields generated by Xn for 0 ≤ n ≤ j (resp. j ≤ n).

• The strong mixing coefficient α(n) is defined as :

α(n) = sup
j

{
sup
A,B

(P(A ∩B)− P(A)P(B)) , A ∈ Fj , B ∈ Gj+n

}
,

=
1

4
sup
j

{
sup
F,G

Cov(F,G) , F Fj(resp.G Gn+j) measurable and bounded by 1.

}
.

If limn→∞ α(n) = 0, the process is strongly mixing.

• The ϕ-mixing coefficient ϕ(n) is defined as:

ϕ(n) = sup
j

{
sup
A,B

(P(B|A)− P(B)) , A ∈ Fj , B ∈ Gj+n

}
.

If limn→∞ ϕ(n) = 0, the process is ϕ-mixing or uniformly mixing.

• The ρ-mixing coefficient ρ(n) is defined as the maximal correlation coefficient, i.e.

ρ(n) = sup
j

{
sup
F,G

Corr(F,G) , F ∈ L2(Fj) , G ∈ L2(Gn+j)

}
.

If limn→∞ ρ(n) = 0 the process is ρ-mixing.

Of course for strictly stationary sequences (i.e. such that, for all n ≥ 0, the law of (Xn+j)j≥0
is the same as the one of (Xj)j≥0) the supremum on j is irrelevant.

It is worth noticing that the mixing coefficients of Zn = f(Xn) are smaller than the corre-
sponding ones for Xn. Also recall that

2α(n) ≤ ϕ(n) , 4α(n) ≤ ρ(n) , ρ(n) ≤ 2
√
ϕ(n) . (2.1)

Let (Xn)n≥0 be an irreducible, aperiodic and positive recurrent Markov chain with unique
invariant probability measure µ. We denote by P the transition kernel of the chain. Recall
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that P is a bounded operator in all Lp(µ)’s (p ≥ 1), with operator norm equal to 1 (i.e. a
contraction). We also introduce the adjoint operator P ∗, defined by∫

f Pg dµ =

∫
g P ∗f dµ

for f and g square integrable w.r.t. µ, which is again a contraction.

The following definition introduces some way to control the ergodic decay to equilibrium.

Definition 2.2. For r, p ≥ 1 we define

αr,p(n) = Sup

{
‖ Png ‖Lp(µ) , ∀g : ‖ g ‖Lr(µ)= 1 and

∫
g dµ = 0

}
.

We define similarly α∗p,r(n).

There are of course some relationships between these decay rates. Indeed, if we look at the
operator

Qf = Pf −
∫
fdµ

it is easily seen that Qnf = Pnf −
∫
fdµ. Of course the operator norm of Q acting on Lp

spaces satisfies |||Q|||r,p ≤ 2αr,p and |||Q|||p,p ≤ 2 for all 1 ≤ p ≤ +∞. Hence, according to
Riesz Thorin interpolation theorem

αr,p ≤ 2αtr1,p1 α
1−t
r2,p2

if
1

r
=

t

r1
+

1− t
r2

and
1

p
=

t

p1
+

1− t
p2

for some 0 ≤ t ≤ 1 .

Of course

α∗r,p = α p
p−1

, r
r−1

.

Remark 2.3. Though it is not really important in most applications, one cannot directly use
the Riesz-Thorin interpolation theorem with P in restriction to the subspace of zero mean
functions, contrary to what is done in some papers (see e.g. (2.7) in [15]). That is why an
extra factor 2 (the operator norm of Q) has to appear. For a more accurate discussion see
[9]. ♦

In order to compare mixing properties and rate of convergence for the stationary chain (i.e.
assuming that X0 is distributed according to µ), consider F and G, respectively Fj and Gj+n
measurable and centered (for instance F = 1IA − µ(A) and G = 1IB − µ(B)).

Define f (resp. g) by Eµ(F |Xj) = f(Xj) (resp. Eµ(G|Xj+n) = g(Xj+n)). Then

Covµ(F,G) =

∫
Png f dµ =

∫
Pn/2g (P ∗)n/2f dµ , (2.2)

the latter being true provided n is even. Since f and g are still centered we immediately
deduce (as in [6])

Proposition 2.4. For all n, if [n/2] denotes the integer part of n/2,

(1) α2
∞,2(n) ∨ (α∗)2∞,2(n) ≤ 4α(n) ≤ α∞,2([n/2])α∗∞,2([n/2]).
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(2) Either α2,2(n) = 1 for all n or α2,2(n) ≤ c e−λn for some λ > 0. In the second case

α2
2,2(n) = (α∗)22,2(n) ≤ ρ(n) ≤ c α2,2(n) .

(3) ϕ(n) ≤ α2
1,∞([n/2]) .

Proof. For the left hand side of (1) we may choose F = Pnf(X0) and G = f(Xn) for a
centered f bounded by 1. It follows

∫
(Pnf)2 dµ = Cov(F,G) ≤ 4α(n). The right hand side

is immediate, thanks to (2.2) and the fact that α is non increasing.

For (2) first note the equality α2,2(n) = α∗2,2(n). Hence α2,2(k)α∗2,2(k) = α2,2(2k). Now, using

the Markov property it is immediate that if α2,2(n0) = e−λ < 1 for some n0, α2,2(n) ≤ c e−nλ
for all n. Hence, α2,2(k+ 1)α∗2,2(k) ≤ c α2,2(2k+ 1). The right hand side of (2) follows, using

(2.2). The left hand side is similar to (1).

For (3) just use the first equality in (2.2). �

One can improve the results in the symmetric case (the proof is left to the reader)

Proposition 2.5. Assume that in addition µ is symmetric, i.e.
∫
f Pg dµ =

∫
g Pf dµ for

nice f and g. Then

(1) α2
∞,2(n+ 1) ≤ 4α(2n+ 1) ≤ 4α(2n) = α2

∞,2(n).

(2) α2
2,2(n+ 1) ≤ ρ(2n+ 1) ≤ ρ(2n) = α2

2,2(n).

2.2. Functional inequalities in the discrete time setting. To conclude this section we
shall give explicit criteria for the estimation of the convergence rate. These criteria (and
much more) are well known in the continuous time case. In the latter situation proofs are
often based on differentiation in time.

We begin with the renowned spectral gap estimate which is trivial in this situation

Proposition 2.6. The following are equivalent

(1) ∀f ∈ L2(µ), Varµ(Pf) ≤ e−2λ Varµ(f),

(2) ∀f ∈ L2(µ) and all n, Varµ(Pnf) ≤ e−2λn Varµ(f),
(3) there exists C (necessarily larger than 1) such that ∀f ∈ L2(µ),

Varµ(f) ≤ C 〈(I − P ∗P )f, f〉 :=

∫
(f − P ∗Pf) f dµ .

The inequality in (3) is called a Poincaré inequality, and if it holds, e−λ = C−1
C .

One of the particular feature of the symmetric situation is that any kind of exponential decay
will imply the previous contraction property of the variance. Here is the analogue of lemma
2.12 in [10]

Lemma 2.7. Assume that µ is symmetric. Let C be a dense subset of L2(µ). Suppose that
there exists β > 0, and, for any f ∈ C, a constant cf such that:

∀n, Varµ(Pnf) ≤ cfe−βn.
Then

∀f ∈ L2(µ), ∀n, Varµ(Pnf) ≤ e−βn Varµ(f).

In particular, in the symmetric situation, if α∞,2(n) ≤ c e−β n, then α2,2(n) ≤ e−β n.
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Proof. Thanks to symmetry,

〈Pnf, Pnf〉 = 〈Pn+1f, Pn−1f〉
≤ 〈Pn+1f, Pn+1f〉1/2 〈Pn−1f, Pn−1f〉1/2.

If h(n) = ln(〈Pnf, Pnf〉) + β n, it follows that

h(n) ≤ 1

2
h(n+ 1) +

1

2
h(n− 1) ,

which is some convexity property similar to lemma 2.11 in [10]. In particular, if for some n and
some ε > 0 it holds h(n) ≥ h(n− 1) + ε, this convexity property implies h(n+ 1) ≥ h(n) + ε,
hence h growths linearly at infinity. Replacing f ∈ C by f −

∫
f dµ, we deduce from the

hypothesis that h is bounded. Hence, h is non increasing, h(n) ≤ h(0), and the lemma is
proved. �

It can be shown that this result is not true in the non-symmetric case.

It can be interesting to obtain some non exponentially decreasing controls of α∞,2. This can
be done in terms of weak Poincaré inequalities similar to the continuous time case where
they were introduced in [20].

To understand what happens remark that for a centered f ,

Varµ(f) = 〈(I − P ∗P )f, f〉+ Varµ(Pf) . (2.3)

In the symmetric case, according to the convexity property in Lemma 2.7,

〈Pf, Pf〉 ≤ 〈f, f〉1/2 〈P 2f, P 2f〉1/2 ≤ 1

2
〈f, f〉+

1

2
〈P 2f, P 2f〉

so that

〈(I − P ∗P )f, f〉 ≥ 〈(I − P ∗P )Pf, Pf〉 .
We may thus iterate in (2.3) and obtain

Varµ(f) ≤ n 〈(I − P ∗P )f, f〉+ Varµ(Pnf) (2.4)

≤ n 〈(I − P ∗P )f, f〉+ α2
∞,2(n) ‖ f −

∫
f dµ ‖2∞ .

Since α2
∞,2 is non increasing, we may take the linear interpolation of this function between

n and n+ 1, i.e.

α2
∞,2(s) = (n+ 1− s)α2

∞,2(n) + (s− n)α2
∞,2(n+ 1)

which is still non increasing, and then consider the left inverse of this function, denoted by
β. It thus holds for all 0 < s ≤ 1,

Varµ(f) ≤ β(s) 〈(I − P ∗P )f, f〉+ s ‖ f −
∫
f dµ ‖2∞ . (2.5)

This kind of inequality is called a weak Poincaré inequality.

Conversely, assume that (2.5) is true for some non increasing function β. We do no more
need any symmetry assumption. Then, thanks to the contraction property of P , for any
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centered and bounded f it holds

〈Pnf, Pnf〉 ≤ (1− (1/β(s))) 〈Pn−1f, Pn−1f〉+ (s/β(s)) ‖ f −
∫
f dµ ‖2∞

≤ (1− (1/β(s)))n 〈f, f〉+ (s/β(s)) ‖ f −
∫
f dµ ‖2∞

n−1∑
j=0

(1− (1/β(s)))j

≤ (1− (1/β(s)))n 〈f, f〉+ s (1− (1− (1/β(s)))n) ‖ f −
∫
f dµ ‖2∞

≤ (1− (1/β(s)))n 〈f, f〉+ s ‖ f −
∫
f dµ ‖2∞ .

We thus have for any bounded f ,

Varµ(Pnf) ≤ (s+ (1− (1/β(s)))n) ‖ f −
∫
f dµ ‖2∞ ,

for all 0 < s ≤ 1; so that optimizing on s we obtain

α2
∞,2(n) ≤ 2 sn where sn is defined by (1− (1/β(sn)))n = sn . (2.6)

Let us summarize what we have obtained

Proposition 2.8. If (2.5) holds for some non increasing function β, then α∞,2(n) goes to
0 as n→ +∞ as explained in (2.6).

Conversely, in the symmetric situation, any decay to 0 of α∞,2(n) will imply some weak
Poincaré inequality (2.5).

Note that a similar result holds for the adjoint operator P ∗ which satisfies the same weak
Poincaré inequality (since 〈(I − P ∗P )f, f〉 = 〈(I − PP ∗)f, f〉).
In general however, we do not know wether α∞,2 and α∗∞,2 are equal or have the same

behaviour. This is discussed in Remark 4.6 in [6]. In particular it is shown therein that if
they are slowly decreasing, α∞,2 and α∗∞,2 are of the same order.

Remark 2.9. Instead of looking at P ∗P one can use another “symmetrization” i.e. Q =
1
2(P + P ∗) which is often used to introduce the continuous time semi-group Qt = et(Q−I)

whose generator is L = Q− I. In this case, the associated weak Poincaré inequality is

Varµ(f) ≤ β(s) 〈−Lf, f〉+ s ‖ f −
∫
f dµ ‖2∞ .

Note that this weak Poincaré inequality is weaker than (2.5).

Indeed if (2.5) is satisfied, it holds for all centered f ’s,

〈Pf, Pf〉 ≤ β(s)− 1

β(s)
〈f, f〉+

s

β(s)
‖ f ‖2∞ .
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Hence

〈Pf, f〉 ≤ 〈Pf, Pf〉
1
2 〈f, f〉

1
2

≤
(
β(s)− 1

β(s)

) 1
2

〈f, f〉+

(
s

β(s)

) 1
2

‖ f ‖∞ 〈f, f〉
1
2

≤
(
β(s)− 1

β(s)

) 1
2

〈f, f〉+

(
s

β(s)

) 1
2

‖ f ‖2∞ ,

so that (
1−

(
β(s)− 1

β(s)

) 1
2

)
Varµ(f) ≤ 〈−Lf, f〉+

(
s

β(s)

) 1
2

‖ f ‖2∞ .

We thus obtain that µ satisfies a weak Poincaré inequality, with 〈−Lf, f〉 as energy form. In
particular if the Poincaré inequality in Proposition 2.6 holds for some constant C, a Poincaré
inequality holds with 〈−Lf, f〉 as energy form with constant C ′ =

√
C/(
√
C −

√
C − 1).

Nevertheless, in the symmetric situation, both Poincaré inequalities coincide. Indeed

Varµ(f) ≤ C 〈−Lf, f〉 = C 〈(I − P )f, f〉

means that, for all f ∈ L2(µ) with µ zero mean,

〈Pf, f〉 ≤ C − 1

C
〈f, f〉 ,

so that the operator norm of P restricted to the closed hyperplane
∫
f dµ = 0 is less than

(C − 1)/C. It follows that in restriction to this hyperplane,

〈Pf, Pf〉 ≤
(
C − 1

C

)2

〈f, f〉 ,

hence the Poincaré inequality

Varµ(f) ≤ C ′ 〈(I − P 2)f, f〉

holds with C ′ = C2/(2C − 1). So up to the constants, both Poincaré inequalities are the
same. ♦

3. Convergence to stable distributions for additive functionals.

In this section we shall study the asymptotic behaviour of Sn =
∑n

i=1 f(Xi), where f ∈ Lp(µ)
for some 0 ≤ p < 2. For simplicity we shall sometimes write f(Xi) = Zi. In particular, under
Pµ, the sequence (Zi)i∈N is strictly stationary. Recall that if f ∈ L1(µ) we assume in addition
that

∫
f dµ = 0.

When f ∈ L2(µ), it is expected that n−
1
2 Sn converges in distribution to some gaussian law.

Actually the stronger functional CLT, telling that the process

t 7→ n−
1
2 S[nt]
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converges in distribution (for the usual topology of continuous paths) to a Brownian motion
(with a positive variance) holds as soon as∑

n

n−
1
2 ‖ Pnf ‖L2(µ)< +∞ . (3.1)

For this result and much more sophisticated ones we refer to the survey paper [18] and to
[6]. Notice that if f ∈ Lp(µ) for some p ≥ 2, the previous condition is satisfied as soon as∑

n n
− 1

2 αp,2(n) < +∞; in particular, according to the discussion after Definition 2.2 as soon

as
∑

n n
− 1

2 α
p−2
p

∞,2(n) < +∞. If f does not belong to any Lp space for p > 2, the (3.1) is useful

under the ρ-mixing assumption, hence if the chain has a spectral gap (in L2).

For p < 2 the situation is much more delicate. We first have to recall some definitions

Definition 3.1. Z1 is regularly varying of index η > 0 if there exists some c ∈ [0, 1] such
that for all x > 0,

lim
u→+∞

P(Z1 > ux)

P(|Z1| > u)
= c x−η and lim

u→+∞

P(Z1 < −ux)

P(|Z1| > u)
= (1− c)x−η .

If Z1 is regularly varying, there exists a slowly varying function L (i.e. limu→+∞
L(ut)
L(u) = 1

for all t > 0) such that for all x > 0,

P(|Z1| > x) = x−η L(x) .

In particular Z1 ∈ Lη if and only if
∫ +∞
1 x−1 L(x) dx < +∞. Otherwise Z1 ∈ Lη′ for all

η′ < η.

If we write P(Z1 > x) = x−η L+(x), we see that if Z1 is regularly varying of index η,

lim
u→+∞

L+(u)

L(u)
= c .

It follows that L+ is also slowly varying, the same for the analogous L−.

From now on we assume that Z1 = f(X1) is regularly varying of index η.

Now choose bn such that
lim

n→+∞
nP(|Z1| > bn) = 1 . (3.2)

As we shall recall below, convergence to stable laws (or processes) for mixing sequences
require some kind of centering, namely we shall consider

Tn = Sn − nEµ
[
Z1 1I|Z1|≤bn

]
= Sn − n cn (3.3)

or

Tn(t) = S[nt] − nt cn ,

and look at the convergence of Tn/bn or Tn(.)/bn. It is thus interesting to look at the
asymptotic behaviour of

n cn
bn

=
n

bn
Eµ
[
Z1 1I|Z1|≤bn

]
.

When 0 < η < 1 this is done in [16] remark 2.17, where it is shown that

lim
n→+∞

n cn
bn

=
η

1− η
(2c− 1) .
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(recall that c is defined in definition 3.1.) The proof is a simple application of Karamata’s
theorem.

Now assume that 1 ≤ η < 2 and that
∫
fdµ = 0. We thus have

n

bn
Eµ
[
Z1 1I|Z1|≤bn

]
= − n

bn
Eµ
[
Z1 1I|Z1|>bn

]
.

But
n

bn
Eµ
[
Z+
1 1I|Z1|>bn

]
= nPµ(Z+

1 > bn) +
n

bn
Eµ
[
(Z+

1 − bn)+
]
,

and

n

bn
Eµ
[
(Z+

1 − bn)+
]

=

∫ +∞

bn

n

bn
Pµ(Z+

1 > u) du

=

∫ +∞

1
nPµ(Z+

1 > u bn) du

=

∫ +∞

1
n b−ηn L(bn)u−η

L+(u bn)

L(bn)
du

=
(
n b−ηn L(bn)

) ∫ +∞

1
u−η

L+(u bn)

L(bn)
du .

Since L+(u bn)
L(bn)

→ c as n → +∞, we may use the bounded convergence theorem and obtain

that the previous goes to c/(η − 1) provided η > 1. Hence, using Definition 3.1, we obtain

lim
n→+∞

n

bn
Eµ
[
Z+
1 1I|Z1|>bn

]
= c+

c

η − 1
=

cη

η − 1
.

Summing up with the similar estimate for Z−1 , we thus have shown

Proposition 3.2. Assume that Z1 is regularly varying of index η ∈ (0, 2) but η 6= 1. Assume
in addition that Eµ(Z1) = 0 if η > 1. Then

lim
n→+∞

n cn
bn

=
η

1− η
(2c− 1) .

If Z1 is symmetric, cn = 0 for all n.

Remark 3.3. The calculation above, for η > 1, allows us to replace the symmetry assumption
in [13] by the weaker Eµ(Z1) = 0 (see condition (v) p.478 of [13]). ♦

Now we recall definitions for stable distributions and processes. We follow the presentation
in [4, 16]. We shall say that X has a η-stable distribution with characteristics (b, c−, c+), if

its characteristic function satisfies E
(
eitX

)
= eψ(t) with

ψ(t) = ibt +

∫ (
eitu − 1− itu 1I|u|≤1

)
|u|−1−η (c− 1Iu<0 + c+ 1Iu>0) du . (3.4)

A η-stable process Yt is a cadlag stochastic process starting from 0, with independent and
stationary increments, and such that the distribution of Y1 is η-stable. We refer to [16, 15, 21]
(among others) for more details.

The results in [4, 13, 16, 21] deal with the convergence of 1
bn
Tn or 1

bn
Tn(.) (recall (3.3)) to

a stable distribution or a stable process (for the Skorohod topology), with characteristics
(b, c, 1− c).
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According to Proposition 3.2, except for η = 1, we may replace Tn by Sn up to a change in
the characteristics, where b is replaced by b + η

η−1 (2c − 1). Recall that in the symmetric

case, c = 1/2.

The following anti clustering type condition introduced in [12], appears in both [13] (condition
(x) p.483) and [16] (condition D′):

lim
k→+∞

lim sup
n→+∞

[n/k]∑
j=2

nPµ (|Z1| > ε bn , |Zj | > ε bn) = 0 , ∀ ε > 0 . (3.5)

Remark that
[n/k]∑
j=2

nPµ (|Z1| > ε bn) Pµ (|Zj | > ε bn) =

(
P2
µ (|Z1| > ε bn)

P2
µ (|Z1| > bn)

)
[n/k]

n
n2 P2

µ (|Z1| > bn)

≤ 1

k

(
P2
µ (|Z1| > ε bn)

P2
µ (|Z1| > bn)

)
so that

lim sup
n→+∞

[n/k]∑
j=2

nPµ (|Z1| > ε bn) Pµ (|Zj | > ε bn) ≤ ε−η 1

k
,

and finally

lim
k→+∞

lim sup
n→+∞

[n/k]∑
j=2

nPµ (|Z1| > ε bn) Pµ (|Zj | > ε bn) = 0 .

Hence we may replace (3.5) by

lim
k→+∞

lim sup
n→+∞

[n/k]∑
j=2

nCovµ

(
1I|Z1|>ε bn , 1I|Zj |>ε bn

)
= 0 , ∀ ε > 0 . (3.6)

We finally state the convergence result which is contained in Proposition 3 of [13] in the
case of variables, and Theorem 3.7 (p.93) of [16] or Theorem 1.1 of [21] for processes. We
formulate the result in our Markov chain framework

Theorem 3.4. Let (Xn)n≥0 be an irreducible, aperiodic and positive recurrent Markov chain
with unique invariant probability measure µ. Let f be such that Z1 = f(X1) is regularly
varying of index η ∈ (0, 2). If f is µ integrable we also assume that

∫
fdµ = 0.

For bn defined by (3.2), we first assume that (3.6) holds.

In addition we assume

(1) If η ∈ (0, 1), the chain is strongly mixing,
(2) if η ∈ (1, 2) the chain has a spectral gap,
(3) if η = 1, f is symmetric, i.e. under Pµ, f(X1) and f(−X1) have the same distri-

bution, and the chain has a spectral gap.

Then 1
bn
Sn(t) = 1

bn

∑[nt]
j=1 f(Xj) converges (under Pµ), for the Skorohod topology on any

time interval [0, T ] to some η-stable process.
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We already discussed the form of the characteristics of the stable limit.

For η = 1, if f is not symmetric, we have to replace Sn by Tn.

Remark 3.5. In general the difference between the assumptions in [13, 21] and [16] concerns
the case η ∈ (1, 2), where all authors assume that Z is ρ-mixing, but with ρ satisfying∑

j ρ(2j) < +∞ in [13, 21], and
∑

j ρ([2j/3]) < +∞ in [16] (see p.76, proposition 2.19) .

Actually both conditions are the same and equivalent to
∑

n
ρ(n)
n < +∞ as it is easy to see.

In our situation of course, ρ-mixing is equivalent to the spectral gap property and thus implies
that ρ(n) = e−nλ as we have seen in Proposition 2.4 so that this condition is satisfied. ♦

Actually one can reinforce Theorem 3.4 as follows

Theorem 3.6. In Theorem 3.4, one can replace (3.6) by the following weaker condition:

there exist rn = o(n) growing to infinity such that

lim
n→+∞

r(n)∑
j=2

nCovµ

(
1I|Z1|>ε bn , 1I|Zj |>ε bn

)
= 0 , ∀ ε > 0 . (3.7)

This condition is condition (3.18) in [16].

One can also replace (3.7) by the following weaker condition:

∀ε > 0, there exists r(n) and l(n) going to infinity, such that l(n) = o(r(n)), r(n) = o(n),
nα(l(n)) = o(r(n)) where α is the mixing coefficient, and

lim
n→+∞

Pµ
(

max
2≤j≤r(n)

|Zj | > ε bn | |Z1| > ε bn

)
= 0 . (3.8)

Furthermore as soon as all other assumptions in Theorem 3.4 are satisfied, (3.8) is also
necessary for the convergence to a stable process. This is the main theorem in [21] (also see
theorem 3.4 in [4]).

We conclude this section by giving explicit sufficient conditions for (3.6) (hence Theorem 3.4)
to hold.

Theorem 3.7. In the situation of Theorem 3.4 we assume that η ∈ (1, 2) and that the chain
has a spectral gap. If P |f | or P ∗|f | belongs to Lη+β(µ) for some β > 0, then condition (3.6)
is satisfied and the conclusion of Theorem 3.4 holds true.

Proof. Write g(u) = 1I|u|>ε bn − P(|Z1| > ε bn). We have

Covµ

(
1I|Z1|>ε bn , 1I|Zj |>ε bn

)
= Eµ

(
g(Z1) 1I|Zj |>ε bn

)
=

∫
(P ∗)j−2g P (1I|f |>ε bn) dµ

≤
∫
|(P ∗)j−2g|P (|f |/ε bn) dµ

≤ 1

ε bn
‖ (P ∗)j−2g ‖

L
η+β
η+β−1 (µ)

‖ P |f | ‖Lη+β(µ) ,
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after using Hölder’s inequality. Now since the chain has a spectral gap, we know that α∗2,2(j) ≤

c e−λj for some λ > 0. It follows that α∗p,p(j) ≤ 2c e
−λj 2(p−1)

p for all +∞ > p > 1, in particular

for p = η+β
η+β−1 . We denote by ρ∗p(j) this quantity for p as before. We have thus

Covµ

(
1I|Z1|>ε bn , 1I|Zj |>ε bn

)
≤ 1

ε bn
ρ∗p(j − 2) ‖ g ‖

L
η+β
η+β−1 (µ)

‖ P |f | ‖Lη+β(µ)

≤ C(f)

ε bn
ρ∗p(j − 2) (Pµ(|Z1| > ε bn))

1− 1
η+β

≤ C(f)

ε bn
ρ∗p(j − 2)

(
ε−η b−ηn L(ε bn)

)1− 1
η+β

≤ C(f)

ε bn
ρ∗p(j − 2)

(
ε−η b−ηn L(bn)

L(ε bn)

L(bn)

)1− 1
η+β

.

Finally, since L(ε bn)
L(bn)

is bounded (w.r.t. n for a fixed ε) we have obtained that

Covµ

(
1I|Z1|>ε bn , 1I|Zj |>ε bn

)
≤ C(f, η, β, ε)

bn

(
n b−ηn L(bn)

)
ρ∗p(j − 2)n

−1+ 1
η+β . (3.9)

Finally

[n/k]∑
j=2

nCovµ

(
1I|Z1|>ε bn , 1I|Zj |>ε bn

)
≤
(
n b−ηn L(bn)

)
C(f, η, β, ε)

n
1

η+β

bn

+∞∑
j=2

ρ∗p(j − 2) .

But bn satisfies limn→+∞ n
− 1
η bn L

− 1
η (bn) = 1, so that, since L is slowly varying, b−1n nθ → 0

as n→ +∞ as soon as θ < 1
η . It follows that

lim sup
n→+∞

[n/k]∑
j=2

nCovµ

(
1I|Z1|>ε bn , 1I|Zj |>ε bn

)
= 0 ,

so that (3.6) is satisfied.

Exchanging P and P ∗ the same holds if P ∗|f | ∈ Lη+β. �

The next result contains the η < 1 case.

Theorem 3.8. In the situation of Theorem 3.4 we assume that η ∈ (0, 2) and that the chain

has a spectral gap. If for some η′ ≤ η f ∈ Lη′(µ) and P (|f |η′) or P ∗(|f |η′) belongs to L1+β(µ)
for some β > 0 such that η′ > η/(1 + β), then condition (3.6) is satisfied and the conclusion
of Theorem 3.4 holds true.

Proof. The proof follows the same lines as the previous one. The first inequality becomes

Covµ

(
1I|Z1|>ε bn , 1I|Zj |>ε bn

)
≤ 1

(ε bn)η′
‖ (P ∗)j−2g ‖

L
1+β
β (µ)

‖ (P |f |η′) ‖L1+β(µ) ,

yielding

Covµ

(
1I|Z1|>ε bn , 1I|Zj |>ε bn

)
≤
(
n b−ηn L(bn)

) C(f, η, β, ε)

(bn)η′
ρ∗p(j − 2)n

−1+ 1
η , (3.10)

this time with p = 1+β. The conclusion follows, thanks to the assumption η′ > η/(1+β). �
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Remark 3.9. If η ∈ (0, 1) in the previous Theorem we do not need the ρ-mixing condition.
We can replace it by

∑
j α(1+β)/β,q(j) < +∞ for some q > 1 + β but this time the condition

becomes η′ > η (1− 1
q ). ♦

Remark 3.10. We can compare our results with Theorems 2.4 and 2.8 in [15].

On one hand, first, these authors assume that L = 1 and that the spectral gap exists, while
for η < 1 we can relax this assumption as described in the preceding Remark.

Second we do not assume their Condition 2.3. In the sequel we are using the notations
in [15]. Notice that if the invariant measure π is symmetric, this condition with Q = 0
implies (because of (2.9) therein) that P 2 has a bounded kernel with respect to π. Indeed
P 2(x, dy) = p2(x, y)π(dy) with

p2(x, y) =

∫
p(x, z)p(z, y)π(dz) ≤

(∫
p2(x, z)π(dz)

)1/2 (∫
p2(y, z)π(dz)

)1/2

≤ C(2) .

Hence the chain generated by P 2 is ultra bounded, i.e. continuously maps L1 functions into
bounded ones. Hence, all P kf for k ≥ 2 will be bounded.

On the other hand our assumption relies on P |f | instead of Pf (this is certainly mainly
irrelevant), and for η < 1 we add a similar assumption on f which is not present in Theorem
2.4 of [15]. The calculation of the characteristics of the limit seem also to slightly differ, but
they are not expressed in the same way.

Finally our results cover the functional limit case (invariance principle). ♦

Remark 3.11. One can be disappointed to have to assume the existence of a spectral gap
(though the situation in the L2 case is similar). Actually the contraction property is a much
stronger assumption, as recently shown by Miclo [19],

Theorem 3.12. If P is symmetric, ergodic and maps continuously L2(µ) into Lp(µ) for
some p > 2, then there exists a spectral gap.

The continuous time version of this result is contained in [5]. We shall see in the next section

that interpolation will then show that, for all q > 1, P maps continuously Lq(µ) into Lq′(µ)
for some q′ > q. ♦

4. Examples.

In this section we shall study some examples and counter-examples.

4.1. Hyperboundedness.
Let us discuss the contraction property, i.e. the fact that P maps continuously Lp into Lp′

for some p′ > p. In a continuous time setting this property is known as the hyperboundedness
of the associated semi-group and is equivalent to a log-Sobolev inequality (see [1]).

In the discrete time setting this property was not really studied for itself, presumably because
except for finite state space, there is no chance for the log-Sobolev inequality∫

f2 ln

(
f2∫
f2dµ

)
dµ ≤ CL 〈((I −

1

2
(P + P ∗))f, f〉 + DL

∫
f2 dµ
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to be satisfied.

Hence there are mainly two generic situations in which we can obtain this property

(1) P = PT for some T > 0, where (Pt)t≥0 is a µ reversible continuous time hyper-
bounded Markov process. In this case µ will satisfy a log-Sobolev inequality where
I − 1

2(P + P ∗) is replaced by the infinitesimal generator of Pt. One can of course

replace P by Q = 1
2(P + P ∗).

If Pt is a diffusion process, µ has to be invariant, not necessarily reversible.
In a similar way, we can look at numerical schemes (like the Euler scheme) for ap-
proximating hypercontractive diffusion processes, since in many situations the hyper-
contractivity property is preserved.

(2) Assume that P (x, dy) = p(x, y)µ(dy), with p ∈ Lq(µ⊗ µ) for some large enough q.

Let us give some more precise examples.

For situation (1) consider for simplicity the diffusion process in Rd with infinitesimal gen-
erator ∆ − ∇V.∇ and reversible measure e−V dx. If V is uniformly convex at infinity (i.e.
ξ.HessV (x)ξ ≥ C|ξ|2 for some C > 0 and all |x| ≥ R) it is known that the associated
semi-group is hypercontractive, i.e. hyperbounded with operator norm equal to 1. It follows
that P = PT continuously maps L2 into L2+β(T ) for some β(T ) > 0 and all T > 0. Using
Riesz-Thorin interpolation theorem, we see that for all p ≥ 2, PT maps continuously Lp into
Lp+β(p,T ) for some β(p, T ) > 0. By duality we thus have that, for all η ∈ (1, 2), PT is bounded
from Lη into Lγ for some γ > η, hence we may apply the results of the previous section. The
final argument using interpolation is of course available in all hyperbounded situations.

For situation (2), we have for a non-negative f ∈ L2 and γ > 2,

‖ Pf ‖γLγ =

∫ (∫
p(x, y)f(y)µ(dy)

)γ
µ(dx)

≤
(∫

f2dµ

) γ
2

(∫ (∫
p2(x, y)µ(dy)

) γ
2

µ(dx)

)

≤
(∫

f2dµ

) γ
2
(∫

pγdµ⊗ dµ
)
.

Hence provided x 7→
∫
p2(x, y)µ(dy) belongs to Lγ , in particular if p ∈ Lγ(µ ⊗ µ), we may

apply the same argument as in the previous paragraph.

Notice that this assumption is much weaker than assumption (2.9) in [15] where it is assumed
that x 7→

∫
p2(x, y)µ(dy) is bounded. In the example of Superdiffusion of energy in a lattice

dynamics studied in [15] the kernel p is in fact bounded.

In this latter situation P maps continuously L1 into L∞ (i.e. is ultrabounded). In particular,
since we remarked in Proposition 2.4 (3), that ϕ(n) ≤ α2

1,∞([n/2]), the chain is ϕ-mixing.

4.2. Birth and death chains.
Here the state space is N, and the transition matrix is given by

P (x, x+ 1) = px , P (x, x− 1) = qx , P (x, x) = 1− px − qx ,
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for all x ∈ N, of course q0 = 0. This chain is positively recurrent if and only if∑
x∈N∗

p0 p1...px−1
q1...qx

:=
∑
x∈N∗

λx < +∞ ,

in which case the unique invariant (and actually reversible) distribution is given by µ(x) =
µ(0)λx for all x ∈ N∗.

It is well known (see e.g. [11]) that the Poincaré inequality

Varµ(f) ≤ C 〈(I − P )f, f〉 = C 〈−Lf, f〉 (4.1)

holds if and only if

sup
x≥1

µ([x,+∞[)
∑
y≤x−1

1

µ(y) py
< +∞ . (4.2)

Others characterizations of geometric ergodicity in the discrete time setting are contained in
[22] and are based on zeros of the associated birth and death polynomials, or in [17, 8, 2, 10]
and are based on Lyapunov functions or exponential moments of hitting times.

It is not difficult to show that the log-Sobolev inequality is not satisfied (consider functions
1Ix with x going to infinity), and that P (x, dy) = p(x, y)µ(dy) but with p that do not satisfy
any nice integrability condition.

But let us come back to Theorem 3.6, in particular to the necessary condition (3.8). If
Zn = f(Xn) we have

Pµ(|Z2| > εbn||Z1| > εbn) ≥ Pµ(X2 = X1||Z1| > εbn)

≥ inf{rx ; f(x) > εbn} .
In particular if rx ≥ r > 0 for all x large enough, (3.8) cannot be satisfied.

But even in the case of the reflected random walk (px = p = 1 − q = qx for all x > 0,
p0 = 1) for which provided q > p, ergodicity holds with a spectral gap, (3.8) is generically
not satisfied. Indeed in this case, if for simplicity f is increasing,

Pµ(|Z2| > a||Z1| > a) ≥ Pµ(X2 = X1 − 1, |X1| > f−1(a+ 1)||X1| > f−1(a))

≥ q Pµ(|X1| > f−1(a+ 1)||X1| > f−1(a) ≥ q
(
p

q

)[f−1(a+1)]−[f−1(a)]+1

.

Choose e.g. f(x) = (q/p)αx so that f ∈ Lη(µ) for η < 1/α. The previous lower bound does
not converge to 0 as a→ +∞.

This situation is presumably typical of the difficulties to satisfy the stable invariance principle,
in particular for discrete valued chains.
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Prob. Stat., 45(1):117–145, 2009.
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