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The Picard group of unipotent groups

Raphaël Achet ∗

Abstract

Let k be a field. In this article, we study the Picard group of the smooth connected
unipotent k-algebraic groups, and more generally the Picard group of the forms of the affine
n-space An

k .
To study the Picard group of a form of the affine n-space with geometric methods, we

define a restricted Picard functor. First, we prove that if a form of the affine n-space X
admits a regular completion, then the restricted Picard functor of X is representable by
a smooth unipotent k-algebraic group. Then, we generalise a result of B. Totaro: if k is
separably closed and if the Picard group of a smooth connected unipotent k-algebraic group
is nontrivial then it admits a nontrivial extension by the multiplicative group. Moreover,
we obtain that the Picard group of a unirational form of An

k is finite.
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Introduction

Let k be a field. In this article, we study smooth connected k-group schemes of finite type,
we call them k-group.

Background

Over a perfect field, any unipotent k-group is isomorphic as a k-scheme to the affine n-space
An

k (where n = dim(U), see [DG70, Th. IV.4.4.1, and Cor. IV.2.2.10]). Thus, over a perfect
field, the Picard group of a unipotent k-group is trivial; and, the only unipotent k-group of
dimension 1 is the additive group Ga,k.

Over a non perfect field, none of the above affirmations are true. From now on, we
assume that k is non perfect of characteristic p.

Example. We consider t ∈ k \ kp, and G the k-subgroup of G2
a,k defined as

G := {(x, y) ∈ G2
a,k | yp = x+ txp}.

Then G is a unipotent k-group of dimension 1, such that Gk(t1/p)
∼= Ga,k(t1/p). We denote

the regular completion of G by C, then

C = {[x : y : z] ∈ P2
k | yp = xzp−1 + txp}.

As a set C \G is a unique point of residue field k(t1/p) 6= k. Thus, G is not isomorphic to
Ga,k. Moreover, the degree morphism deg : Pic(C) → Z induces a morphism

deg : Pic(G) → Z/pZ,

that is surjective [Ach17, (2.1.3)]. Hence Pic(G) 6= {0}.

A unipotent k-group U is said k-wound if U does not admit a closed k-subgroup iso-
morphic to Ga,k. The group G of the example above is a k-wound unipotent k-group.
The k-wound unipotent k-group have been studied by J. Tits [Tit67], P. Russell [Rus70],
T. Kambayashi, M. Miyanishi and M. Takeuchi [KMT74, KM77] and J. Oesterlé [Oes84].

Recently, a major contribution to the subject of linear k-groups has been made with the
study of the structure of pseudo-reductive groups by B. Conrad, O. Gabber, and G. Prasad
[CGP15, CP16]. For any linear k-group G, we denote by Ru,k(G) the k-unipotent radical of
G i.e. Ru,k(G) is the maximal unipotent normal k-subgroup of G. Then, G is said to be k-
pseudo-reductive if Ru,k(G) = {1}. If the base field is perfect, k-pseudo-reductive groups are
reductive groups; over a non-perfect field the notion of k-pseudo-reductive group generalizes
that of reductive group.

In characteristic p > 5 every k-pseudo-reductive group is obtain via the standard con-
struction (see [CGP15, Def. 1.4.4, and Th. 5.1.1]); in characteristic 2 and 3, the situation
is more complicated. The standard construction essentially reduces the classification of
the k-pseudo-reductive groups to the particular case of the commutative k-pseudo-reductive
groups, which seems intractable.

For any linear k-group G, there is an exact sequence:

1 → Ru,k(G) → G → G/Ru,k(G) → 1,
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where Ru,k(G) is unipotent and G/Ru,k(G) is k-pseudo-reductive. As any linear k-group
is the extension of a k-pseudo-reductive group by a unipotent k-group, there is a renewed
interest in the structure of unipotent k-group over non perfect-field.

Hence, there are two main motivations to study the Picard group of unipotent k-group.
First, the study of the Picard group of the unipotent k-group is a necessary step to study
the Picard group of the linear k-group. The second motivation is linked to the structure
of k-pseudo-reductive group: commutative k-pseudo-reductive groups are extensions of a
commutative unipotent k-group by a k-torus [DG70, Th. IV.3.1.1]. B. Totaro prove that, if
U is a commutative unipotent k-group, then Ext1(U,Gm,k) identifies with the subgroup of
the translation invariant elements of Pic(U) [Tot13, Lem. 9.2]. Then, B. Totaro deduce that
if U is a k-wound unipotent k-group of dimension 1, then Ext1(Uks ,Gm,ks) 6= {0} [Tot13,
Lem. 9.4]. And finally, B. Totaro obtain a classification of the 2 dimensional commutative
k-pseudo-reductive groups [Tot13, Cor. 9.5].

Main results and outline of the article

Definition. let X , and Y be k-schemes (resp. k-group schemes). We call X a form of Y
if there is a field extension K/k such that XK is isomorphic as a K-scheme (resp. K-group
scheme) to YK .

In [Ach17], we studied the Picard group of the forms of the additive group Ga,k. More
generally, we used geometric methods to study simultaneously the Picard group of the forms
of the additive group Ga,k and of the affine line A1

k.
Let X be a regular k-algebraic varieties. We call a regular proper k-algebraic variety X

a regular completion of X , if there is an open dominant immersion X → X. The (canonical)
regular completion C of a form X of A1

k is an important invariant, as the Picard group of
C is related to the Picard group of X [Ach17, §2.1]. Moreover, we have a powerful tool to
study the Picard group of C: the fppf Picard functor PicC/k. It is a representable functor
[BLR90, 8.2 Th. 3] that can be study with geometric methods.

A unipotent k-group of dimension n is a form of the affine n-space [DG70, Th. IV.4.4.1].
As in the dimension 1 case, we would like to use geometric methods to study the Picard
group of the forms of An

k . If n > 1, there is no canonical regular completion. And worst,
the existence of a regular completion is only proved yet if n 6 3 [CP14, Th. 1.1].

To obtain an object that replace the Picard functor PicC/k, we are going to follow an
idea of M. Raynaud and consider a Picard functor restricted to smooth schemes.

Definition. Let X be a k-scheme, we consider the contravariant functor

Pic+X/k : (Smooth Scheme/k)◦ → (Group)

T 7→
Pic(X ×k T )

p∗2Pic(T )
,

where (Smooth Scheme/k) denotes the category of smooth k-scheme, (Group) the category
of “abstract” group, and p2 : X ×k T → T is the second projection.

We call Pic+X/k the restricted Picard functor of X .

One of the main result of this article is the following representability Theorem:

Theorem. 1.1
We consider a form X of Ad

k which admits a regular completion.
Then, the restricted Picard functor Pic+X/k is represented by a smooth commutative unipo-

tent k-algebraic group whose neutral component is k-wound.

This Theorem is proved in Section 1. The proof is quite technical, but the idea behind
it is rather intuitive. If X is a regular completion of X , then there is an exact sequence:

0 → D → Pic
(
X
)
→ Pic(X) → 0, (∗)

where D is the free Z-module generated by the divisors in X \X .
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The idea is to generalize this exact sequence. The fppf Picard functor PicX/k is repre-

sentable by a locally algebraic group [BLR90, 8.2 Th. 3], we still denote it PicX/k. We are

going to use PicX/k as a middleman to show that Pic+X/k is representable. More precisely,

inspire by P. Deligne definition of 1-motifs [Del74, §10.1] and by the exact sequence (∗)
we are going to look at the quotient of PicX/k by the constant k-locally algebraic group

generated by the divisors in X \X .
Let us present two consequences of Theorem 1.1. First, in Section 3 we study the group

Ext1(U,Gm,k) of extensions of a commutative unipotent k-group U by the multiplicative
group Gm,k. In Subsection 3.1, we give a summary of some results of [Tot13, §9] and
[Ros18]. In Subsection 3.2, we define an action of U on Pic+U/k. In Subsection 3.3, we

consider a fixed point functor Pic+ U
U/k , and we use the representability of Pic+U/k to prove the

representability of Pic+ U
U/k (Proposition 3.4). Then, we obtain the following generalization

of Lemma [Tot13, Lem. 9.4].

Theorem. 3.6
We consider a unipotent k-group U which admits a regular completion. Then:

(i) if Pic(Uks) is finite, then Ext1(U,Gm,k) = Pic(U);

(ii) if Pic(Uks) is infinite, then Ext1(Uks ,Gm,ks) is likewise infinite;

(iii) if Pic(Uks) 6= {0}, then Ext1(Uks ,Gm,ks) 6= {0}.

The full statement of Theorem 3.6 includes a result on Pic+ U
U/k . Finally in Subsection

3.5, we give an ad hoc criteria for the commutative unipotent k-groups that are quotients of
a commutative k-pseudo-reductive k-group.

The second consequence of Theorem 1.1 concerns the unirational forms of An
k . Let

us recall that an integral k-variety X is called unirational if there is a dominant rational
map Pd

k 99K X (for some d ∈ N). In Section 4, we study the subtle relationship between
the notion of unirationality and the unipotent k-groups. The k-wound unipotent k-groups
have strange properties: while some are unirational, others do not contain a nontrivial
unirational k-subgroup. In Subsection 4.1, we study an example of k-wound unirational
unipotent k-group. In Subsection 4.2, we make a dévissage of the commutative k-group
between unirational k-group and strongly-wound k-group (see Definition 4.6).

The main result of Section 4 is the following:

Theorem. 4.11
Let X be a unirational form of An

k which admits a regular completion. Then:

(i) the unipotent k-algebraic group Pic+X/k is étale;

(ii) the groups Pic(X) and Pic(Xks) are finite.

Theorem 4.11 is proved in Subsection 4.3, it is a straightforward consequence of Theorem
1.1. In Subsection 4.4, we study the torsion of the Picard group and of the restricted Picard
functor of a form of An

k .
The author hopes that the consequences of Theorem 1.1, and the relative simplicity of

their demonstrations will convince the reader that the restricted Picard functor is the right
object to look at. Some questions (questions 3.16, 4.2, and 4.9) will require more work to
have a satisfying answers.

Acknowledgement

I would like to thanks Philippe Gille and Burt Totaro for useful discussions, and Michel
Raynaud for taking the time to meet me and sharing some of his vast knowledge. Moreover, I
am grateful to Michel Brion for many extremely insightful ideas and remarks. This work was
carried out at Institut Fourier, Grenoble Alpes university and Yau Mathematical Sciences
Center, Tsinghua university.

4



Conventions

We consider a field k, unless explicitly stated, k is a non perfect field of characteristic p > 0.
We fix an algebraic closure k of k, and we denote by ks ⊂ k the separable closure of k in k.
For any non-negative integer n, we denote the field {x ∈ k such that xpn

∈ k} by kp
−n

.
All schemes are assumed to be separated and locally noetherian. For every scheme X ,

we denote the structural sheaf of X by OX . We denote the ring of regular functions on X
by O(X), and the multiplicative group of invertible regular functions on X by O(X)∗. For
every x ∈ X , we denote the stalk of OX at x by OX,x, and the residue field of OX,x by κ(x).

The morphisms considered between two k-schemes are morphisms over k. An algebraic
variety is a scheme of finite type over Spec(k). In order to lighten our notation, we will
denote the product X ×Spec(k) Y for X and Y two k-schemes by X ×k Y . And for any field
extension K/k, we denote the base change X ×k Spec(K) by XK . We denote the function
field of an integral variety X by κ(X).

A k-scheme is said to be smooth if it is formally smooth [EGAIV4, Def. 17.1.1], separated
and locally of finite type over Spec(k). A group scheme locally of finite type over k will be
called a k-locally algebraic group. A group scheme of finite type over k will be called a k-
algebraic group. A smooth connected k-algebraic group will be called a k-group. A unipotent
k-group U is said to be k-split if U has a central composition series with successive quotients
isomorphic to Ga,k. A unipotent k-group U over k is said to be k-wound if every morphism
of k-scheme A1

k → U is constant (with image a point of U(k)); an equivalent definition of
k-wound is that U does not have a central subgroup isomorphic to Ga,k [CGP15, Pro. B.3.2].

1 Representability of the restricted Picard functor

This section is dedicated to the proof of the following theorem:

Theorem 1.1. We consider a form X of Ad
k which admits a regular completion.

Then, the restricted Picard functor Pic+X/k is represented by a smooth commutative unipo-

tent k-algebraic group whose neutral component is k-wound.

In Subsection 1.1, we gather some preliminary results. In Subsection 1.2, we prove
Theorem 1.1 assuming k is separably closed. Finally, in Subsection 1.3, we use a Galois
descent argument to finish the proof of Theorem 1.1.

1.1 Picard functor of a normal completion of a form of the affine

space

In this Subsection, we consider a form X of Ad
k (d > 1) and Y a normal completion of X

(i.e. a normal proper k-variety Y such that there is a dominant open immersion X → Y ).
We are going to describe the fppf Picard functor PicY/k. First, we have some preliminary
lemmas.

Lemma 1.2. Let X be a form of Ad
k, then Xk is k-isomorphic to Ad

k
.

Proof. The proof use a standard argument: there is a field extension K/k such that XK

is K-isomorph to Ad
K . We can assume that K is algebraically closed, and that K is an

extension of k. Then, K is the inductive limits of its finite type sub-k-algebra; thus, there is
a finite k-algebra A such that XA is isomorphic to the A-scheme Ad

A [EGAIV3, Th. 8.8.2].
Moreover, as A is a finite type k-algebra and k is algebraically closed, there are non

trivial morphism of k-algebra A → k. Hence, Xk is k-isomorphic to Ad
k
.

Recall that the fppf Picard functor PicY/k is representable by a k-locally algebraic group
[BLR90, 8.2 Th. 3].

Lemma 1.3. We consider a normal, proper, geometrically integral k-algebraic variety Y ,
and V an open of An

k (n ∈ N). Then, any morphism V → PicY/k is constant (of image a
k-rational point).
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Proof. We can assume that k = ks. We are going to show that any morphism V → PicY/k,
whose image contains the identity element e of PicY/k, is constant of image e.

Let p2 : Y ×k V → V and p1 : Y ×k V → Y be the two projections. According to
Proposition [BLR90, 8.1 Pro. 4],

PicY/k(V ) =
Pic(Y ×k V )

p∗2Pic(V )
.

Moreover, Pic(V ) is trivial, so PicY/k(V ) = Pic(Y ×k V ).
In addition, the group morphism:

p∗1 : Pic(Y ) → Pic(Y ×k V )

is an isomorphism. Indeed, any k-rational point a of V defined a section of p∗1, so it is
injective. And p∗1 is surjective [EGAIV4, Cor. 21.4.11].

Let a be a k-rational point of V , the point a induces a k-group morphism:

a∗ : PicY/k(V ) → PicY/k(k) = Pic(Y ).

The elements of the kernel of a∗ are the k-scheme morphisms f : V → PicY/k such that
f(a) = e. So there is an isomorphism

ker(a∗) ∼=
Pic(Y ×k V )

p∗1Pic(Y )× p∗2Pic(V )
.

Indeed, if x is a k-rational point of Y (such a point always exists if k = ks [Liu06,
Pro. 3.2.20]), then

a∗ × x∗ : Pic(Y ×k V ) → Pic(Y )× Pic(V )

is a retraction of
p∗1 × p∗2 : Pic(Y )× Pic(V ) → Pic(Y ×k V ).

Remark 1.4. Let T be a k-torus. With the hypothesis of Lemma 1.3, any morphism of
k-scheme T → PicY/k is constant of image a k-rational point of PicY/k.

Indeed, we can assume that k = ks, so that T is a split torus. According to Lemma 1.3,

any morphism G
dim(T )
m,ks

→ PicYks/ks
is constant.

In general, the Picard schemes of a k-projective variety is a non-necessary smooth k-
locally algebraic group. In order to deal with the lack of smoothness, we will use the
following “smoothification” lemma:

Lemma ([CGP15, Lem. C.4.1]).
Let X be a k-scheme locally of finite type. There is a unique geometrically reduced closed

subscheme X+ of X such that X+(K) = X(K) for all separable extension fields K/k (no
hypothesis of finiteness here). The formation of X+ is functorial in X and commutes with
the formation of products over k and separable extension of the ground field. In particular,
if G is a k-locally algebraic group then G+ is a smooth k-locally algebraic group.

We call G+ the smoothification of G. We remark that if G is a k-locally algebraic group
and T is a smooth k-schemes, then we have the equality G(T ) = G+(T ).

Proposition 1.5. Let X be a form of Ad
k, and let Y be a normal completion of X. Then,

the Picard functor PicY/k is representable by a commutative k-locally algebraic group, and

Pic+ 0
Y/k is a k-wound unipotent k-group.

Proof. The Picard functor PicY/k is representable by a commutative k-locally algebraic

group [BLR90, 8.2 Th. 3]. So Pic+Y/k is a smooth commutative k-locally algebraic group and

the neutral component Pic+ 0
Y/k of Pic+Y/k is a commutative k-group.
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The construction of the neutral component and the smoothification process commute
with separable extension. Moreover, a unipotent k-group U is k-wound if and only if Uks is
ks-wound [CGP15, Pro. B.3.2]. Thus, we can suppose that k = ks (and then, X(k) 6= ∅).

Let A and B be two k-groups. We denote Hompt. (A,B) the set of k-scheme morphisms
from A into B such that the image of the identity element of A is the identity element of
B, and by Homgrp.(A,B) the set of k-group morphisms from A into B.

We consider A a k-abelian variety. According to Proposition [Bri17, Pro. 3.3.4]:

Homgrp.

(
A,Pic+ 0

Y/k

)
= Hompt.

(
A,Pic+ 0

Y/k

)
.

And, as A is smooth, we have the following equality:

Hompt.

(
A,Pic+ 0

Y/k

)
= Hompt.

(
A,Pic0Y/k

)
.

Moreover

Hompt.

(
A,Pic0Y/k

)
= Hompt.

(
A,PicY/k

)
∼=

Pic (Y ×k A)

p∗1Pic(Y )× p∗2Pic(A)

∼= Hompt.

(
Y,PicA/k

)
= Hompt.

(
Y,Pic0A/k

)
.

And
Hompt.

(
Y,Pic0A/k

)
⊆ Hompt.

(
X,Pic0A/k

)
.

As Xk
∼= Ad

k
, the morphisms from Xk into Pic0

Ak/k
are constant (Lemma 1.3). And, as

Pic0A/k ×k k = Pic0
Ak/k

, the set Hompt.

(
X,Pic0A/k

)
is reduced to the constant morphism,

and finally Homgrp.

(
A,Pic+ 0

Y/k

)
= {0}.

A k-semi-abelian variety is a k-algebraic group obtained as the extension of a k-abelian
variety by a k-torus. Any commutative k-algebraic group G has a largest k-semi-abelian
subvariety Gsab [Bri17, Lem. 5.6.1]. Moreover, if G is smooth and connected, then G/Gsab

is unipotent [Bri17, Th. 5.6.3].

Let us denote
(
Pic+ 0

Y/k

)
sab

as H . According to Remark 1.4, H is a k-abelian variety.

Moreover, we just show that there is no nonconstant morphism from an abelian variety into
Pic+ 0

Y/k. Thus H = {0}, and Pic+ 0
Y/k is a unipotent k-group. Finally, according to Lemma 1.3,

it is k-wound.

1.2 Separably closed case

In this Subsection, we prove Theorem 1.1 assuming k is separably closed. We denote by X
a regular completion of X .

Let T be a smooth k-scheme, then we note:

T =
∐

i∈I

Ti,

where the Ti are the open irreducible component of T . Then for all i, the k-scheme X ×k Ti

and X ×k Ti are regular [EGAIV2, Pro. 6.8.5 (i)] and irreducible [EGAIV2, Cor. 4.5.8 (i)].
Thus, we can identify the class group of X ×k Ti with its Picard group, and likewise for
X ×k Ti [Liu06, Pro. 7.2.16].

Moreover, we denote D = X \ X . Then, D is pure of codimension 1 in X [EGAIV4,
Cor. 21.12.7]. Thus, D the union of a finite number of divisors of X; we denote:

D = X \X =

n⋃

j=1

Dj .
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We consider D and the Dj with their structure of reduced closed subscheme.
As k = ks, the Dj are geometrically irreducible. For any i, we have an exact sequence:

n⊕

j=0

Z[Dj ×k Ti] → Cl
(
X ×k Ti

)
→ Cl (X ×k Ti) → 0.

Indeed, the morphism Cl
(
X ×k Ti

)
→ Cl (X ×k Ti) is the restriction of Weil divisor of

X ×k Ti to X ×k Ti, so it is surjective. Its kernel is generated by the class of the irreducible
divisor of X ×k Ti \X ×k Ti = D ×k Ti, so by the [Dj ×k Ti] for 1 6 j 6 n.

Moreover, the kernel of the morphism

n⊕

j=0

Z[Dj ×k Ti] → Cl
(
X ×k Ti

)

is generated by the principal divisor of X ×k Ti without zero, nor pole outside of D ×k Ti,
so by the image of the morphism

div : κ
(
X ×k Ti

)
→ Div(X ×k Ti)

restricted to O (X ×k Ti)
∗
. Let us show that O (X ×k Ti)

∗
= O (Ti)

∗
. Indeed,

O (Ti)
∗ ⊂ O (X ×k Ti)

∗ ⊂ O
(
Xk ×k Tik

)∗
.

But Xk
∼= Ad

k
, and we can assume that Ti is affine. As R∗ = R[x1, . . . , xn]

∗ for any integral

domain R, then O
(
Xk ×k Tik

)∗
= O

(
Tik

)∗
. So

⊕n
j=0 Z[Dj ×k Ti] → Cl (X ×k Ti) is an

injective group morphism.
Hence, the sequence

0 → Zn f
→ Cl

(
X ×k Ti

)
→ Cl (X ×k Ti) → 0

is exact, where f is the application which map the j-th element of the canonical base of Zn

to the class of the Weil divisor [Dj ×k Ti].
We identify the Weil class group and the Picard group, and obtain the exact sequence:

0 → Zn → Pic
(
X ×k Ti

)
→ Pic (X ×k Ti) → 0.

Moreover, by combining all these sequences for i ∈ I, we obtain the exact sequence:

0 →
∏

i∈I

Zn → Pic
(
X ×k T

)
→ Pic (X ×k T ) → 0.

We denote p2 : X×kT → T and q2 : X×kT → T the second projections. The intersection
of the image of q∗2 : Pic(T ) → Pic

(
X ×k T

)
with the image of

∏

i∈I

Zn → Pic
(
X ×k T

)

is trivial. Thus the sequence:

0 →
∏

i∈I

Zn →
Pic

(
X ×k T

)

q∗2Pic(T )
→

Pic (X ×k T )

p∗2Pic(T )
→ 0 (1.1)

is exact.
By hypothesis k = ks, so X has a k-rational point and likewise X. According to Propo-

sition [BLR90, 8.4 Pro. 1],

PicX/k (T ) =
Pic

(
X ×k T

)

q∗2Pic (T )
.
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We denote Zn
k the constant k-locally algebraic group associated to the formal group Zn.

For any j, the divisor [Dj ] defined a k-rational point of PicX/k. The morphism Zn
k → PicX/k

induced by the Dj is a monomorphism between two k-locally algebraic groups, thus it is a
closed immersion [SGAIII1, VIB Cor. 1.4.2].

We can rewrite the sequence (1.1) as:

0 → Zn
k (T ) → PicX/k(T ) → Pic+X/k(T ) → 0.

We now consider Pic+
X/k

the smoothification of PicX/k. As Z
n
k is smooth, the morphism

Zn
k → PicX/k factorizes as

Zn
k

��

// PicX/k

Pic+
X/k

.

::✈✈✈✈✈✈✈✈✈

As Zn
k → PicX/k is a closed immersion, Zn

k → Pic+
X/k

is also a closed immersion. The fppf

quotient Pic+
X/k

/Zn
k is representable by a k-locally algebraic group [SGAIII1, VIA Th. 3.3.2];

we denote G this quotient.
We are going to show that Zn

k ∩ Pic+ 0

X/k
= {0}. Indeed, Pic+ 0

X/k
is a unipotent k-group

(Proposition 1.5), so it is of pm-torsion for some m > 0, and the closed points of Zn
k ∩Pic+ 0

X/k

are of pm-torsion. But Zn
k → Pic+

X/k
is a monomorphism, thus Zn

k ∩ Pic+
0
X/k = {0}.

There is a commutative diagram of k-locally algebraic group:

0

��

0

��
0 //

��

Pic+ 0

X/k

∼

ϕ
//

��

G0

��

// 0

0 // Zn
k

//

≀

��

Pic+
X/k

//

��

G //

��

0

0 // Zn
k

//

��

π0

(
Pic+

X/k

)

��

// π0 (G) //

��

0

0 0 0,

where the three columns and the second line are exact. Moreover, the morphism ϕ is a
closed immersion (it is a monomorphism) which is faithfully flat, thus ϕ is an isomorphism.

So G0 ∼= Pic+
0
X/k is a k-wound commutative unipotent k-group. As k = ks, all the groups of

the third line are constant groups, in order to show that the third line is an exact sequence
it is enough to show that the sequence induce on the k-points is exact, this is a consequence
of the snake Lemma.

Next, we prove that G represents the restricted Picard functor. In order to prove that
for all smooth k-schemes T , we have G(T ) = Pic+X/k(T ), we obtain the existence of a section

of the quotient morphism Pic+
X/k

→ G. To choose such a section, one just need to choose a

section of π0

(
Pic+

X/k

)
→ π0(G). Indeed, if s is such a section, the morphism Pic+

X/k
→ G

induces a morphism fν : Pic+
s(ν)

X/k
→ Gν where Gν is the fiber in ν ∈ π0 of G → π0 (G)

(likewise for Pic+
s(ν)

X/k
). As k = ks, the Pic

+ 0

X/k
-torsor Pic+

s(ν)

X/k
is the trivial one, and likewise

9



Gν is a trivial G0-torsor. Thus, the morphism fν is an isomorphism. Hence, we obtain a
morphism

∐
f−1ν : G → Pic+

X/k
which is a section of Pic+

X/k
→ G. Finally, choosing a section

of π0

(
Pic+

X/k

)
→ π0(G) is the same as, choosing a section of π0

(
Pic+

X/k

)
(k) → π0(G)(k)

[DG70, II.5.1.7] (as k = ks any section is equivariant for Gal(ks/k) = {0}).
The last thing to prove, is that G+ is of finite type over k, or equivalently that π0 (G

+) (k)
is a finite set. There is a purely inseparable extension K of k such that XK

∼= An
K ; so

Pic(X) = Pic+X/k(k) = G(k) is of pm-torsion for some m > 0 [Ach17, Pro. 2.6]. More-

over, there is a closed immersion Pic+
X/k

→ PicX/k. By universal property of the scheme

of connected components, this closed immersion induces a morphism of constant groups

π0

(
Pic+

X/k

)
→ π0(PicX/k). The kernel of this morphism corresponds to connected com-

ponent of Pic+
X/k

which are closed subscheme of Pic0
X/k

; as Pic0
X/k

is of finite type over k,

this kernel is finite. According to Neron-Severi Theorem [SGAVI, XIII Th. 5.1], the abelian

group π0

(
PicX/k

)
(k) is of finite type. Thus, π0

(
Pic+

X/k

)
(k) is the extension of a com-

mutative group of finite type by a finite commutative group, therefore it is a commutative
group of finite type. Hence, π0 (G) (k) is a commutative group of finite type of pm-torsion,
so it is a finite unipotent k-group [DG70, Exa. b) IV.2.2.2].

1.3 General case

In this subsection, we are using a Galois descent argument to show the representability of
Pic+X/k without hypothesis on the base field.

First, we define an action of Γ = Gal(ks/k) on Pic+Xks/ks
. The argument is standard,

any σ ∈ Γ induces a k-automorphism Spec(ks) → Spec(ks) that we will also denote σ. Let
T be a smooth ks-scheme, we have a commutative diagram of k-scheme:

Xks ×ks T

p2

��

idX×T×σ // Xks ×ks T

p2

��
T

��

idT×σ // T

��
Spec(ks) σ

// Spec(ks).

Then, we have the following commutative diagram of abelian group:

Pic(Xks ×ks T )
(idX×T×σ)

∗

// Pic(Xks ×ks T )

Pic(T )

p∗

2

OO

(idT×σ)
∗

// Pic(T ).

p∗

2

OO

Thus, σ induces a group morphism denoted σ∗T :

σ∗T : Pic+Xks/ks
(T ) → Pic+Xks/ks

(T ).

Hence, according to Yoneda Lemma, σ induces a k-morphism between ks-groups denoted
σ∗:

σ∗ : Pic+Xks/ks
→ Pic+Xks/ks

.

As the ks-group Pic+Xks/ks
is affine, there is a ks-algebra of finite type A such that

Pic+Xks/ks
= Spec(A). Let V ⊂ A be a ks-vector space of finite dimension such that V

generate A as ks-algebra, then there is a ks-vector space of finite dimension W such that
V ⊂ W ⊂ A and W is stable under the Γ-action (indeed, any element of a base of W is
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stabilized by a subgroup of Γ of finite index). Thus, there is a Γ-equivariant isomorphism
between A and Sym(W )/I where I is a Γ-stable ideal of Sym(W ). Moreover, Sym(W ) ∼=
O(W∨) (where W∨ denotes the dual of W ), thus the ks-scheme Pic+Xks/ks

identifies Γ-

equivariantly to the closed space of the affine space W∨ defined by I. Finally, there is a
finite separable extension L/k and a L-scheme Y such that

Pic+Xks/ks

∼= Y ×L Spec(ks)

is a Γ-equivariant isomorphism of ks-schemes.
We can assume that L/k is a Galois extension. Thus, we have an action of Gal(L/k)

on Y compatible with the action of Gal(L/k) on Spec(L). This action defines a descent
datum on Y [BLR90, 6.2 Exa. B]. Moreover, as Y is an affine L-scheme (Yks is affine, so Y
is affine) the descent is effective [BLR90, 6.1 Th. 6]. Hence, we obtain a k-scheme Z such
that Z ×k Spec(L) ∼= Y .

We need to prove that for any smooth k-scheme of finite type T :

Z(T ) =
(
Pic+Xks/ks

(Tks)
)Γ

.

Let f : Tks → Zks be a Γ-equivariant morphism. As T is a k-scheme of finite type and Z is
an affine k-scheme of finite type, there is a finite separable extension M/k and a morphism
g : TM → ZM such that the diagram

Tks

p

��

f // Zks

q

��
TM g

// ZM

is commutative [EGAIV2, Pro. 4.8.13], where p : Tks → TM and q : Zks → ZM are the
projections. As the morphism g is Gal(M/k)-equivariant, there is a k-morphism h : T → Z
such that the diagram

TM

��

g // ZM

��
T

h
// Z

is commutative [BLR90, Th. 6 (a)]. And, by construction of Z, we have

Z(T ) ⊂
(
Pic+Xks/ks

(Tks)
)Γ

.

Moreover, the exact sequence

0 → Pic(Tks)
p∗

2→ Pic(Xks ×ks Tks) →
Pic(Xks ×ks Tks)

p∗2Pic(Tks)
→ 0,

admits a Γ-equivariant retraction. Indeed, let e ∈ Xks , then

p∗2 : Pic(Tks) → Pic(Xks ×ks Tks)

admits
(e × idT )

∗ : Pic(Xks ×ks Tks) → Pic(Tks)

as a Γ-equivariant retraction. Hence

Pic+Xks/ks
(Tks)

Γ =
Pic(Xks ×ks Tks)

Γ

p∗2Pic(Tks)
Γ

.
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Next, we consider the exact sequence of low degree of Hochschild-Serre spectral sequence
[SGAIV2, VIII Cor. 8.5]:

0 → H1 (k,O(Xks ×ks Tks)
∗) → Pic(X×kT ) → Pic(Xks×ksTks)

Γ → H2 (k,O(Xks ×ks Tks)
∗) ,

and
0 → H1 (k,O(Tks)

∗) → Pic(T ) → Pic(Tks)
Γ → H2 (k,O(Tks)

∗) .

As O(Xks)
∗ ∼= k∗s , we have O(Xks ×ks Tks)

∗ ∼= O(Tks)
∗. Thus

Pic+Xks/ks
(Tks)

Γ =
Pic(Xks ×ks Tks)

Γ

p∗2Pic(Tks)
Γ

=
Pic(X ×k T )

p∗2Pic(T )
= Pic+X/k(T ).

Finally, for any smooth k-scheme T of finite type,

Z(T ) = Pic+Xks/ks
(Tks)

Γ = Pic+X/k(T ).

More generally, if T is a smooth k-scheme, then T =
∐
i∈I

Ti where the Ti are smooth k-

schemes of finite type. And,

Z(T ) =
∏

i∈I

Z(Ti) =
∏

i∈I

Pic+X/k(Ti) = Pic+X/k(T ).

Thus Z represents the group functor Pic+X/k. This concludes the proof of Theorem 1.1.

2 First properties and examples

2.1 Restricted Picard functor and projective limit

In this subsection, we denote a projective limit (also call inverse limit) by lim
←

and an

inductive limit (also call direct limit) by lim
→

.

Proposition 2.1. Let X be a form of An
k which admits a regular completion.

Let (Ti, fij)I be a projective system of smooth k-schemes of finite type such that for any
i 6 j ∈ I, the k-scheme morphism fij : Ti → Tj is affine. Then:

(i) the projective limits T = lim
← i

Ti exist in the category of k-schemes;

(ii) Pic(T ) = lim
→ i

Pic(Ti) and Pic(X ×k T ) = lim
→ i

Pic(X ×k Ti);

(iii) Pic+X/k(T ) =
Pic(X×kT )
p∗

2Pic(T ) .

Proof. (i) and (ii) are consequences of [Sta18, Tag 01YX] and [Sta18, Tag 0B8W].
Let us show (iii): first of all, the functor Pic+X/k is representable (Theorem 1.1). Thus

Pic+X/k(T ) is well defined and:

Pic+X/k(T ) = lim
→ i

Pic+X/k(Ti) = lim
→ i

Pic(X ×k Ti)

p∗2Pic(Ti)
=

lim
→ i

Pic(X ×k Ti)

p∗2lim
→ i

Pic(Ti)
=

Pic(X ×k T )

p∗2Pic(T )
.

The first equality come from [Sta18, Tag 01ZC], the second equality is the definition of
Pic+X/k, the third one is a consequence of the fact that an inductive limit of exact sequence

is still exact, the last equality is (ii).

Remark 2.2. Let X be a form of An
k with a regular completion.

(i) Recall that ks = lim
→ λ

kλ where kλ are the finite separable extensions of k. So according

to Proposition 2.1:
Pic+X/k(ks) = Pic(Xks).
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(ii) More generally, if F/k is any separable extension, then F = lim
→ λ

kλ where F/kλ/k

are finite separable extension of k. So according to Proposition 2.1:

Pic+X/k(F ) = Pic(XF ).

Remark 2.3. (i) A nontrivial form of A1
k never becomes isomorphic to the affine line after

a separable extension. T. Kambayashi proved the forms of A2
k have the same properties

[Kam75, Th. 3]. In the particular case of unipotent k-group, in any dimension, a unipotent
k-group is k-wound if and only if it is L-wound (for any separable non necessarily algebraic
field extension L/k) [CGP15, Pro. B.3.2].

But, in dimension 3, there is still no proof that A3
R
is the only real form of A3

C
[Kra95,

Rem. 5.4].
(ii) If X is a form of An

k with a regular completion, then for any separable extension
L/k, the group Pic(X) is a subgroup of Pic(XL). Thus, if Pic+X/k 6= {0}, then X does not

become isomorphic to An
k after any separable extension.

2.2 Examples

Example 2.4. Let P∞ be a point of P1
k such that κ(P∞)/k is a purely inseparable extension.

We consider X = P1
k \ {P∞}, then X is a form of A1

k. And Pic+X/k is representable by the

constant group (Z/[κ(P∞) : k]Z)k.

Example 2.5. Let X be a form of A1
k, we denote by X its (canonical) regular completion.

Then Pic+X/k is representable by a unipotent k-group.

Moreover, if X has a k-rational point, then

0 → Pic0
X/k

→ Pic+X/k → (Z/[κ(P∞) : k]Z)k → 0.

is an exact sequence of algebraic group (where {P∞} = X \X , see [Rus70, Lem. 1.1]). Thus,
the neutral component of Pic+X/k is Pic0

X/k
and the group of irreducible component of Pic+X/k

is the constant k-group (Z/[κ(P∞) : k]Z)k.

Example 2.6. We consider k = F3(a). We denote Gt the form of Ga,k define as a subgroup

of G2
a,k by the equation y3 = x+ tx3. We consider the regular completion Gt of Gt.

If t is not in k3, then there is a closed immersion Gt → Pic0
Gt/k

[KMT74, Th. 6.7.9].

Moreover, in this case dim Pic0
Gt/k

= 1, so Gt ∼= Pic0
Gt/k

= Pic+ 0
Gt/k.

If t = a, then Gt(k) = {0}, so Pic(Gt) = Z/3Z. Let n be an integer, we consider q = pn

and t = a+aq+2+a2q+3+ · · ·+a(p−2)q+p−1. Then Gt(k) is a finite group of cardinal greater
than p2

n/2n [AV96, Th. 4.1].
As Pic (Gt) is an extension of Z/3Z by Gt(k), the group Pic (Gt) is finite of cardinal as

large as one may wish.
Thus, we have obtain a family of forms of Ga,k with finite Picard group of unbounded

cardinal.

We recall that there is two Frobenius morphisms. The n-th-absolute Frobenius morphism
denoted Fn

X : X → X is the identity on the topological space and is the pn power on the
structural sheaves.

Let π : X → S be a morphism of Fp-schemes. We denote X(pn) the product X ×S S,
where S is seen as a S scheme via Fn

S . The second projection p2 : X(pn) → S defined a
structure of S-scheme on X(pn). Moreover, we denote ϕn

X : X(pn) → X the first projection.
Then, we define the n-th relative Frobenius morphism denoted Fn

X/S with the universal
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property of the Cartesian product:

X Fn
X

  

π

$$

Fn
X/S

""
X(pn)

ϕn
X

//

p2

��

X

π

��
S

Fn
S

// S.

We obtain in a previous article two theorems, one about the Picard group of the form
of A1

k (Theorem [Ach17, Th. 2.4]), the other concerns the Picard functor of their regular
completion (Theorem [Ach17, Th. 4.4]). We translate them in terms of restricted Picard
functor. First recall some definitions from [Ach17, §1.1].

Definition 2.7. Let X be a form of A1
k. We consider the two following invariants:

(i) we denote by n(X) the smallest non negative integer such that X(pn) ∼= A1
k;

(ii) we denote by n′(X) the smallest non negative integer such that κ
(
X(pn)

)
∼= k(t).

Proposition 2.8. We consider X a form of A1
k. Then, Pic+X/k is representable by a unipo-

tent k-group of pn(X)-torsion whose neutral component is of pn
′(X)-torsion.

If X is a nontrivial form of A1
k, then Pic+X/k 6= {0}.

Proof. See [Ach17, Th. 2.4 and Th. 4.4].

Example 2.9. We consider k = Fp(a, b). B. Totaro proved that if U is the subgroup of G3
a,k,

defined by the equation
x+ axp + byp + zp = 0,

then Pic(Uks) = {0} [Tot13, Exa. 9.7].
In order to show this, he considers the regular completion

X =
{
[x, y, z, w] ∈ P3

k | xwp−1 + axp + byp + zp = 0
}

of U . Thus U satisfies the hypothesis of Theorem 1.1, so Pic+U/k is a k-group such that

Pic+U/k(ks) = {0}. By density of the ks-rational points, Pic
+
U/k = {0}.

If p = 2, then U is a rational unipotent k-group.
Else p > 2, we are going to show that the only unirational subgroup of U is the trivial

one. Let k′ = k[b1/p], then Uk′ is k′-isomorphic to Ga,k′ ×k′ G where G is the subgroup of
G2

a,k′ defined by the equation x+ axp + yp = 0. If U was unirational, then G would also be
unirational. But G is a nontrivial form of Ga,k′ in characteristics greater than 2, thus G is
not a rational curve [KMT74, Th. 6.9.2] (so it is not a unirational curve). Moreover, U does
not admit a dimension 1 unirational subgroup as such a subgroup would be a nontrivial
form of Ga,k.

The example above is a k-wound unipotent group of dimension 2 with a trivial Picard
group, such a group does not exist in dimension 1.

2.3 First properties of the restricted Picard functor

In this subsection, we look at some well known properties of the Picard group and we
translate them in properties of the restricted Picard functor.

Remark 2.10. If X is a form of Ad
k and Y is a form of Ae

k then any k-morphism f : X → Y
induce a natural transformation f∗ : Pic+Y/k → Pic+X/k.

Moreover, if Pic+Y/k, and Pic+X/k are representable, then f induces a morphism of k-

algebraic groups also denoted f∗ : Pic+Y/k → Pic+X/k.
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Lemma 2.11 (Homotopy invariance).
Let X be a form of Ad

k, we denote p1 : X ×k A
1
k → X the first projection. Then, the

morphism p1 induces a natural isomorphism p∗1 between the functors Pic+X×A1/k and Pic+X/k.

Moreover, if X admits a regular completion, then the functors Pic+X/k and Pic+X×A1/k are

both representable, and p1 induces an isomorphism of k-groups:

p∗1 : Pic+X/k → Pic+X×A1/k.

Proof. Let T be a smooth k-scheme, we denote pT : X×kA
1
k×k T → X×k T the projection.

We have a commutative diagram of abelian group:

Pic(X ×k T )
p∗

T // Pic(X ×k A
1
k ×k T )

Pic(T )

OO

∼
// Pic(T ).

OO

Moreover p∗T is injective, indeed any k-rational point e ∈ A1
k(k) induces a section of p∗T :

e∗ : Pic(X ×k A
1
k ×k T ) → Pic(X ×k T ).

And p∗T is surjective [EGAIV4, Cor. 21.4.11], so p∗T is indeed a bijection. Hence, the mor-
phism p1 : X ×k A

1
k → X induces a natural isomorphism p∗1 : Pic+X×A1/k → Pic+X/k.

Let X be a regular completion of X , then X ×k P
1
k is a regular completion of X ×k A

1
k.

Thus, the functor Pic+X/k is representable (Theorem 1.1), and likewise Pic+X×A1/k. Finally,

according to Yoneda Lemma p∗1 is an isomorphism of k-algebraic groups.

Lemma 2.12 (Product).
We consider a form X of Ad

k and a form Y of Ae
k. The morphisms p1 : X ×k Y → X

and p2 : X ×k Y → Y induce a natural transformation of functor of the category of smooth
k-schemes into the category of groups:

p∗1 × p∗2 : Pic+X/k × Pic+Y/k → Pic+X×Y/k,

with trivial kernel, i.e. for any smooth k-scheme T , the morphism of commutative groups:

(p∗1 × p∗2)(T ) : Pic
+
X/k(T )× Pic+Y/k(T ) → Pic+X×Y/k(T )

is injective.

Remark 2.13. Over a perfect field of characteristic p > 0, there are non smooth k-algebraic
group. Over a non perfect field, there are non smooth unipotent k-algebraic group of positive
dimension with trivial smoothification!

Indeed, let G be the subgroup of G2
a,k defined by the equations xp = ayp where a ∈

k \ kp. Then G is reduced but is not geometrically reduced. Moreover, G(ks) = {0}, so the
smoothification G+ of G is trivial, but dim(G) = 1.

Thus, we cannot directly deduce from Lemma 2.12 that if Pic+X/k, and Pic+Y/k, and

Pic+X×Y/k are representable, then p∗1 × p∗2 is a closed immersion.

Finally, we generalize the fact that we can restrict the study of the Picard group of
unipotent groups to the k-wound case. First, we need two preliminary lemmas.

Lemma 2.14. We consider X a k-scheme, Y an affine k-scheme and f : X → Y a Ga,k-
torsor.

Then f : X → Y is the trivial torsor, in particular X is isomorphic as k-scheme to
Y ×k Ga,k.

Proof. The morphism f admits local sections [Ros56, Th. 10]. So the Ga,k-torsor f is
locally trivial. The isomorphism classes of the locally trivial Ga,k-torsors are classified by
H1(Y,OY ). By hypothesis Y is affine, so H1(Y,OY ) = {0}. Hence f is the trivial torsor.
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Lemma 2.15. Let U be a unipotent k-group, we recall that there is a unique normal k-split
subgroup Usplit of U such that the quotient Uwd = U/Usplit is k-wound [CGP15, Th. B.3.4].

Then, the quotient morphism f : U → Uwd is a trivial Usplit-torsor, in particular U is
isomorphic as k-scheme to the product Uwd ×k Usplit.

Proof. If Usplit = {0}, there is nothing to do. Else, Usplit is of dimension n > 1. As Usplit is
k-split, there is an exact sequence of k-groups

1 → U1
∼= Ga,k → Usplit →

Usplit

U1
→ 1.

Then, U/U1 → Uwd is a Usplit/U1-torsor, and Usplit/U1 is still k-split [Bor12, Th. V.15.4]. By
induction the Usplit/U1-torsor U/U1 → Uwd is trivial. Moreover U → U/U1 is a Ga,k-torsor,
hence trivial (Lemma 2.14). Thus, the Usplit-torsor U → Uwd is trivial.

Proposition 2.16 (Restriction to the k-wound case).
Let U be a unipotent k-group then, the morphism q : U → Uwd (see [CGP15, Th. B.3.4])

induce a natural isomorphism q∗ : Pic+Uwd/k
→ Pic+U/k.

Proof. According to the Lemma 2.15, the Usplit-torsor U → Uwd is trivial. Let us recall
that any k-split unipotent k-group of dimension n is isomorphic as k-scheme to An

k [DG70,
Th. IV.4.4.1]. Thus U is isomorphic as k-scheme to An

k ×k Uwd, where n = dim(Usplit). The
conclusion follows immediately from n applications of Lemma 2.11.

2.4 A dévissage of the Picard group of unipotent groups

In this Subsection, we provide a method to obtain some explicit informations on the Picard
group of a form of Gn

a,k. First, we obtain a dévissage proposition.

Lemma 2.17. Let f : X → Y be a fpqc morphism where X is a locally factorial (i.e.
for every x ∈ X the local ring OX,x is factorial) k-scheme and Y is an integral normal
k-variety of function field K = κ(Y ). We assume that the fiber Xy is integral for any y ∈ Y
of codimension 1. Then,

Pic(Y )
f∗

−→ Pic(X)
g∗

−→ Pic(ZK) → 0

is an exact sequence, where g : ZK → X is the generic fiber of f .

Proof. The exactness at Pic(X) is a consequence of Corollary [EGAIV4, Cor. 21.4.13].
Moreover, we can identify the Picard group of X and of ZK with their divisor class group
[EGAIV4, Cor. 21.6.10 (ii)]. And, every divisor of ZK extends to a divisor of X [EGAI,
Cor. 6.10.6], thus g∗ is surjective.

We considerG a k-group, and f : X → Y aG-torsor. We denote by Ĝ the character group
of G. Then, there are two natural group morphisms χ : O(X)∗ → Ĝ and γ : Ĝ → Pic(Y )
(see e.g. [Bri15, §2.3]).

Proposition 2.18. We consider G a k-group, and f : X → Y is a G-torsor. We assume
that f : X → Y verifies the hypothesis of Lemma 2.17. Then,

0 → O(Y )∗
f#

−−→ O(X)∗
χ
−→ Ĝ

γ
−→ Pic(Y )

f∗

−→ Pic(X)
g∗

−→ Pic(ZK) → 0

is an exact sequence. And the generic fiber ZK → Spec(K) is a GK -torsor over the field
K = κ(Y ).

Proof. The sequence is exact in O(Y )∗ and, O(X)∗ and, Ĝ and, Pic(Y ) [Bri15, Pro. 2.10].
And the rest of the sequence is exact by Lemma 2.17.
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We can apply Proposition 2.18 to any exact sequence of unipotent k-groups. Thus, the
exact sequence of unipotent k-groups,

1 → U → U ′ → U ′′ → 1,

imply the exact sequence of Picard groups:

0 → Pic(U ′′) → Pic(U ′) → Pic
(
Zκ(U ′)

)
→ 0,

where the generic fiber Zκ(U ′′) → Spec(κ(U ′′)) is a Uκ(U ′′)-torsor.
We are now going to focus on the particular case of a form U of Gn

a,k. Then, U is iso-

morphic to the closed subgroup of Gn+1
a,k = Spec (k[x1, . . . , xn+1]) defined by a p-polynomial

P (x1, . . . , xn+1) [CGP15, Pro. B.1.13].
Any surjective linear morphism f : kn+1 → kn−1 induces a morphism of k-group

F : Gn+1
a,k → Gn−1

a,k . If the kernel of f does not contain the line define by the degree 1

monomial of P (we identify them with a base of kn+1), then the kernel of F|U is a form of

Ga,k and F|U : U → Gn−1
a,k is a fppf morphism.

Example 2.19. Let k be the field Fp(a, b). We consider the form U of G2
a,k defined as the

subgroup of G3
a,k by the p-polynomial P (x, y, z) = axp2

+ bpyp
2

+ zp
2

+ x. Then,

0 → G → U
(x,y,z) 7→y
−−−−−−→ Ga,k → 0

is an exact sequence of k-groups, where G ⊂ G2
a,k is a form of Ga,k isomorphic to the

subgroup of G2
a,k defined by the equation axp2

+ zp
2

+ x = 0.

As shown by the example above, the situation is quite explicit. With Proposition 2.18,
we have reduced the problem of the description of the Picard group of the form of Gn

a,k to
the study of the Picard group of the G-torsor over a field for G any nontrivial form of Ga,k.

We have an upper-bound on the torsion of the Picard group of a form X of A1
k, and

we know that if X(k) 6= ∅, then Pic(X) 6= {0} [Ach17, Th. 2.2]. The problem is that if
X → Spec(k) is a G-torsor, then X(k) 6= ∅ imply that the torsor is trivial; and if U is a
k-wound unipotent k-group, the G-torsor obtained by the method described above is always
nontrivial.

In general, knowing if the Picard group of a form X of A1
k without a rational point is

trivial or not is a complicated question. We denote X the regular completion of X , and P∞
the unique point P∞ = X \X [Rus70, Lem. 1.1]. Then

0 → Pic0
(
X
)
→ Pic(X)

deg
−−→ Z/[κ(P∞) : k]Z

is an exact sequence [Ach17, Eq. (2.1.3)]. Computing Pic0
(
X
)
is a hard, it is easier to

compute the image of the degree function. Indeed, the computation of [κ(P∞) : k] is easy.
Thus, to obtain that the Picard group of X is nontrivial, we look for a point defined over
an extension of degree strictly inferior to the degree of the point at infinity.

Example 2.20. We go back to Example 2.19.
The Picard group of U is isomorphic to the Picard group of the form Zk(t) of A

1
k(t) defined

as a closed subscheme of A2
k(t) by the equation aXp2

+Zp2

+X = −bptp
2

(Proposition 2.18).

Then, Zk(t) does not have any k(t)-rational point. But, the point at infinity of the regular

completion of Zk(t) is of degree p2 and (X,Z) = (0,−b1/pt) is a point of Zk(t) of degree p.

Thus Pic
(
Zk(t)

)
6= {0}. Hence, the Picard group of U is nontrivial of p2-torsion [Ach17,

Th. 2.2 a)].

3 Extensions of a unipotent group by the multiplicative

group

The main goal of this section is to generalize the following Lemma:

17



Lemma ([Tot13, Lem. 9.4]).
Let U be a k-wound unipotent k-group of dimension 1 over a separably closed field k.

Then Ext1(U,Gm,k) 6= {0}.

The proof of Lemma [Tot13, Lem. 9.4] relies on the fact that the neutral component
of the Picard functor of the regular completion C of U is a unipotent k-group. Our main
tool to generalize Lemma [Tot13, Lem. 9.4] is the neutral component of the restricted Picard
functor Pic+ 0

U/k. It coincides with Pic0C/k in dimension 1 and generalise it in higher dimension

(see Example 2.5).
In Subsection 3.1, we give a summary of some results of [Tot13, §9] and [Ros18]. In

Subsection 3.2, we define an action of U on Pic+U/k. In Subsection 3.3, we consider the

functor Pic+
U

U/k of fixed points of Pic+U/k under the action of U . Then, we state and prove

Theorem 3.6 that generalize [Tot13, Lem. 9.4]. Finally, in Subsection 3.5, we give an ad hoc
characterisation of the commutative k-pseudo-reductive groups among the linear commuta-
tive k-groups.

3.1 Extensions of an algebraic group by the multiplicative group

In this subsection, we gather some results on the extensions of a k-group G by the multi-
plicative group Gm,k from B. Totaro [Tot13] and Z. Rosengarten [Ros18].

First, we consider Ext1(G,Gm,k), the set of the exact sequence of k-group scheme:

1 → Gm,k → E → G → 1,

modulo the usual equivalence relation. Then, such extension is necessary central, so the
Braer sum of two extensions is well defined; the Braer sum induce a commutative group
law on Ext1(G,Gm,k). Moreover, if G is commutative, then any such extension E is also
commutative [Ros18, Lem. 5.3].

There is a natural map between Ext1(G,Gm,k) and Pic(G). Indeed, we can see any
extension on G by Gm,k as a Gm,k-torsor over G. Moreover, the equivalence classes of such
torsors are classified by the cohomology group H1(G,Gm,k); and H1(G,Gm,k) identifies with
Pic(G) [DG70, Pro. III.4.4.4]. Thus, there is a morphism of commutative groups:

ϕ : Ext1(G,Gm,k) → Pic(G).

We consider L an element of Pic(G), and a ∈ G. Then, there is two natural maps from
Gκ(a) into G: the projection p, and m ◦ (idG × Ia) (where Ia is the canonical morphism
Spec(κ(a)) → G associated to a, and m is the group law of G). Then, we denote the
pull-back

(m ◦ (idG × Ia))
∗
: Pic(G) → Pic(Gκ(a))

by Ta (translation by a). We say that L is translation invariant if for any a ∈ G, we have
Ta(L) = p∗(L) in Pic

(
Gκ(a)

)
. We denote the subgroup of translation invariant elements in

Pic(G) by Pic(G)G.
Let A be a k-abelian variety, it is well known that ϕ identify the group Ext1(A,Gm,k)

with the subgroup Pic0(A) of Pic(A) (see [Ser12, VII §3.16 Th. 6] for the algebraically closed
case and [Oor66, Th. 18.1] for the general case).

Recently, B. Totaro obtained the following analogous for commutative unipotent k-
groups:

Lemma ([Tot13, Lem. 9.2]).
Let U be a commutative unipotent k-group. Then, ϕ identifies the group Ext1(U,Gm,k)

with the subgroup of elements L ∈ Pic(U) such that the translation TaL is isomorphic to L.
In short: Ext1(U,Gm,k) = Pic(U)U .

The group Ext1(U,Gm,k) can also be described as the subgroup of primitive elements in
Pic(U), i.e.

Ext1(U,Gm,k) = ker (m∗ − q∗1 − q∗2 : Pic(U) → Pic(U ×k U)) ,

where m is the group law of U and q1, q2 : U ×k U → U are the two projections.
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Z. Rosengarten has generalized the second affirmation of the above Lemma: for
any k-group G, the morphism ϕ induced an isomorphism between Ext1(G,Gm,k) and
ker (m∗ − q∗1 − q∗2 : Pic(G) → Pic(G×k G)) [Ros18, Pro. 5.1].

Thus, we have the following generalisation of [Tot13, Lem. 9.2]:

Proposition 3.1. We consider a k-group G, then the morphism

ϕ : Ext1(G,Gm,k) → Pic(G)

identifies Ext1(G,Gm,k) with Pic(G)G.
Moreover, the group Ext1(G,Gm,k) can also be described as the subgroup of primitive

elements in Pic(G), meaning that

Ext1(G,Gm,k) = ker (m∗ − q∗1 − q∗2 : Pic(G) → Pic(G×k G)) ,

where m is the group law of G and q1, q2 : G×k G → G are the two projections.

Proof. The only part left is to show that

ker (m∗ − q∗1 − q∗2) = Pic(G)G.

As the inclusion ker (m∗ − q∗1 − q∗2) ⊂ Pic(G)G is obvious, let us show the other inclusion.
Let L be a G-invariant element of Pic(G). We denote

M = m∗(L) − q∗1(L)− q∗2(L) ∈ Pic(G×k G).

We consider g : Gκ(G) → G ×k G the generic fiber of the first projection q1. Then, as L is

invariant by translation by the generic point, g∗(M) = 0 in Pic
(
Gκ(G)

)
. So M = q∗1(N )

for some N ∈ Pic(G) (Proposition 3.1). Let e ∈ G(k) be the identity element of G, then
N = (idG × e)∗ ◦ q∗1(N ) = (idG × e)∗(M) = Te(L) − L in Pic(G). As L is invariant by
translation by e, we obtain N = 0. Thus M = 0, and L ∈ ker (m∗ − q∗1 − q∗2).

3.2 Action of U on Pic+U/k

In this subsection, we consider a unipotent k-group U , which admits a regular completion
(thus Pic+U/k is representable). We are going to defined an action of U on Pic+U/k. We denote

m : U ×k U → U the group law of U .
If f ∈ U(T ), then f induces a morphism of k-scheme F : T → U ×k T defined by the

universal property of Cartesian product:

T
idT

&&

f

��

F

##
U ×k T //

��

T

��
U // Spec(k).

Thus we have a commutative diagram:

U ×k T
idU×F //

p2

��

U ×k U ×k T

p23

��

m×idT // U ×k T

p2

��
T

F
//

idT

55U ×k T p2

// T.
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So (m× idT ) ◦ (idU × F ) induces by pull-back a morphism of abelian group:

AT (f) :
Pic(U ×k T )

p∗2Pic(T )
→

Pic(U ×k T )

p∗2Pic(T )
.

By definition of Pic+U/k, we have

Pic(U ×k T )

p∗2Pic(T )
= Pic+U/k(T ).

Thus, for any smooth k-scheme T , there is an application

AT : U(T )× Pic+U/k(T ) → Pic+U/k(T ).

Next, we will show that AT is a group action of U(T ) on Pic+U/k(T ). Let f and G be

two morphisms T → U , then we denote f.g the morphism:

f.g : T
(f,g) // U ×k U

m // U.

We denote F.G the k-scheme morphism T → U ×k T induced by f.g. Then, we have
the commutative diagram (3.1) (see next page). So, AT (g) ◦ AT (f) = AT (g.f), and AT is
indeed an action of abstract group.

Moreover, the definition of AT is functorial in T . Thus, we defined a natural transfor-
mation A between the functor of smooth point of the smooth k-scheme U ×k Pic+U/k and

Pic+U/k. As U ×k Pic+U/k and Pic+U/k are representable by smooth k-schemes, according to

Yoneda Lemma, the morphisms AT induced a morphism of k-schemes

A : U ×k Pic
+
U/k → Pic+U/k.

Moreover, the diagrams,

U ×k U ×k Pic
+
U/k

idU×A

��

m×id+ // U ×k Pic
+
U/k

A

��
U ×k Pic

+
U/k

A // Pic+U/k,

and,

Pic+U/k

id+
&&◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆

e×id+ // U ×k Pic
+
U/k

A

��
Pic+U/k,

are diagram of smooth k-schemes that induce a commutative diagram for any smooth k-
scheme T . So according to Yoneda Lemma, there are commutative diagram of k-scheme.
Hence A is an action of the k-group U on Pic+U/k.

3.3 Translation invariant restricted Picard functor

In this subsection, we interpret Lemma [Tot13, Lem. 9.2] in terms of restricted Picard functor
(Proposition 3.4) and we generalize Lemma [Tot13, Lem. 9.4] (Theorem 3.6). As in the
previous subsection, we consider a unipotent k-group U which admits a regular completion.

We defined two functors of fixed point.
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U ×k T
idU×F // U ×k U ×k T

m×idT // U ×k T
idU×G // U ×k U ×k T

m×idT // U ×k T

U ×k T
idU×F // U ×k U ×k T

idU×U×G // U ×k U ×k U ×k T
m×idU×T // U ×k U ×k T

m×idT // U ×k T

U ×k T
idU×F // U ×k U ×k T

idU×U×G // U ×k U ×k U ×k T
idU×m×idT // U ×k U ×k T

m×idT // U ×k T

U ×k T
idU×F.G //

p2

��

U ×k U ×k T
m×idT // U ×k T

p2

��
T

idT
// T.

(3.1)
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Definition 3.2. First, we consider

Pic+
U

U/k : (Smooth Scheme/k)◦ → (Group)

the functor of invariants of Pic+U/k under U : for any smooth k-scheme T , the group Pic+
U

U/k(T )

is the subgroup formed of the elements L ∈ Pic+U/k(T ) such that for all smooth T -schemes

S, the element LS induced by L in Pic+U/k(S) is U(S)-invariant.

Next, we consider

PicUU/k : (Scheme/k)◦ → (Group)

the “usual” functor of the invariants of the k-schemes Pic+U/k under the action A of the

k-group U (see [DG70, Def. d) II.1.3.4]).

To show that Pic+
U

U/k is representable, we are going to use the fact that PicUU/k is repre-

sentable [DG70, Th. d) II.1.3.6].

Lemma 3.3. For any smooth k-scheme T ,

PicUU/k(T ) = Pic+
U

U/k(T ).

Proof. We consider the functor:

Homk

(
U,Pic+U/k

)
: (Scheme/k) → (Group)

T 7→ HomT−sch

(
U ×k T,Pic

+
U/k ×k T

)
.

We are going to define two natural transformations,

µ, λ : Pic+U/k → Homk

(
U,Pic+U/k

)
.

For any k-scheme X , and f ∈ Pic+U/k(X), we defined λ(f) by the universal property of

Cartesian product:
U ×k X

p2

((

A◦(idU×f)

%%

λ(f) &&
Pic+U/k ×k X //

��

X

��
Pic+U/k

// Spec(k).

Likewise for µ(f):

U ×k X
p2

((

p2

�� µ(f) &&
X

f ))

Pic+U/k ×k X //

��

X

��
Pic+U/k

// Spec(k).

With the notations above, according to Proposition [DG70, Pro. II.1.3.5], we have the
following Cartesian square (of functors of the category of k-schemes into the category of
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groups):

PicUU/k

��

// Homk

(
U,Pic+U/k

)

diag

��

Pic+U/k

(λ,µ) // Homk

(
U,Pic+U/k

)
×Homk

(
U,Pic+U/k

)
.

Let T be a smooth k-scheme, and let f ∈ Pic+
U

U/k(T ). Then λ(f) et µ(f) are two

morphisms between two smooth k-scheme: U ×k T → Pic+U/k ×k T . These two morphisms

coincide on the S-points for any smooth T -scheme S. We can look at λ(f) and µ(f) as two
natural transforms between the functors:

U ×k T : (Smooth Scheme/T )◦ → (Set)
S 7→ (U ×k T ) (S),

and
Pic+U/k ×k T : (Smooth Scheme/T )◦ → (Set)

S 7→
(
Pic+U/k ×k T

)
(S).

By hypothesis, these two natural transformations are the same, and the k-scheme U×kT
and Pic+U/k ×k T are smooth. Thus, according to Yoneda Lemma, λ(f) = µ(f) hence

f ∈ PicUU/k(T ). Conversely, by definition the elements of PicUU/k(T ) are U(S)-invariants for
any smooth T -scheme S.

Proposition 3.4. We consider a unipotent k-group U which admits a regular completion.

Then, the functor Pic+
U

U/k is representable by a smooth subgroup of Pic+U/k. Moreover, for

any separable extension L/K,

Pic+
U

U/k(L) = Ext1(UL,Gm,L). (3.2)

Proof. First of all, the functor PicUU/k is representable by a closed subgroup of Pic+U/k [DG70,

Th. d) II.1.3.6], we still denote this subgroup as PicUU/k. Then, Pic+
U

U/k is representable by

the smoothification of PicUU/k (Lemma 3.3, and [CGP15, Lem. C.4.1]).
Finally, we prove the equality (3.2). Let L/k be a separable extension, as

Pic+
U

U/k(L) = Pic+
UL

UL/L(L),

we can assume that L = k. By definition, Pic+
U

U/k(k) is the set of the equivalence classes of

line bundle L ∈ Pic(U) such that for any smooth k-scheme T , the pull-back LT ∈ Pic+
U

U/k(T )

is U(T )-invariant. Let f : T → U be a morphism of k-scheme, the diagram

U ×k T
idU×F // U ×k U ×k T

m×idT // U ×k T

p1

��
U ×k T

idU×f
// U ×k U m

// U

is commutative. The morphism of the first line (idU × F ) ◦ (m× idT ) defined by pull-back
the action of f on Pic(U ×k T ). The morphism of the second line is the translation by f

denoted Tf . By hypothesis LT = p∗1L = AT (f,LT ) in Pic+
U

U/k(T ). But, according to the

diagram above, AT (f,LT ) = T ∗fL. Thus L is invariant by translation by f . Hence, L is an

element of Ext1(U,Gm,k) (Proposition 3.1).
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Conversely, we consider L ∈ Pic(U) such that m∗L = q∗1L + q∗2L. Let T be a smooth
k-scheme and let f : T → U be a morphism of k-scheme, we have the following commutative
diagram:

U ×k T
p2 //

p1

��

idU×f

%%

T
f

  
U

idU **

U ×k U
q2 //

q1

��

U

��
U // Spec(k).

Thus
(idU × f)∗m∗L = (idU × f)∗q∗1L+ (idU × f)∗q∗2L = p∗1L+ p∗2f

∗L

in Pic(U ×k T ). Hence A(f,L) = p∗1L in Pic(U×kT )
p∗

2Pic(T ) = Pic+U/k(T ).

We can finally generalize [Tot13, Lem. 9.4]. The arguments used in the demonstration
are inspired by those of the demonstration of [Tot13, Lem. 9.4]: instead of the neutral
component of the Picard functor of the regular completion of a form of Ga,k, we consider
the neutral component of the restricted Picard functor of U . First, we show a preliminary
lemma on the action of unipotent group on an other unipotent group.

Lemma 3.5. Let U and V be two unipotent k-groups. We consider an action of V on U
denoted α : V ×k U → U . If dim(U) > 0, then V acts trivially on a k-subgroup W 6= {0} of
U .

Proof. We denote the semi-direct product V ⋉ U (induce by the action α) by G, it is
a unipotent k-group. We consider a sequence of unipotent k-group, first U0 = U , and
then recursively Ui = [G,Ui−1] for i > 1 (see [DG70, Pro. II.5.4.9] for the definition and
representability of the commutator subgroup). Then, (Ui)i is a descending series of normal
k-subgroups of U .

Since G is unipotent, it is also a nilpotent group. So Ui is trivial for i large enough. Let
j be the last index such that Uj 6= {0}, then V acts trivially on Uj.

Theorem 3.6. We consider a unipotent k-group U which admits a regular completion.
Then:

(i) if Pic+U/k is étale, then Pic+
U

U/k = Pic+U/k;

(ii) if Pic+ 0
U/k 6= {0}, then Pic+

U 0
U/k 6= {0};

(iii) if Pic(Uks) is finite, then Ext1(U,Gm,k) = Pic(U);

(iv) if Pic(Uks) is infinite, then Ext1(Uks ,Gm,ks) is likewise infinite;

(v) if Pic(Uks) 6= {0}, then Ext1(Uks ,Gm,ks) 6= {0}.

Proof. First, both Pic+U/k and Pic+
U

U/k are representable (Theorem 1.1 and Proposition 3.4).

Let us show (i), if Pic+U/k is an étale k-group then, as U is connected, the action of U on

Pic+U/k is trivial. Hence Pic+
U

U/k = Pic+U/k.

Then (ii) is a direct consequence of Lemma 3.5 applied to the action of U on Pic+ 0
U/k.

If Pic(Uks) is finite, then Pic+ 0
U/k is trivial so Pic+U/k is an étale k-group [DG70,

Pro. II.5.1.4]. Thus (iii) is a consequence of (i) and Proposition 3.4.

Likewise, if Pic(Uks) is infinite, then Pic+ 0
U/k 6= {0}. So by (ii), Pic+

U 0
U/k 6= {0} and

Ext1(Uks ,Gm,ks) = Pic+
U

U/k(ks) is infinite.

Finally, (v) is an immediate consequence of (iii) and (iv).
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3.4 Torsion of the extension group of a unipotent group by the

multiplicative group

In this subsection, we make an elementary study of the torsion of the Ext1(U,Gm,k).

Lemma 3.7 (Restriction to the wound case).
Let U be a unipotent k-group. Let us recall that there is a unique k-split normal subgroup

Usplit of U such that Uwd = U/Usplit is k-wound [CGP15, Th. B.3.4]. The morphism
q : U → Uwd induces a morphism

q∗ : Ext1(Uwd,Gm,k) → Ext1(U,Gm,k),

which is an isomorphism of commutative groups.

Proof. The exact sequence of k-groups:

1 → Usplit → U → Uwd → 1,

induces an exact sequence of extension group:

Hom(Usplit,Gm,k) → Ext1(Uwd,Gm,k)
q∗

→ Ext1(U,Gm,k) → Ext1(Usplit,Gm,k).

As Hom(Usplit,Gm,k) = {0} and Ext1(Usplit,Gm,k) = {0} [SGAIII2, XVII Th. 6.1.1], the
morphism q∗ is an isomorphism.

Let U be a unipotent k-group, let us recall that U is of pt-torsion for t ∈ N big enough.

Definition 3.8. We denote the smallest integer t ∈ N such that U is of pt-torsion by t(U).

Proposition 3.9. Let U be a unipotent k-group, then Ext1(U,Gm,k) is of pt(U)-torsion.

Proof. Let

1 → Gm,k → E
g
→ U → 1

be an extension of U by Gm,k. Then pt(U).[E] =
[(
pt(U)IdU

)∗
E
]
where pt(U)IdU : U → U .

But (
pt(U)IdU

)∗
E = ker

(
U ×k E

pt(U)IdU−g
−−−−−−−−→ U

)
∼= U ×k Gm,k.

Thus pt(U).[E] = 0 in Ext1(U,Gm,k).

Example 3.10. Let U be a nontrivial form of Ga,k, then Pic+
U 0

U/k is representable by a

commutative p-torsion unipotent k-group. Thus, Pic+
U 0

U/k is a form of Gd
a,k (with d > 0 if U

is not rational) [CGP15, Lem. B.1.10].

As the Picard group of a form of Ga,k is of pn(U)-torsion (see Definition 2.7 and [Ach17,
Th. 2.2]), the group Ext1(U,Gm,k) is also of pn(U)-torsion. Thus, it is natural to ask if we
can compare these two invariants.

Lemma 3.11. If U is a k-wound commutative k-group, then t(U) 6 n(U).

Proof. Indeed, we denote n = n(U), then pnIdU : U → U factor as

U

Fn
U/k ""❊

❊❊
❊❊

❊❊
❊

pnIdU // U

U (pn)

V n

<<②②②②②②②②

where Fn
U/k is the n-th relative Frobenius morphism and V n is the n-th shift morphism

[DG70, IV.3.4.10]. As V n is a morphism from a k-split unipotent k-group to a k-wound
unipotent k-group, it is trivial. Hence t(U) 6 n(U).
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3.5 A criteria of pseudo-reductivity

In this subsection, we discuss which commutative unipotent k-groups are quotients of com-
mutative k-pseudo-reductive groups. B. Totaro reduce the problem to the case k = ks
[Tot13, Lem. 9.1], hence throughout this subsection we assume that k is separably closed.

B. Totaro proved that any k-wound unipotent k-group U of dimension 1 is the quotient
of a 2 dimensional commutative k-pseudo-reductive group [Tot13, Cor. 9.5]. More precisely,
he obtained that Ext1(U,Gm,k) 6= {0} and that any nontrivial extension of U by Gm,k is a
k-pseudo-reductive group.

The objective of this subsection is to obtain an ad hoc criteria for the commutative
unipotent k-groups that are quotients of a commutative k-pseudo-reductive groups (Propo-
sition 3.13).

Lemma 3.12. Let U be a commutative unipotent k-group which is the quotient of a commu-
tative k-pseudo-reductive group. We consider a closed immersion i : V → U where V 6= {0},
then Ext1(V,Gm,k) 6= {0} and the pull-back morphism i∗ : Ext1(U,Gm,k) → Ext1(V,Gm,k)
is nonzero.

Proof. By hypothesis, there is an extension

0 → Gd
m,k → E → U → 0,

where E is a commutative k-pseudo-reductive group. Let V 6= {0} be a closed subgroup of
U , we consider the pull-back:

0 // Gd
m,k

// i∗E //

��

V //

i

��

0

0 // Gd
m,k

// E // U // 0.

As E is commutative k-pseudo-reductive, the closed subgroup i∗E of E is also k-pseudo-
reductive. Thus, Ext1(V,Gm,k) 6= {0}, and i∗ : Ext1(U,Gm,k) → Ext1(V,Gm,k) is also
nonzero.

Proposition 3.13. Let U be a commutative unipotent k-group such that for any closed

subgroup V
i
−→ U with V 6= {0}, the pull-back morphism i∗ : Ext1(U,Gm,k) → Ext1(V,Gm,k)

is nonzero.
Then, U is the quotient of a commutative k-pseudo-reductive group.

Proof. By hypothesis, for any d > 1, the group Ext1(U,Gd
m,k) is nontrivial. Let E be

an extension of U by Gd
m,k, then the unipotent radical Ru,k(E) is a subgroup of U of

dimension n > 0. We consider an extension E such that n is minimal among all the
extensions of U by Gd

m,k for any d > 1. If n = 0, then E is k-pseudo-reductive.
Let us assume that n > 1. Then, we denote V = Ru,k(E) and we have the commutative

diagram:
0

��

0

��
V

j

��

V

i

��
0 // Gd

m,k
// E q

//

��

U //

��

0

0 // Gd
m,k

// E/V

��

// U/V

��

// 0

0 0.
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It induces a commutative diagram of Ext group:

Ext1(U,Gm,k)
q∗ //

i∗ ((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

Ext1(E,Gm,k)

j∗vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

Ext1(V,Gm,k).

As n > 1, in particular V 6= {0}. Thus, by hypothesis, the morphism i∗ : Ext1(U,Gm,k) →
Ext1(V,Gm,k) is nonzero, and j∗ : Ext1(E,Gm,k) → Ext1(V,Gm,k) is also nonzero.

Let us consider [F ] ∈ Ext1(E,Gm,k) such that j∗[F ] 6= 0 in Ext1(V,Gm,k). As
Ru,k(F ) ∩Gm,k = {0}, we identify Ru,k(F ) with a closed subgroup of V . Then j∗F is
a nontrivial extension of V by Gm,k, thus Ru,k(j

∗F ) is a strict subgroup of V . Moreover,
the natural closed immersion Ru,k(j

∗F ) → Ru,k(F ) is an isomorphism.
Hence, F is an extension of U by Gd+1

m,k with a unipotent radical of dimension strictly
lower than the dimension of V . This contradicts the minimality hypothesis on the dimension
of V .

Checking directly the criteria of Proposition 3.13 is not reasonable. But, the proof of
the Proposition 3.13 contains an algorithm: we do not need to check if i∗ is nonzero for any
subgroup of U , we only need to do it for at most dim(U) subgroups.

Lemma 3.14. We consider
0 → V

i
−→ U

ϕ
−→ W → 0,

an exact sequence of commutative unipotent k-groups.
If the pull-back morphism i∗ : Ext1(U,Gm,k) → Ext1(V,Gm,k) is nonzero, then the pull-

back morphism ϕ∗ : Pic(W ) → Piv(U) is not an isomorphism (or equivalently the Picard
group of the generic fiber of U → V is nontrivial).

Proof. The diagram

0 // Ext1(W,Gm,k) //

ϕ∗

��

Pic(W )
α //

ϕ∗

��

Pic(W ×k W )

(ϕ×ϕ)∗

��
0 // Ext1(U,Gm,k) // Pic(U)

β // Pic(U ×k U),

is a commutative diagram of commutative (abstract) group where α and β are the morphisms
of Lemma [Tot13, Lem. 9.2]; Thus the lines are exact.

If Pic(W )
ϕ∗

−−→ Pic(U) is surjective, then any element L ∈ ker(β) is the image of some
L′ ∈ Pic(W ). As the diagram is commutative (ϕ × ϕ)∗ ◦ α(L′) = 0. Moreover, (ϕ × ϕ)∗ is

injective (see Proposition 2.18), thus L′ ∈ ker(α). So Ext1(W,Gm,k)
ϕ∗

−−→ Ext1(U,Gm,k) is

surjective, hence Ext1(U,Gm,k)
i∗
−→ Ext1(V,Gm,k) is the zero morphism.

Moreover, Pic(W )
ϕ∗

−−→ Pic(U) is surjective if and only if the Picard group of the generic
fiber of U → V is trivial (Proposition 2.18).

We are now going to simplify the criteria of Proposition 3.13 in a special case.

Remark 3.15 (Extension of unipotent groups of finite Picard groups).
Let us consider V and W two commutative unipotent k-groups such that Pic(V ) and

Pic(W ) are both finite (as we will see in the next section, the unirational unipotent k-groups
are an important class of unipotent groups that satisfy this hypothesis).

Let
0 → V

i
−→ U

ϕ
−→ W → 0

be an exact sequence of commutative unipotent k-groups. We denote by Zκ(W ) the generic

fiber of U → W . As Pic(W ) is finite, Pic
(
Zκ(W )

)
is also finite, thus Pic(U) is finite

27



(Proposition 2.18). And, as Pic(U) is finite, we have Ext1(U,Gm,k) = Pic(U) (and likewise
for V and W ). Thus, we can write the exact sequence of Ext-groups as:

0 → Pic(W )
ϕ∗

−−→ Pic(U)
i∗
−→ Pic(V ).

Finally i∗ is nonzero if and only if ϕ∗ is not surjective. And ϕ∗ is not surjective if and only
if Pic

(
Zκ(W )

)
6= {0} (Proposition 2.18).

Question 3.16. Does the remark above generalize to any commutative extension of unipo-
tent k-groups (i.e. is the converse of Lemma 3.14 true)?

Finally, we apply Proposition 3.13 and Remark 3.15 to an explicit example.

Example 3.17. Let k be a non perfect field of characteristic 2, we consider a, b ∈ k \ kp.
Let V (resp. W ) be the unipotent k-group defined as the subgroup of G2

a,k by the equation
yp = x+ axp (resp. zp = t+ btp).

We consider a commutative extension of k-groups:

0 → V
i
−→ U

ϕ
−→ W → 0.

We denote by Zκ(W ) the generic fiber of U → W .

As Pic(V ) = Pic(W ) = Z

2Z , we are in the situation of Remark 3.15. Thus, if U is the
quotient of some k-pseudo-reductive group, then Pic

(
Zκ(W )

)
6= {0}. Conversely, W admits

an extension G by Gm,k that is pseudo-reductive [Tot13, Cor. 9.5], thus ϕ∗G is an extension
of U by Gm,k with k-unipotent radical V . As Pic

(
Zκ(W )

)
6= {0}, there is an extension G′

of ϕ∗G by Gm,k such that Ru,k(G
′) is a strict subgroup of V , so Ru,k(G

′) = {0}. Hence, U
is the quotient of a k-pseudo-reductive group if and only if Pic

(
Zκ(W )

)
6= {0}.

There are two cases, either Zκ(W ) is isomorphic to Vκ(W ) (i.e. Zκ(W ) → Spec(κ(W )) is
the trivial Vκ(W )-torsor). Then, there is an extension of U by G2

m,k that is a commutative
k-pseudo-reductive group.

The other possibility is that Zκ(W ) is a nontrivial Vκ(W )-torsor, then U is a nontrivial
extension of W by V , and Zκ(W )(κ(W )) = ∅. Moreover Zκ(W )(κ(W )) = ∅ imply that Zκ(W )

has no rational point on any extension of odd degree (see Corollary [EKM08, Cor. 18.5]
by T. A. Springer). And, Pic

(
Zκ(W )

)
∼= Im(deg)/2Z where deg : Pic

(
Zκ(W )

)
→ Z is the

degree function (see the exact sequence [Ach17, Eq. (2.1.3)]). Thus Pic
(
Zκ(W )

)
= {0}, and

U is not the quotient of some commutative k-pseudo-reductive group.
Finally, we give an example of nontrivial extension of W by V with Zκ(W )(κ(W )) = ∅.

We fix k = F2(a, b), we consider the subgroup U of G4
a,k = Spec (k[x, y, z, t]) defined by the

equations: {
z2 = t+ bt2

y2 = x+ ax2 + t.

Then U is a form of G2
a,k, and

(x, y) ✤ // (x, y, 0, 0)

0 // V // U // W // 0

(x, y, z, t)
✤ // (z, t),

is an exact sequence of commutative k-groups.
The generic fiber Zκ(W ) of U → W is isomorphic to the closed subscheme of A2

κ(W )

defined by the equation y2 = x+ ax2 + t where t ∈ κ(W ).

And κ(W ) = Frac

(
k[z, t]

< z2 − t− bt2 >

)
= k(w) where w = t/z. As,

w2 =
t2

t+ bt2
⇔ t =

w2

1− bw2
,
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we have to show that the equation y2 = x + ax2 + w2

1−bw2 with x and y in F2(a, b, w) have
no solution. Let us show that the only solution of

(1− bw2)A2 = (1 − bw2)BC + a(1− bw2)B2 + w2C2,

where A,B,C ∈ F2[a, b, w] is A = B = C = 0.
Let us look at the total degree of the polynomial in the above equation:

2 deg(A) + 3 = deg((1 − bw2)BC + a(1− bw2)B2 + w2C2).

If deg(B) > deg(C), then deg((1− bw2)BC + a(1− bw2)B2 +w2C2) = 4 + 2 deg(B). Thus
2 deg(A) + 3 = 4 + 2 deg(B), this is false. If deg(B) < deg(C) − 1, then 2 deg(A) + 3 =
2 + 2 deg(C), this is impossible.

Hence deg(B) = deg(C) − 1, and the monomials of highest degree of bw2BC, abw2B2

and w2C2 cancel each others. We denote the monomial of highest degree of B as B̃, and
likewise C̃ for the monomial of highest degree of C.

Let us now look at the partial degree in a of bw2B̃C̃, abw2B̃2 and w2C̃2. Then, as

dega

(
abw2B̃2

)
= 1 + 2 dega

(
B̃
)
6= 2dega

(
C̃
)
= dega

(
w2C̃2

)
, we have

dega

(
bw2B̃C̃

)
= dega

(
w2C̃2

)
or dega

(
bw2B̃C̃

)
= dega

(
abw2B̃2

)
.

If we have the first equality, then dega

(
C̃
)
= dega

(
B̃
)
, so

dega

(
abw2B̃2

)
> dega

(
bw2B̃C̃

)

and these polynomial can not cancel each others. We have the same kind of contradiction
for the second inequality.

Thus Zκ(W ) does not have any κ(W )-rational point, and the extension is nontrivial.

This example show that, even in dimension 2, the situation is unintuitive. A lot more
work is needed to obtain a complete classification of the unipotent groups that are quotient
of a commutative k-pseudo-reductive groups.

4 Unirational forms of the affine space

If K is a perfect field, then any linear K-group is unirational [Bor12, V Th. 18.2] and any
unipotent K-group is rational.

Over a non perfect field, the situation is way more complicated. The k-split unipotent
k-groups are rational. The reductive k-groups are still unirational [Bor12, V Th. 18.2].
And, if G is a perfect (i.e. G = [G : G]), then G is unirational [CGP15, Pro. A.2.11]. But
neither the k-pseudo-reductive groups, nor the k-wound unipotent k-groups are in general
unirational.

In this section, we study the subtle relationship between the notion of unirationality and
the unipotent k-groups. When possible we try to obtain results about unirational forms of
the affine n-space.

4.1 An example of unirational k-wound unipotent k-group

We consider a purely inseparable extension k′ of k, we denote pn the degree of the extension
k′/k. We are going to study the quotient

U = Rk′/k(Gm,k′)/Gm,k,

where Rk′/k denote the Weil restriction (see [BLR90, §7.6] for definition and properties of
the Weil restrictions). J. Oesterlé proved that U is a k-wound unirational unipotent k-
group [Oes84, Lem. VI.5.1]. We are going to compute the Picard group of U and the group
Ext1(U,Gm,k) of the extension of U by Gm,k.
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First, Rk′/k(Gm,k′) is isomorphic as a k-scheme to the principal open subscheme of Apn

k

defined by the equation N 6= 0 where N is the norm of k′/k thus

Pic(Rk′/k (Gm,k′)) = {0}.

Moreover, the exact sequence of k-group:

0 → Gm,k → Rk′/k(Gm,k′) → U → 0, (4.1)

induces an exact sequence of commutative group:

0 → O(U)∗ → O(Rk′/k(Gm,k′))∗ → Ĝm,k → Pic(U) → Pic(Rk′/k(Gm,k′)) = {0}

where Ĝm,k is the character group of Gm,k (Proposition 2.18). Moreover, the quotient
O(Rk′/k(Gm,k′))∗/k∗ is the free Z-module generated by the class [N ] induced by the norm

N , and Ĝm,k
∼= Z. In addition, the image of [N ] in Ĝm,k is pn. Thus Pic(U) = Z/pnZ.

Let us recall that Ext1(U,Gm,k) identify with the subgroup Pic(U)U of Pic(U) consisting
of the translation invariant classes [Tot13, Lem. 9.2]. In this case, we have shown that the
group Pic(U) is generated by [N ] and that [N ] induces the extension of U by Gm,k given by
the exact sequence (4.1).

Thus, we have obtain the following results:

Proposition 4.1. With the notations and the hypothesis above:

Ext1(U,Gm,k) = Pic(U)U = Pic(U) =
Z

pnZ
.

Moreover, the restricted Picard functor Pic+U/k is representable and:

Pic+U/k =

(
Z

pnZ

)

k

,

where
(

Z

pnZ

)
k
is the constant k-group associated to Z

pnZ
.

Proof. The only point left is the last one. We just have to remark that U admits a smooth
completion, indeed U = Pr

k \ V (N) where r = pn − 1, and V (N) is the closed subscheme
defined by the norm N of k′/k. Hence, Pic+U/k is representable (Theorem 1.1).

This example is quite interesting because J. Oesterlé proved that if K is the function
field of a curve over a finite field, then the K-wound unipotent K-group of dimension strictly
inferior to p− 1 have a finite number of K-rational points [Oes84, Th. VI.3.1]. In particular
they are not unirational. If [K ′ : K] = p and T is aK-torus, then RK′/K(TK′)/T isK-wound
unirational and of dimension p− 1. This suggests that these groups play an important role
among unirational unipotent K-groups. Hence, J. Oesterlé asks the following question:

Question 4.2. [Oes84, p. 80]
Does any unirational commutative unipotent k-group admit a subgroup isomorphic to

Rk′/k(Tk′)/T (where T is a k-torus and k′/k is a finite purely inseparable extension)?

Remark 4.3. (i) We can generalize Proposition 4.1. Indeed, we consider k′/k a purely
inseparable extension of degree pn and T a k-torus of dimension d. Then U = Rk′/k(Tk′ )/T

is a k-wound unipotent k-group, and Pic(U) = Ext1(U,Gm,k) is a subgroup of (Z/pnZ)d.
(ii) Our arguments also apply to any finite field extension E/k:

Pic

(
RE/k(Gm,E)

Gm,k

)
=

Z

[E : k]Z
.

But RE/k(Gm,E)/Gm,k is not necessary unipotent. For example, if E/k is separable, then
RE/k(Gm,E) and RE/k(Gm,E)/Gm,k are k-tori.
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(iii) In the particular case where [k1/p : k] = p, J. Oesterlé has obtained an explicit
description of the unipotent k-group Rk1/p/k

(
Gm,k1/p

)
/Gm,k [Oes84, Pro. VI.5.3].

(iv) Let U be a connected unipotent k-group, the Picard group of U can be trivial even
if U is k-wound [Tot13, Exa. 9.7]. But if U has a quotient that is a nontrivial form G of
Ga,k, then the Picard group of U is nontrivial. Indeed, the Picard group of a nontrivial
form of Ga,k is nontrivial [Ach17, Th. 2.2] and the group morphism Pic(G) → Pic(U) is
an injection (Proposition 2.18). The converse is false, at least if p > 2. Indeed, if k′/k is
a nontrivial purely inseparable extension, then the Picard group of Rk′/k(Gm,k′)/Gm,k is
nontrivial. But U does not admit a quotient G which is a nontrivial form of Ga,k. Because,
if G is such a quotient, then G is a unirational (so rational) form of Ga,k. But, if p > 2, the
only rational form of Ga,k is the trivial one [KMT74, Th. 6.9.2].

4.2 Unirationality and structure of commutative k-group

Proposition 4.4. Let G a commutative k-group, then there is a unique maximal unirational
k-subgroup of G denoted by Gur.

Moreover, if X is a geometrically reduced unirational k-variety, then any morphism
X → G whose image contains the identity element of G factors via Gur.

Proof. We considerX a geometrically reduced unirational k-variety, andX → G a morphism
whose image contains the identity element of G. Then X generates a smooth k-algebraic
subgroup of G [SGAIII1, VI.B Pro. 7.1] that is unirational [SGAIII1, VI.B Pro. 7.6] and
connected [SGAIII1, VI.B Pro. 7.2.1].

Thus, two unirational k-subgroups of G generate a third k-subgroup that is also unira-
tional. Hence, there is a unique largest unirational k-subgroup Gur of G, and Gur contains
the image of any morphism from a geometrically reduced unirational k-variety to G whose
image contains the identity element of G.

Example 4.5. (i) If G is a k-abelian variety, then Gur = {0}.
(ii) If T is a k-torus, then Tur = T .
(iii) If U is a commutative k-split unipotent k-group, then Uur = U .
(iv) If U is a nontrivial form of Ga,k. Then, either char(k) = 2 and U is isomorphic to

the subgroup of G2
a,k defined by the equation y2 = x + ax2 where a /∈ k2; and then U is

rational, thus Uur = U [KMT74, Th. 6.9.2]. Or, U is not rational, and Uur = {0}.
(v) Let U be a nontrivial form of Ga,k. We consider G an extension of U by Gm,k. Then,

either U is rational, and Gur = G. Or U is not rational, and Gur = Gm,k.
(vi) Let U be the group of Example 2.9. If char(k) = 2, then Uur = U . Else char(k) > 2

and Uur = {0}.
(vii) If T is a k-torus, and k′/k is a finite purely inseparable field extension. Then, the

unipotent k-group
U = Rk′/k(Tk′)/T

is unirational, hence Uur = U .
(viii) We consider the function field K of an algebraic curve over a finite group. Let

U be a commutative unipotent K-group of dimension < p − 1, then Uur = {0} [Oes84,
Th. VI.3.1].

As a commutative unipotent k-group U such that Uur = {0} is k-wound, we use the
following terminology:

Definition 4.6. A commutative k-group G such that Gur = {0} is called k-strongly wound.

Proposition 4.7. Let X be a form of An
k which admits a regular completion, then Pic+ 0

X/k

is k-strongly wound.

Proof. Indeed, if Pic+ 0
X/k as not k-strongly wound, then there would be a nonconstant mor-

phism V → Pic+ 0
X/k for some open V of an An

k . This would contradict Lemma 1.3.
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As a commutative k-group is in general neither unirational nor k-strongly wound; it is
natural to look for a dévissage results.

Proposition 4.8. Let G be a commutative k-group. Then, G admits a unique quotient Gsw

such that Gsw is k-strongly wound and any morphism G → H to a k-strongly wound k-group
H factors in a unique way into G → Gsw follow by a morphism Gsw → H. Moreover, the
kernel of G → Gsw contains Gur.

Proof. If Gur = {0}, then G = Gsw . Else, we consider G′ = G/Gur, by induction on the
dimension of G, there is a unique quotient G′ → G′sw that is k-strongly wound and satisfies
the mapping properties. Finally, we remark that Gsw :=G′sw suits.

Question 4.9. Are the commutative extensions of a unirational commutative k-group by
an other unirational commutative k-group still unirational?

If the answer to the question above is affirmative, then the natural morphism
G/Gur → Gsw would be an isomorphism.

4.3 Picard group of unirational forms of the affine space

We denote by A and B two functors from the category of smooth k-schemes to the cat-
egory of sets, we assume that there is two natural transformations e : Spec(k) → A and
f : Spec(k) → B. Then, we denote by Nat(A,B) the set of natural transformations from A
to B, and by Natpt.(A,B) set of natural transformations η from A to B such that η ◦ f = e.

Lemma 4.10. We consider X a form of An
k such that X(k) 6= ∅. Then, for all smooth

k-schemes W such that W (k) 6= ∅,

Natpt.

(
W,Pic+X/k

)
∼=

Pic (X ×k W )

p∗1Pic(X)× p∗2Pic (W )
.

In particular, if Y is a form of Ac
k such that Y (k) 6= ∅, then

Natpt.

(
Y,Pic+X/k

)
∼= Natpt.

(
X,Pic+Y/k

)
.

Proof. First of all, according to Yoneda Lemma, Nat
(
W,Pic+X/k

)
= Pic+X/k(W ), and as W

is smooth,

Nat
(
W,Pic+X/k

)
=

Pic(X ×k W )

p∗2Pic(W )
.

Let e be a k-rational point of W , then e induces a morphism e∗ : Pic+X/k(W ) → Pic(X).

Likewise for f , a k-rational point of X . And, Natpt.

(
W,Pic+X/k

)
is the kernel of e∗. More-

over, e∗ × f∗ : Pic(X ×k W ) → Pic(X)× Pic(W ) is a retraction of

p∗1 × p∗2 : Pic(X)× Pic(W ) → Pic(X ×k W ).

Thus, Natpt.

(
W,Pic+X/k

)
is isomorphic to

Pic (X ×k W )

p∗1Pic(X)× p∗2Pic (W )
.

The idea of Lemma 4.10 comes from a well known property of abelian variety. If A and
B are two k-abelian varieties, then Pic0A/k and Pic0B/k are two abelian varieties and with
the exact same arguments as in the proof of Lemma 4.10, we can prove that

Hompt.

(
A,Pic0B/k

)
∼= Hompt.

(
B,Pic0A/k

)
.

We are going to apply Lemma 4.10 to the study of the restricted Picard functor of
unirational forms of An

k .
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Theorem 4.11. Let X be a unirational form of An
k which admits a regular completion.

Then:

(i) The unipotent k-algebraic group Pic+X/k is étale;

(ii) The groups Pic(X) and Pic(Xks) are finite.

Proof. First, (ii) is an immediate consequence of (i). To prove that Pic+X/k is an étale k-

algebraic group, we only need to prove that Pic+ 0
X/k is trivial [DG70, Pro. II.5.1.4]. We can

assume that k = ks, then X admits a k-rational point.
The functor Pic+X/k is representable by a smooth unipotent k-algebraic group (Theorem

1.1), thus Pic+ 0
X/k is a form of Ae

k. According to Lemma 4.10:

Natpt.

(
X,Pic+

Pic+ 0
X/k

/k

)
∼= Natpt.

(
Pic+ 0

X/k,Pic
+
X/k

)
.

Let W be an open of An
k (n ∈ N∗), the only natural transformations from W into

Pic+
Pic+ 0

X/k
/k

are the constant one. Indeed, according to Lemma 4.10:

Natpt.

(
W,Pic+

Pic+ 0
X/k

/k

)
∼=

Pic
(
Pic+ 0

X/k ×k W
)

p∗1Pic
(
Pic+ 0

X/k

)
× p∗2Pic(W )

.

Moreover Pic(W ) = {0}, and

p∗1 : Pic
(
Pic+ 0

X/k

)
→ Pic

(
Pic+ 0

X/k ×k W
)

is an isomorphism. Indeed, the group morphism p∗1 is injective because p1 admits a section
induced by a rational point of W , and p∗1 is surjective [EGAIV4, Cor. 21.4.11].

Thus Natpt.

(
Pic+ 0

X/k,Pic
+
X/k

)
is trivial, hence Hompt.

(
Pic+ 0

X/k,Pic
+ 0
X/k

)
is also trivial. If

Pic+ 0
X/k 6= {0}, then the identity is a nonconstant pointed endomorphism of Pic+ 0

X/k. Thus

Pic+ 0
X/k = {0}, and we have prove (i).

There is an other situation where the restricted Picard functor is étale:

Lemma 4.12. Let X a form of An
k which admits a smooth completion. Then, Pic+X/k is an

étale unipotent k-algebraic group.

Proof. Let X be a smooth completion of X , then Pic+ 0
X/k

∼= Pic+ 0

X/k
. Moreover, for some

field extension K/k, we have XK
∼= An

K . And XK is a smooth completion of XK , so

{0} = Pic+ 0
XK/K

∼= Pic+ 0

XK/K
=

[(
PicX/k

)
K

]+ 0

.

Finally, by universal property of the smoothification,
(
Pic+ 0

X/k

)
K

is a subgroup of
[(

PicX/k

)
K

]+ 0

. Thus it is trivial.

Corollary 4.13. Let X be a form of An
k , we assume that Pic+X/k is representable by an étale

unipotent k-algebraic group (e.g. X is unirational and admits a regular completion).
(i) Let W be a smooth k-scheme with a k-rational point. Then,

p∗1 × p∗2 : Pic(X)× Pic (W ) → Pic (X ×k W )

is an isomorphism of commutative groups.
(ii) We consider Y a form of Ac

k, and we assume that Pic+Y/k is representable. Then, the

restricted Picard functor Pic+X×Y/k is representable and

p∗1 × p∗2 : Pic+X/k ×k Pic
+
Y/k → Pic+X×kY/k

is an isomorphism of k-algebraic groups.
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Proof. The affirmation (i) is a consequence of the triviality of Pic+ 0
X/k, and of Lemma 4.10.

For (ii), we can assume that k = ks; then the proof followed from (i) and Yoneda Lemma.

Corollary 4.13 is not unexpected, as the result is well known if we assume that X is
rational. Hence, as far as the Picard group is concerned, unirational forms of An

k behave
like the rational ones.

Corollary 4.14. Let U be a unipotent k-group. We assume one of the following hypothesis:

(a) U admits a regular completion, and U is unirational,

(b) U admits a smooth completion.

Then:

(i) The unipotent k-algebraic group Pic+U/k is étale.

(ii) Pic+U/k = Pic+
U

U/k.

(iii) Pic(U) = Ext1(U,Gm,k) and this is a finite group of pt(U)-torsion.

Proof. First (i) is a particular case of Theorem 4.11 or Lemma 4.12.
Then, (ii) is a consequence of the fact that any action of a connected k-algebraic group

on an étale k-scheme is trivial, and of the definition of Pic+
U

U/k.

Finally, (iii) is a consequence of (i), (ii), Proposition 3.4, and Proposition 3.9.

Finally, let us remark that the methods we use in Lemma 4.10 and Theorem 4.11 gener-
alize with the “usual” Picard functor.

Proposition 4.15. If X is a geometrically integral, geometrically normal, projective and

unirational k-algebraic variety, then
(
Pic0X/k

)
red

is trivial. Where
(
Pic0X/k

)
red

is the unique

reduced closed subscheme of Pic0X/k having the same underlying topological space as Pic0X/k

(see e.g. [Liu06, Pro. 2.4.2]).
Moreover, if k is a field of characteristic 0, then Pic0X/k and H1(X,OX) are trivial.

Proof. First, under our assumptions Pic0X/k is representable by a projective k-variety [Kle05,

Th. 5.4]. Thus
(
Pic0X/k

)
red

is an Abelian variety whose formation commute with field

extensions [Bri17, Lem. 3.3.7]. We can assume that k = k, then X(k) 6= ∅. With the same
arguments as in Lemma 4.10, we have:

Hompt.

((
Pic0X/k

)
red

,
(
Pic0X/k

)
red

)
= Hompt.

((
Pic0X/k

)
red

,
(
PicX/k

)
red

)

= Hompt.

((
Pic0X/k

)
red

,PicX/k

)

∼=
Pic

(
X ×k

(
Pic0X/k

)
red

)

p∗1Pic(X)× p∗2Pic
((

Pic0X/k

)
red

)

∼= Hompt.

(
X,Pic(

Pic0
X/k

)

red
/k

)
.

As
(
Pic0X/k

)
red

is a smooth projective variety, any morphism from an open U of an

affine space to Pic(
Pic0

X/k

)

red
/k

is constant (Lemma 1.3). Thus
(
Pic0X/k

)
red

is trivial.

The second point is a consequence of the first one and of [BLR90, 8.4 Th. 1 (b)].
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4.4 Torsion of the restricted Picard functor

The Picard group of a form X of Ad
k is of pn-torsion for some integer n larg enough [Ach17,

Pro. 2.6]. In this subsection, we try to find the minimal n such that Pic(X) is of pn-torsion.
In Subsection 2.2, we have defined two invariants n(X) and n′(X) of the forms of A1

k

(Definition 2.7). We can naturally generalize these definitions:

Definition 4.16. We consider a form X of Ad
k.

(i) We denote by n(X) the smallest non negative integer n such that (Xks)
(pn) ∼= Ad

ks
.

(ii) We denote by n′(X) the smallest non negative integer n such that (Xks)
(pn) is

unirational.

We are now going to generalize results obtain in a previous article about the torsion of
the Picard group of a form of A1

k [Ach17, Th. 2.4 and Th. 4.4].

Proposition 4.17. We consider a form X of Ad
k. Then:

(i) Pic(X) is of pn(X)-torsion;

(ii) if X admits a regular completion, then Pic+X/k is of pn(X)-torsion;

(iii) if X and X

(

pn′(X)
)

admit regular completions, then Pic+ 0
X/k is of pn

′(X)-torsion.

Proof. Without loss of generality, we can assume that k is separably closed (see Subsec-
tion 2.1, or the term of low degree of the Hochschild-Serre spectral sequence [SGAIV2,
VIII Cor. 8.5]).

In Subsection 2.2, we recall the definition of the absolute and relative Frobenius mor-
phism. In particular, there is a commutative diagram of morphisms of schemes (but not of
morphisms of k-schemes!):

X
Fn

X //

Fn
X/k

''❖❖
❖❖

❖❖ X

X(pn).
ϕn

X

77♦♦♦♦♦♦

Moreover, if L is an invertible sheaf on X , then (Fn
X)
∗
(L) ∼= L⊗p

n

; thus, (Fn
X)
∗
(L) = pn.L

in Pic(X). In particular, if n = n(X), then (Fn
X)
∗
(L) =

(
Fn
X/k

)∗
(M) where

M = (ϕn
X)
∗
(L) = 0 in Pic

(
X(pn)

)
= {0}. Hence, pn.L = 0 in Pic(X), this is (i). Then, (ii)

is an immediate consequence of (i) and Theorem 1.1.
Finally, we show (iii). As neither Fn

X , nor ϕn
X are morphisms of k-schemes we need to

be a little bit careful when we define the pull-back on the restricted Picard functor. For any
smooth k-scheme T , there is a commutative diagram:

X ×k T
Fn

X×T //

p2 ��

X ×k T

p2��
T

Fn
T

// T,

that is functorial in T Hence, the absolute Frobenius morphism induces a natural transfor-
mation of group functor

(Fn
X)
∗
: Pic+X/k → Pic+X/k.

Likewise, there is a commutative diagram

X(pn) ×k T
ϕn

X×F
n
T //

p2 ��

X ×k T

p2��
T

Fn
T

// T,
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that is functorial in T . Hence, ϕn
X induces a natural transformation

(ϕn
X)
∗
: Pic+X/k → Pic+

X(pn)/k
.

Moreover, Fn
X/k is a morphism of k-scheme, thus it induces a natural transformation(

Fn
X/k

)∗
, with (Fn

X)
∗
= (ϕn

X)
∗ ◦

(
Fn
X/k

)∗
. We apply it with n = n′(X), then Pic+

X(pn)/k

is étale (Theorem 4.11). Hence, (ϕn
X)
∗
: Pic+ 0

X/k → Pic+
X(pn)/k

is the zero-morphism. And

finally, Pic+ 0
X/k is of pn

′(X)-torsion.

4.5 Reduction to the k-strongly wound case

We consider an unipotent k-group U of dimension d such that Pic+U/k is representable by

an étale unipotent k-algebraic group (e.g. U is unirational with a regular completion). Let
f : X → Y be a U -torsor, where Y is a form of An

k (then X is a form of An+d
k ). We denote

by α : U ×k X → X the action of U on X , and by p2 : U ×k X → X the second projection.
Then, for any smooth k-scheme T , the sequence of abstract groups

0 → Pic+Y/k(T )
f∗

T→ Pic+X/k(T )
α∗

T−p
∗

2T−−−−−→ Pic+U×X/k(T ),

is exact (see e.g. [Bri15, Pro. 2.10]). We will just say that

0 → Pic+Y/k

f∗

→ Pic+X/k

α∗−p∗

2−−−−→ Pic+U×X/k,

is an exact sequence of group functors.
Moreover, we have a natural transformation

π1 : Pic+U×X/k → Pic+U/k

induced by the the isomorphism of functor of Corollary 4.13 (ii). We denote

ϕ = π1 ◦ (α
∗ − p∗2) .

Then,

0 → Pic+Y/k

f∗

−→ Pic+X/k

ϕ
−→ Pic+U/k

is an exact sequence of group functors.
Moreover, if Pic+X/k is representable, then Pic+Y/k is representable by the kernel of ϕ.

And ϕ : Pic+ 0
X/k → Pic+U/k is trivial. Thus, Pic+ 0

Y/k

f∗

−→ Pic+ 0
X/k is an isomorphism of k-groups.

Hence, we have obtained the following result:

Proposition 4.18. We consider a unipotent k-group U , a form of the affine n-space Y and
a U -torsor f : X → Y . We assume that the restricted Picard functor of U is representable
by an étale unipotent k-algebraic group.

Then, the sequence of group functors:

0 → Pic+Y/k

f∗

−→ Pic+X/k

ϕ
−→ Pic+U/k

is exact.
Moreover, if Pic+X/k is representable, then Pic+Y/k is also representable and

Pic+ 0
Y/k

f∗

−→ Pic+ 0
X/k

is an isomorphism of k-groups.
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If U is a commutative unipotent k-group of dimension d, then there is an fppf morphism
f : U → Usw where Usw is k-strongly wound (Proposition 4.8). Let us assume resolution of
singularities in dimension inferior or equal to d. As Usw is obtained after a finite number
of quotients by some unirational k-group, we can apply Proposition 4.18 for each quotient.
And thus,

Pic+ 0
Usw/k

f∗

−→ Pic+ 0
U/k

is an isomorphism of k-groups.
Hence, we have reduced (up to resolution of singularities) the study of the neutral com-

ponent of the restricted Picard functor of a commutative unipotent k-group to the case of
commutative k-strongly wound unipotent k-group.

4.6 Mapping property of the restricted Picard functor of a form of

the affine line

In this subsection, we obtain a mapping property for the restricted Picard functor of a
form of A1

k with a k-rational point. This universal property is a particular case of the
universal properties of the “generalized Jacobian varieties”. Generalized Jacobian varieties
have been studied by M. Rosenlicht [Ros54, Ros57] and J.-P. Serre [Ser12, Chap. V]. In
this subsection, we use the more modern presentation of S. Bosch, W. Lütkebohmert and
M. Raynaud [BLR90, §10.3].

Let us consider X a form of A1
k with a k-rational point P0. We consider the morphism

of k-scheme IP0 : X → Pic+ 0
X/k defined by the divisor ∆− [P0]×X on X ×k X , where ∆ is

the diagonal divisor [KMT74, Lem. 6.7.4]. Then, if the arithmetic genus of X is positive,
IP0 is a closed immersion [KMT74, Th. 6.7.9].

Proposition 4.19. We consider a form of A1
k with a k-rational point P0 denoted X, a

commutative k-strongly wound unipotent k-group U and a morphism of k-schemes f : X →
U such that the image of P0 is the identity element of U .

Then, there is a unique morphism of k-algebraic group F : Pic+ 0
X/k → U such that the

diagram

X
IP0 //

f
""❊

❊❊
❊❊

❊❊
❊❊

❊ Pic+ 0
X/k

F

��
U

is commutative.

Proof. We denote by X the (canonical) regular completion of X , then Pic+ 0
X/k = Pic0

X/k
is

k-strongly wound. Thus, the existence and uniqueness of F is a particular case of Corollary
[BLR90, 10.3 Cor. 3].

We use the mapping property above and the results of Subsection 4.3 to compute some
particular case of Picard group of the product of two forms of the affine space.

First, we will recall a well known formula for the Picard group of the product of curves:
if C and C′ are two proper geometrically connected smooth k-curves, then

0 → Pic(C)× Pic(C′) → Pic(C ×k C
′) → Homgrp.

(
Pic0C/k,Pic

0
C′/k

)
→ 0

is an exact sequence of commutative groups.

Proposition 4.20. Let X be a form of A1
k with a k-rational point, and Y be a form of An

k

with a regular completion. Then,

0 → Pic(X)× Pic(Y ) → Pic(X ×k Y ) → Homgrp.

(
Pic+ 0

X/k,Pic
+ 0
Y/k

)
→ 0,

is an exact sequence commutative groups.
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Proof. This is a consequence of Lemma 4.10, and Proposition 4.19.

Example 4.21. Let k be a non perfect field of characteristic p = 2, and a, b ∈ k such that
a /∈ k2 or b /∈ k2. We consider G the form of Ga,k defined by the equation y4 = x+bx2+a2x4.
Then the arithmetic genus of the regular completion of G is one, and Pic+ 0

G/k is isomorphic
to G.

Moreover, Homgrp (G,G) = Z/2Z [Rus70, Th. 3.1]. Thus, we have an exact sequence:

0 → Pic(G)× Pic(G) → Pic(G×k G) →
Z

2Z
→ 0.

Example 4.22. Let k be a non perfect field of characteristic p = 3, and a ∈ k such that
a /∈ k3. We consider G the form of Ga,k defined by the equation y3 = x+ ax3.

Then likewise, Pic+ 0
G/k is isomorphic to G, and Homgrp (G,G) = Z/3Z [Rus70, Th. 3.1].

Thus, we have an exact sequence:

0 → Pic(G)× Pic(G) → Pic(G×k G) →
Z

3Z
→ 0.
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