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Adaptive Observer for Motorcycle State Estimation and Tire Cornering
Stiffness Identification

M. Fouka, L. Nehaoua, M-H. Dabladji, H. Arioui and S. Mammar

Abstract— In this paper, a linear parameter varying (LPV)
adaptive observer is designed for state estimation and tire cor-
nering stiffness identification based on lateral motorcycle model.
The estimation is based on a general Lipstchitz condition,
Lyapunov function and is subjected to persistency of excitation
conditions. Further, the LPV observer is transformed into
Takagi-Sugeno (T-S) fuzzy observer and sufficient conditions,
for the existence of the estimator, are given in terms of
linear matrix inequalities (LMIs). This method is designed
assuming that some of the states are not available, since
parametric identification is generally developed assuming that
all the system states are available (measured or estimated).
Finally, the effectiveness of the proposed estimation method
is illustrated through test scenarios performed with the well-
known motorcycle simulator ”BikeSim” and by field test using
data measurement carried out on experimental motorcycle.

Index Terms— Motorcycle, TS model, Luenberger Observer,
Estimation, LMI.

I. INTRODUCTION

The technological progress of the powered two wheeled
vehicles (PTWv) and its proliferation not only brought a
noteworthy convenience to its users through a significant
reduction of transportation time, but has given rise to
serious safety issues as well. In the recent years, important
researches [1] or [2] have been undertaken to investigate
safer driving conditions in both normal and in critical
situations, in order to improve security through the
development of preventive and active safety systems.
Complex riding assistance systems (ADAS) rely heavily
on accurate and precise tools such as sensors that should
be implemented on the motorcycle. While certain state
variables, such as yaw rate, are measured directly, others,
such as the tire cornering forces, cannot be measured
due to high costs of some sensors leading inevitably to
expensive new two wheelers. The ADAS systems are based
on the lateral friction which its computing involves all the
dynamic states of the motorcycle and a good modeling
of the tire road contact. The use of model-based state
estimators are therefore necessary to overcome previous
shortcomings in order to provide estimates of unmeasured
states and relevant parameters to achieve safety and handling.

The lateral slip conditions and the tire’s adhesion limit
are important for motorcycle stability in a turn, the capacity
to maintain these conditions avoids dangerous side sliding
leading to possible falls. The lateral tire forces are necessary
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to hold motorcycle through a turn, they are generated by
the lateral tire deformation in the road contact. The major
limitation of motorcycle dynamics is due to nonlinear tire
characteristics and to loss of friction between tire and road.
The lateral friction mainly depends on road condition (dry,
wet, snow, ice) and is related to the efforts at the tire
level (cornering stiffness). The estimation of motorcycle
wheel interaction forces with the ground are very important,
because of their influence on the stability of the two wheeled
vehicle. This study focuses especially on the state and tire
cornering coefficient estimation.
Considerable attention has been given to the development
of safety systems over the past few years. Authors have
investigated and developed different methods and differ-
ent strategies to estimate motorcycle dynamic states for
enhancing two wheelers stability and handling ([3]-[11]).
Concerning lateral estimation most of cited papers consider
restrictive assumptions which regarding riding motorcycle
practices or constant longitudinal speed.

To the best knowledge of the author, there is only a few
works about the estimation of the tires cornering parameters
of the PTWv ([12] [13] [14]) Main researches are based on
regression methods to estimate the current road conditions
or the tire road contact.

This paper aims to estimate both out of plane motorcycle
motion and the tire cornering stiffness coefficient by using a
tire model. The tire model describes the relationship between
the tire force and the slip as a function of two parameters,
namely, tire cornering stiffness and tire camber stiffness.
This estimation method based on the two bodies motorcycle
model and a certain number of valid measurements in order
to estimate in accurate way the tire coefficient of lateral
force and the state vector. We assume a prior knowledge or
classification of the road surface, the tires dynamic behavior
is taken into account when evaluating the generated lateral
tire forces.
In order to show the effectiveness of the estimation method,
a tests were carried out on an instrumented motorcycle in
realistic riding situations.
The rest of the paper is organized as follows. Sec. II,
describes and discusses the motorcycle out of plane model
and the tire behavior. Sec. III, illustrates the observer design
and presents the convergence analysis. In Sec. IV, discuss the
results, compared to real experimental data and evaluate the
estimated model. Finally Sec. V, we make some concluding
remarks regarding our study and future perspectives.



II. LATERAL DYNAMICS OF PTWV (OUT-OF-PLANE)

In this paper, the out-of-plane dynamics of the motorcycle
(figure 1) are modeled as proposed in Sharp’s 1971 model
[15] which consist of the lateral and steering ones [16]. The
main frame is subject to lateral motion, roll motion and yaw
motion and the front frame is subject to steering motion.

Assumption 1: Let us consider the following assumptions:
1) The rider is supposed rigidly attached to the main

frame.
2) The forward velocity vx is the varying parameter and

it is considered measurable,

Gr
G f

vx
vyFy f Fyr

δ , τ

φ
ψ

ε

ε

Fig. 1. Geometrical representation of the Sharp’s motorcycle model

The motions of the motorcycle can be modeled by the
following equations:

e33v̇y + e34ψ̈ + e35φ̈ + e36δ̈ = a34ψ̇ +∑Fy

e34v̇y + e44ψ̈ + e45φ̈ + e46δ̈ = a44ψ̇ +a45φ̇ +a46δ̇ +∑Mz

e35v̇y + e45ψ̈ + e55φ̈ + e56δ̈ = a54ψ̇ +a56δ̇ +∑Mx

e36v̇y + e46ψ̈ + e56φ̈ + e66δ̈ = a64ψ̇ +a65φ̇ +a66δ̇ +∑Ms

Ḟy f = a710φ +a720δ +a730vy +a740ψ̇ +a760δ̇ +a770Fy f

Ḟyr = a810φ +a830vy +a840ψ̇ +a880Fyr
(1)

where: 
∑Fy = Fy f +Fyr = May
∑Mz = a47Fy f +a48Fyr
∑Mx = a51 sin(φ)+a52 sin(δ )
∑Ms = a61 sin(φ)+a62 sin(δ )+a67Fy f + τ

Where (φ , δ , ψ , φ̇ , δ̇ , ψ̇) denote the roll, steering, yaw
angles and respectively their time derivatives, whereas vy is
the lateral velocity, Fy f and Fyr are the cornering front and
rear forces respectively, and τ is the torque applied to the
handle bar. For further details on the motorcycle parameters
(ei j,ai j) and expressions refer to table I.

A. The Tyre Forces
In this section a brief description of the tire/road contact

forces are introduced to understand the tire dynamics and
consequently the parameters of the tire model. The lateral
tire forces are necessary to hold motorcycle through a turn,
the major difficulties in motorcycle motion is the evaluation
of the tire and road interaction [17]. The lateral front
and rear forces Fy f and Fyr, are generated when there is
simultaneously side slip angles α and camber angles γ . The
mathematical formulas of these lateral forces and angles,

expressed in the motorcycle-related reference, are therefore
given by : {

σ f
vx

Ḟy f =−Fy f +∆y f
σr
vx

Ḟyr =−Fyr +∆yr
(2)

with 

∆y f =−C f 1 (

(
vy + l f ψ̇−ηδ̇

vx

)
−δ cos(ε))︸ ︷︷ ︸

α f

+C f 2 (φ +δ sin(ε))︸ ︷︷ ︸
γ f

∆yr =−Cr1

(
vy− lrψ̇

vx

)
︸ ︷︷ ︸

αr

+Cr2 φ︸︷︷︸
γr

(3)

C f i and Cri refer to the tire forces coefficients (stiffness
and camber coefficients i = (1,2)), ε refers to the caster
angle, η is the mechanical trail,, l f (resp. lr) represents the
distance between the center of mass and the front and rear
axis. Considering the lateral forces in their linear form is not
restrictive because we are targeting urban scenarios where the
camber and slip angles remains in the linear domain of the
lateral forces.

B. Linearized Model Of Motorcycle

From equations (1), we have a state representation with 8
states x(t) = [φ ,δ ,vy, ψ̇, φ̇ , δ̇ ,Fy f ,Fyr]

T . Sensors allow us to
get the following variables:
ȳ= ( δ , ψ̇ , φ̇ , δ̇ , ay =

Fy f +Fyr
M ). Let us consider the following

ρ(t) = vx(t) known. Thus, the Linear Parameter Varying
(LPV) structure is expressed by:{

Eẋ(t) = A(ρ)x(t)+Bτ(t)+ f (x,vx,θ)
ȳ = C̄x(t) (4)

where,

ȳ =


0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1

M
1
M


︸ ︷︷ ︸

C̄

x(t) (5)

Whereas x(t) ∈ Rn and y(t) ∈ Rny . The matrices A ∈ Rn×n,
B ∈ Rn×1, C̄ ∈ Rny×n. f (x,vx,θ) ∈ Rn depend essentially on
the tire dynamics and it can be rewritten in the following
linear form with respect to tire parameters:

f (x,vx,θ) = Dχ(x,vx)θ (6)

Where,

χ =

[
− vx

σ f
α f

vx
σ f

γ f 0 0

0 0 − vx
σr

αr
vx
σr

γr

]
, θ =


C f 1−C f 10
C f 2−C f 20
Cr1−Cr10
Cr2−Cr20

=

 θ f 1
θ f 2
θr1
θr2


(7)

Where, C( f ,r)i0 are the prior value of the stiffness
coefficient. The matrices E, A, D and B and a summary of
variable nomenclature are given in the appendix.



Additional measurement

The estimation approach requires to satisfy the observabil-
ity condition of the pair (A(ρ),C̄) for the system (4) and the
rank condition rank(C̄D)= rank(D) to estimate the unknown
parameters (tire stiffness coefficient). In regards to the model
(4) these conditions are not verified. We propose to use the
flatness properties [19] in order to add virtual measures using
differentiators [20].

From equations (1), one make some algebraic manipula-
tions in order to obtain additional informations about lateral
tire forces as follows:

Mv̇y +M f kψ̈ +(M f j+Mrh)φ̈ +M f eδ̈ =−Mvxψ̇ +Fy f +Fyr

M f kv̇y + e44ψ̈ + e45φ̈ + e46δ̈ =−M f kvxψ̇ +a45φ̇ +
i f y
R f

sinεvxδ̇

+ l f Fy f − lrFyr

After slight calculations, one can write :

(M2
f k2−Me44)ψ̈ +(M f k(M f j+Mrh)−Me45)φ̈+

(M f kM f e−Me46)δ̈ =−Ma45φ̇ −M
i f y

R f
sinεvxδ̇+

(M f k−Ml f )Fy f +(M f k+Mlr)Fyr

Hence, we can state that (M f k−Ml f )Fy f +(M f k+Mlr)Fyr
can be considered as an additional virtual measure thanks to
the following algebraic estimator:

(M f k−Ml f )F̂y f +(M f k+Mlr)F̂yr = (M2
f k2−Me44) ˆ̈ψ

+(M f k(M f j+Mrh)−Me45)
ˆ̈
φ+

(M f kM f e−Me46)
ˆ̈
δ +Ma45

ˆ̇
φ +M

i f y

R f
sinεvx

ˆ̇
δ (8)

By considering the information in equation (8) as additional
measure and (May = Fy f +Fyr), the new measurement vector
becomes:

y =
[

C̄
C0

]
︸ ︷︷ ︸

C

x (9)

with C0 = [0,0,0,0,0,0,(M f k−Ml f ),(M f k+Mlr)]

The following study highlights the different steps used
to obtain the TS model used in the design of the adaptive
observer.

III. EXACT T-S MOTORCYCLE MODEL

In order to express the LPV model (4) in T-S fuzzy
structure [18], let us take vx in the interval where the
motorcycle is stable. Note that there is one nonlinearity
that’s why the system is described with 2 sub-models [6].
The variables ζi(.) are the weighing functions and they must
satisfy the following convex sum property:

2
∑

i=1
ζi (ρ) = 1

0≤ ζi (ρ)≤ 1
with

{
ζ1 =

vxmax−vx
vxmax−vxmin

ζ2 =
vx−vxmin

vxmax−vxmin

(10)

The model can be exactly expressed as follows: Eẋ =
2
∑

i=1
ζi (ρ)Aix+Bu(t)+ f (x,vx,θ)

y = Cx
(11)

Where, A(ρ) =
2
∑

i=1
ζi(ρ)Ai and E−1 exists.

IV. OBSERVER DESIGN

In this section, we address the problem of state and
parameters estimation for out of plane motorcycle dynamics
by an adaptive observer.

Assumption 2: Throughout the paper, the following as-
sumptions are considered:

• Suppose that the signals inputs (u) is known and suffi-
ciently persistent.

• The state vector x(t) and the input are considered
bounded (stable motorcycle case),

• The pair (Ai,C) is observable i = (1,2).
Let us denote x̂(t), ŷ(t) and θ̂ the estimated state, output
vector and the parameters vector respectively. The structure
of the observer in this case is :{

E ˆ̇x = A(ρ)x̂+Bu+ f (x̂,vx, θ̂)+L(ρ)(y(t)−Cx̂)
ŷ = Cx̂

(12)
The matrix L is parameter varying: L(ρ) = ∑

2
i=1 ζi(ρ)Li.

The state estimation error is given by: x̃ = x− x̂ and the
parameters estimation error is θ̃ = θ − θ̂ .

A. Observer’s Convergence Study

In this paper, we study the LPV luenberger observer design
problem for the class of Lipschitz systems 4, where the
function f (x,vx,θ) satisfies the uniform global Lipschitz
condition in x [21]. Notice that any system of the form (4)
can be expressed with the lemma (1) as long as f (x,vx,θ)
is continuously differentiable with respect to x.

Lemma 1: The continuous function f (x,vx,θ) is said to
be Lipschitz with respect to x, if for all x, x̂ ∈ Rn it can be
written in a generalized Lipschitz condition as:

f̃ T Q f̃ ≤ x̃T Rx̃

where f̃ = f (x,vx,θ)− f̂ (x̂,vx,θ), x̃ = x− x̂, Q is a positive
definite symmetric matrix and R is a semi-positive definite
symmetric matrices.
Please refer to the appendix for the key step to define the
Lipschitz condition for the unknown part of the model f̃ .

The stability analysis is performed by using a quadratic
Lyapunov function as follows :

V (x̃) = x̃(t)T PEx̃(t)+ θ̃
T

Γ
−1

θ̃ , P = PT > 0 (13)

The state estimation error obeys to the following differen-
tial equation:

E ˜̇x(t) = Ax̃+( f (x,vx,θ)− f (x̂,vx, θ̂)−LC(x− x̂)

E ˜̇x(t) = (A−LC)x̃+( f (x,vx,θ)− f (x̂,vx, θ̂))+

f (x̂,vx,θ)− f (x̂,vx,θ)

E ˜̇x(t) = (A−LC)x̃+ f̃ (x̃,vx,θ)+Dχ(x̂,vx)(θ − θ̂)

E ˜̇x(t) = Φx̃+ f̃ +Dχ(x̂,vx)θ̃ (14)

With Φ = A−LC.
The time derivative of the Lyapunov function is computed



by using the state estimation error dynamics (14), as follow:

V̇ = ˜̇xT EPT x̃+ x̃T PE ˜̇x+ θ̃
T

Γ
−1 ˜̇

θ + ˜̇
θ

T
Γ
−1

θ̃

V̇ = (Φx̃+ f̃ +Dχ(x̂,vx)θ̃)
T PT x̃+ x̃T P(Φx̃+ f̃ +Dχ(x̂,vx)θ̃)

+ θ̃
T

Γ
−1 ˜̇

θ + ˜̇
θ

T
Γ
−1

θ̃

V̇ = x̃T
Φ

T PT x̃+ f̃ T PT x̃+ x̃T PΦx̃+ x̃T P f̃ + θ̃
T

χ
T (x̂,vx)DT Px̃

+ θ̃
T

Γ
−1 ˜̇

θ + ˜̇
θ

T
Γ
−1

θ̃ + x̃T PDχ(x̂,vx)θ̃

V̇ = x̃T (ΦT PT +PΦ)x̃+ f̃ T PT x̃+ x̃T P f̃ + θ̃
T

Γ
−1 ˜̇

θ + ˜̇
θ

T
Γ
−1

θ̃+

θ̃
T

χ
T (x̂,vx)DT Px̃+ x̃T PDχ(x̂,vx)θ̃

Where Ψ = ΦT PT +PΦ.
Lemma 2: ([22]) For every matrix G = GT > 0, the prop-

erty below is true:

XTY +Y T X ≤ XT GX +Y T G−1Y
Using the Lipschitz condition (1) and lemma (2), one obtain
the following inequality :

f̃ T PT x̃+ x̃T P f̃ ≤ x̃T PQ−1PT x̃+ f̃ T Q f̃

Now, the derivative of Lyapunov function is as follows:

V̇ (t)≤ x̃T (Ψ+PQ−1PT +R)x̃+ θ̃
T

χ
T (x̂,vx)DT Px̃+

x̃T PDχ(x̂,vx)θ̃ + θ̃
T

Γ
−1 ˜̇

θ + ˜̇
θ

T
Γ
−1

θ̃

B. The adaptive law :

The adaptive law is defined from the derivative of the
Lyapunov function in order to guarantee state asymptotic
convergence. Thus, if the condition rank(CD) = rank(D) is
checked, we can find a matrix Γ such that{

θ̃ T Γ−1 ˜̇
θ = −θ̃ T χT (x̂,vx)DT Px̃

˜̇
θ T Γ−1θ̃ = −x̃T PDχ(x̂,vx)θ̃

(15)

Note that ˙̃
θ =− ˙̂

θ (θ̇ = 0) and the two equations above are
equivalent, it is possible to find a matrix T , such that DT P =
TC [25], then the parameters identification is done with the
following equation:

ˆ̇
θ(t) = Γχ

T (x̂,vx)T (y− ŷ)

= Γχ
T (x̂,vx)TC(x− x̂)

= Γχ
T (x̂,vx)TCx̃ (16)

Considering equality 15, the time derivative V̇ (t) is

V̇ (t)≤ x̃T (AT PT +PA−CT KT −KC+PQ−1PT +R)x̃ (17)

Where K = PL, Φ = A−LC and Ψ = ΦT PT +PΦ.
Theorem 1: The state estimation error asymptotically con-

verges toward zero if there exist a symmetric positive definite
matrix P ∈ Rn×n and a matrix K ∈ Rn×ny such that the
following linear matrix inequality holds

PA(ρ)+A(ρ)T P−K(ρ)C−CT K(ρ)T +PQ−1PT +R(ρ)< 0 (18)
From theorem 1 and using the convex sum property

of the weighting functions, sufficient conditions ensuring
(V̇ (x̃(t))< 0) are given by the following LMIs:

AT
i P+PAi−CT KT

i −KiC+PQ−1PT +Ri < 0 (19)
Ki = PLi

This equation is a Linear Matrix Inequality (LMI) and it can
be solved easily with Yalmip toolbox of Matlab to ensure
the convergence of the observer.
In order to complete the proof, it remains to establish some
LMI conditions to ensure that :{

DT P = TC
PE = EPT > 0 (20)

We formulate the equality constraint DT P = TC as an
optimization problem (introduced in [25]):

min η

subject to[
ηI DT P−TC

(DT P−TC)T ηI

]
> 0 (21)

From the LMI inequality (19) and 21, one compute the
matrices P, Ki, T and Li. Then the observer given by the
equations (12) will ensure the state estimation.
Moreover, if the Persistent Excitation Condition is checked,
the unknown parameter convergence can also be obtained.

Definition 1: Persistence excitation [23]
The Persistent Excitation Condition is obtained if there exist
c1, c2 and c3 such that for all t the following inequality holds:

c1I ≤
∫ t0+c3

t0
Dχ(x̂,vx)χ

T (x̂,vx)DT dt ≤ c2I

Remark 1: In practice, the excitation input is the rider
torque, must be chosen in scenario as to well excited pa-
rameters to be identified.

V. SIMULATION RESULTS

The simulations are carried out on a nonlinear model
which takes account the lateral dynamics of PTWv. The
rider’s steering torque is the excitation input. The gains of
the observer are computed from equations (19) and (21). The
adaptation law provide an on-line estimation of the unknown
stiffness parameters.

A. Motorcycle BikeSim Simulation Test
The proposed approach is evaluated under different driv-

ing scenarios using the well-known motorcycle’s simulator:
BikeSim based on the nonlinear multibody Sharp’s 2004
model [24]. For a slalom maneuver with a velocity of vx =
50km/h, steering torque input and the motorcycle path are
depicted in fig. 2. The obtained results are given in figure 3
which show the estimated tire coefficient of the lateral model
between nominal and estimated one, the state estimation for
this scenarios are depicted in the figures 4 5.
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Fig. 2. (left) Rider torque τ (right) Longitudinal velocity - Path.
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Fig. 3. Convergence of parameters estimates θ̂1, θ̂2, θ̂3 and θ̂4, real
parameters value are shown by dashed.
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In figures (3,4,5), we see that the state and variables are
well estimated except the lateral velocity which has relative
error estimation, but it is still acceptable. The lateral velocity
is difficult to estimate accurately. However, because of its low
value compared to longitudinal velocity this error does not
affect the performances of the state estimation.

B. Motorcycle riding scenario

This section aims to present experimental results using
a scenario realized on urban scenic road and normal riding
behavior to validate the proposed observer. The instrumented
motorcycle is an Electric Scooter Peugeot model (figure 6)
(please refer to [26] for data set and experimentation).

Fig. 6. Scooter and Vehicle trajectory

The observer estimate the lateral dynamics using the
measured states (φ̇ , ψ̇ , ay, y0 = C0x ) given by the inertial
unit and δ obtained from the steering encoder, longitudinal
speed obtained from GPS data.
The scenario is considered with a varying longitudinal veloc-
ity from 10km/h on 40km/h, with the corresponding steering
torque depicted in (fig. 7 ).
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Fig. 7. (left) steering torque (right) longitudinal velocity

The actual signals given by the encoder and the IMU
required in the observer design are depicted in (fig. 8 ).
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Fig. 9. Validated dynamic states: states estimation (gray) compared to
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(fig. 9 and fig. 10) shows the states estimation of the lateral
dynamic model, whereas (fig. 12) illustrate the estimation of
the tire cornering parameters.
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Validated dynamic states

Since the actual state vy and Fy f ,Fyr are unknown, the
state estimation cannot be checked directly as it was done in
figure 9 in the above simulation. To validate the estimation,
one can use the estimates state vy and Fy f ,Fyr to construct the
lateral acceleration from equations (22) to compare with the
measured acceleration as shown in (fig 11). Where, orange:
measure ay, gray: estimated with sum of the estimated lateral
forces and dashed purple: estimated with lateral motion, the
additional measure can also be used to verified the lateral
forces using equations (8).

ây =
(F̂y f + F̂yr)

M
, ây = ˆ̇vy + vxψ̇ (22)

In (fig 11), the estimate roll angle (gray) is also validated
with measured roll angle given by the IMU (orange measure).
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Fig. 11. Validated state estimation :vy, Fy f , Fyr from the lateral acceleration
and the additional measurement; and φ from IMU roll angle.

These last figures demonstrate the ability of the adaptive
observer to estimate the lateral dynamic states on a real riding
scenario realized with normal riding behavior.

In figure 12, the tire cornering identification is carried out
with motorcycle measurement. Since the ideal parameters in
this case are unknown, we evaluate the performance of the
adaptive law by comparing the state of the model with the
actual output. To validate the identified parameters, one can
inserted the identified coefficients into the related models
adapted with the estimated coefficient (Ĉ f ,r), to compare the
updated state of the model with the corresponding measure-
ment and checking the similarity (note that this validation is
done without estimation), In figure 13, the lateral acceleration
computed May = ∑Fy f r is compared with the actual ay, also
the roll rate measure compared to roll rate state are shown.
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These figures show the performance of the used adaptive



observer to estimate simultaneously the motorcycle dynamics
and the identification of tire cornering parameters.
According to the above simulation results, it can be seen that
the observer has a good dynamic transition and an acceptable
convergence to the estimated value. The simulation results
show that the estimated model gives a good representation
of the actual states. Note that the lateral velocity is difficult
to estimate, however it remains acceptable, the roll and steer
angles (φ , δ ) and also the lateral forces are well estimated,
there are some differences at the peak due to modeling
errors. The model used for the observer design do not take
into account large roll angles but the observer still gives
acceptable results.

Remark 2: The major limitation of motorcycle dynamics
is due to nonlinear tire characteristics and to loss of friction
between tire and road. The lateral friction mainly depends
on road condition (dry, wet, snow, ice) and is related to the
efforts at the tire level (cornering stiffness). The estimate of
the tire coefficient could be used in Advanced Rider Assis-
tance Systems (ARAS) which are based on the detection of
loss of tire/road friction in order to provide a warning of a
possible loss of adhesion.
The small or negative cornering stiffness means that tire
has reached their performance limit (the nonlinear effects
like tire saturation), in this case, the ARAS systems derived
for motorcycle, can’t help the rider to master the critical
situations.
The great value of cornering stiffness indicates that the tire
characteristics is within the linear range and therefore the
equations of the motorcycle model and the control laws
obtained with this model are valid.
For this reason it is necessary to incorporate this important
tire information into the control law.

VI. CONCLUSION

In this paper, an estimation of out of plane motorcycle
model and tire cornering stiffness coefficient have been
proposed using an adaptive observer. The observer has
been designed subject to Lyapunov theory and persistence
excitation. The design takes into account the forward speed
as a linear parameter varying. Sufficient conditions for the
existence of the estimator are given in terms of linear matrix
inequalities (LMIs). Then, the performance of the resulting
observer has been evaluated by simulation using a realistic
riding scenario.
Future works will be dedicated to the improvements of
the observer performance by adding the rider motion and
taking into account road feature. Furthermore a robustness
observer analysis including parameters uncertainties on the
motorcycle system could be carried out.

APPENDIX

E =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 e33 e34 e35 e36 0 0
0 0 e34 e44 e45 e46 0 0
0 0 e35 e45 e55 e56 0 0
0 0 e36 e46 e56 e66 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


B1 =



0
0
0
0
0
1
0
0


D =



0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1



A(vx) =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 a34 0 0 1 1
0 0 0 a44 a45 a46 a47 a48

a51 a52 0 a54 0 a56 0 0
a61 a62 0 a64 a65 a66 a67 0

a710 a720 a730 a740 0 a760 a77 0
a810 0 a830 a840 0 0 0 a88


Proof 1: The key step to define the Lipschitz condition

for the unknown part of the model f̃ :
1) The linear function f̃ can be thought of as being

written in the form

f̃ = Dχ(x,vx)θ −Dχ(x̂,vx)θ

= Dχ̃(x̃,vx)θ (23)

2) From equation 7, (χ̃(x̃,vx)θ ) can be obtained:

χ̃(x̃,vx)θ =

[ − vx
σ f

α̃ f θ f 1 +
vx
σ f

γ̃ f θ f 2

− vx
σr

α̃rθr1 +
vx
σr

γ̃rθr2

]
=

[
χ̃1
χ̃2

]
(24)

where, the following notation is used :

x̃ = (φ̃ , δ̃ , ṽy, ˜̇ψ, ˜̇
φ , ˜̇

δ , F̃y f , F̃yr)
= (x̃1, x̃2, x̃3, x̃4, x̃5, x̃6, x̃7, x̃8)

α̃ f =
( x̃3+l f x̃4−η x̃6

vx

)
− x̃2 cos(ε)

α̃r =
(

x̃3−lr x̃4
vx

)
γ̃ f = x̃1 + x̃2 sin(ε)
γ̃r = x̃1
α̃ f = (α f − α̂ f )
α̃r = (αr− α̂r)
γ̃ f = (γ f − γ̂ f )
γ̃r = (γr− γ̂r)

(25)

3) If we choose Q = I8, one obtain:

f̃ T Q f̃ = f̃ T f̃ = χ̃T
1 χ̃1 + χ̃T

2 χ̃2 = χ̃2
1 + χ̃2

2

4) Then, we can write the following quadratic form :

f̃ T Q f̃ ≤ x̃T Rx̃ . (26)

Where,

R =



d1
d12

2
d13

2
d14

2 0 d16
2 0 0

d12
2 d2

d23
2

d24
2 0 d26

2 0 0
d13

2
d23

2 d3
d34

2 0 d36
2 0 0

d14
2

d24
2

d34
2 d4 0 d46

2 0 0
0 0 0 0 0 0 0 0

d16
2

d26
2

d36
2

d46
2 0 d6 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


The expressions of di j are :

d2 = a2
720

d3 = a2
730 +a2

830
d4 = a2

740 +a2
840

d6 = a2
760

d12 = 2a710a720
d13 = 2a710a730 +2a810a830
d14 = 2a710a740 +2a810a840
d16 = 2a710a760
d23 = 2a720a730
d24 = 2a720a740
d26 = 2a720a760
d34 = 2a730a740 +2a830a840
d36 = 2a730a760
d46 = 2a740a760

(27)



NOMENCLATURE

M f , Mr , M mass of the front frame, the rear frame and the
whole motorcycle

j, h, k, e, l f ,
lr

linear dimensions

i f y, iry polar moment of inertia of front and rear wheels
R f , Rr radius of front and rear wheels
K damper coefficient of the steering mechanism
I f x, Irx front and rear frame inertias about X axis
I f z, Irz front and rear frame inertias about Z axis
Crxz rear frame product of inertia w.r.t. X and Z axis
Z f front vertical force
σ f , σr coefficients of relaxation of the front and rear

pneumatic forces

TABLE I
MOTORCYCLE PARAMETERS EXPRESSIONS

e33 = M,e35 = M f j+Mrh, e46 = M f ek+ I f z cosε , e34 = M f k ,
e44 = M f k2 + Irz + I f x sin2

ε + I f z cos2 ε , a44 =−M f kvx, e36 = M f e
e45 = M f jk−Crxz +(I f z− I f x)sinε cosε , a34 =−Mvx a45 =

i f y
R f

+
iry
Rr

,

a46 =
i f y
R f

sinεvx e55 = M f j2 +Mrh2 + Irx + I f x cos2 ε + I f z sin2
ε ,

e56 = M f e j+ I f z sinε ,a47 = l f , a48 =−lr , a51 = (M f j+Mrh)g,
a54 =−(M f j+Mrh+

i f y
R f

+
iry
Rr
)vx , a56 =−

i f y
R f

cosεvx ,
a52 = M f eg−ηZ f , a61 = M f eg−ηZ f ,a62 = (M f eg−ηZ f )sin(ε)
e66 = I f z +M f e2 , a64 =−(M f e+

i f y
R f

sinε)vx , a65 =
i f y
R f

cos(ε)vx,

a66 =−K,a67 =−η , a710 =
C f 20
σ f

vx, a730 =−
C f 10
σ f

, a740 =−
C f 10
σ f

l f ,

a720 =
(C f 10 cos(ε)+C f 20 sin(ε))

σ f
vx, a760 =

C f 10
σ f

η ; a770 =− 1
σ f

vx, a810 =
Cr20
σr

vx,

a83 =−Cr10
σr

, a840 =
Cr10
σr

lr , a880 =− 1
σr

vx,

l
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