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Grid turbulence near the grid
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LMFA-CNRS, Ecole Centrale de Lyon, Université de Lyon, Ecully, France

(Received 2019)

In grid turbulence, not so far behind the grid, an average flow can be observed with a close
to sinusoidal velocity profile, corresponding to the wakes behind the grid bars. The kinetic
energy of this mean flow decays rapidly and a close to isotropic flow is observed further
downstream. We show how these wakes behind the grid-bars influence the down-stream
turbulence. In particular, we investigate the decay rate of kinetic energy, the behavior of
the normalized dissipation rate, and the sensitivity of the flow on initial conditions. We
show that the initial value of the ratio of the lengthscale of the turbulence to the mesh-
size determines the precise decay of the mean-flow and the generation of the turbulent
kinetic energy. We further show how a simple turbulence model can estimate the degree
of non-equilibrium of a flow.

1. Introduction

Since the first experiments of Simmons & Salter, 1934 (see also ref. Taylor, 1935), the
turbulent motion behind a grid in a wind-tunnel has been investigated intensively in a
large number of experiments. The main reason is that this type of flow is experimentally
close to the academic reference case of isotropic turbulence. Historically, grid-turbulence
experiments were therefore carried out avoiding systematically the region close to the
grid, where a non-isotropic and inhomogeneous production of kinetic energy by shear-
layers behind the grid bars is present. For instance, in early work (Batchelor & Townsend,
1948) it was mentioned: ”The range x/M < 20 is of course excluded from the system of
classification since the turbulence takes a little time to become uniform (in the lateral
direction) and isotropic.”. M is here the mesh-size, and x the distance from the grid
in the streamwise direction. Consequently, most studies on grid-turbulence investigated
this far downstream evolution (see e.g., Mohamed & Larue, 1990, Mydlarski & Warhaft,
1996).

However, in recent work, reviewed in Vassilicos, 2015, it was recognized that this zone,
closer to the grid might be of interest, since it allows the investigation of a transition
region between a flow where production and dissipation are both important, and a freely
decaying, productionless flow further downstream. In this region several interesting ob-
servations were made which were not in complete agreement with classical pictures of
self-similar decaying turbulence (e.g., Tennekes & Lumley, 1972). Since then, critical as-
sessment by simulations and experiments of decaying grid-turbulence closer to the grid
has opened the debate of the nature of this non-equilibrium turbulence and its depen-
dence on the grid-type (Krogstad & Davidson, 2011, Nagata et al., 2013, Discetti et al.,
2013, Thormann & Meneveau, 2014).

One of the observations in the recent grid turbulence experiments (Vassilicos, 2015)
is that the normalized dissipation rate is not constant in the near grid region. The
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normalized dissipation rate is defined by

Cε =
εL
U3
, (1.1)

with L the integral lengthscale, ε the dissipation of kinetic energy and U the RMS velocity
fluctuation. In a recent work we explained some of the observations using a perturba-
tion analysis of the energy flux around an equilibrium state (Bos & Rubinstein, 2017).
However, a full picture, including the influence of the shear layers on the turbulence
production and their influence on the decay rate of the turbulent kinetic energy further
downstream has not been given yet, except from a tentative study using the EDQNM
turbulence model (Meldi & Sagaut, 2018). The goal of the present investigation is to
understand this transition zone, close to the grid for the case of high-Reynolds number
turbulence. We will show how the kinetic energy of the turbulence is produced by the
shear layers, and how the kinetic energy evolves as a function of time.

This investigation will show that several salient features of near grid-turbulence, as
observed in recent investigations can be reproduced by one of the simplest existing tur-
bulence models. In particular, we shall answer to several of the standing questions, as
summarized in the list of future issues, which was dressed in Vassilicos, 2015:
• What causes the sudden transition from the power law evolution of Cε to an (almost)

constant value,
• What is the downstream distance where this happens?
• How can this downstream distance be estimated in terms of the geometry of the

turbulence generator and inlet Reynolds number?
In addition, we will answer to the questions:
• How relates the peak of the kinetic energy to the total kinetic energy injected in the

flow?
• How depends the peak of the kinetic energy and its downstream distance from the

grid on the flow properties.
We can summarize our main objective in one question: how does grid-turbulence depend
on initial conditions?

In section 2 we will show how the mean-field behind the grid-bars can be described
in a simple manner. This mean-field loses its energy to the turbulent fluctuations, and
this interaction is described and modeled in section 3. In section 4 we show how non-
equilibrium can be assessed within a two-equation turbulence model. The model which
describes the interaction of the averaged grid-wakes and the turbulent fluctuations is
numerically integrated in section 5 for experimentally relevant parameters. These results
allow to answer the above stated open questions, which are replied on in the conclusions,
section 6.

2. A simplified description of the mean flow

In the present work we will decompose grid-generated turbulence into a mean part
(the wakes behind the grid-bars) and a fluctuating part (Reynolds, 1895), and we will
investigate how the interaction between the energy in these two components of the flow
is influenced by initial conditions.

The mean flow indicated by U i is assumed unidirectional (in the streamwise (x) direc-
tion) and varies in the cross-stream (y) direction. Obviously there are two cross-stream
directions in the flow behind a regular square-grid, but given the further approximations
we introduce, considering one direction is a fine enough description. We will measure the
velocity-field in the frame of reference moving with the wind-tunnel average speed U0, so
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Figure 1. Sketch of the geometry considered in the present investigation. A uniform incoming
flow U0ex is perturbed by a grid. The resulting flow is decomposed into a sinusoidal mean profile
U(y) = Ux − U0 and a fluctuating part.

that the mean-flow U i is zero when averaged over the cross-stream direction. A sketch
of the flow is given in figure 1.

The mean-flow is thus given by

U(x, t) = U(y, t)ex. (2.1)

We now consider the case of regularly spaced grid-bars as used in the majority of studies
on grid-turbulence. The spacing of the bars is M (the mesh length). The mean flow
behind the bars will then be periodic with a spatial period M . To some approximation
we can then model the mean flow by

U(y, t) = U(t) cos

(
2πy

M

)
. (2.2)

This can be shown to be a good approximation even for more complicated passive
turbulence-generating grids (Valente & Vassilicos, 2014). Indeed, behind fractal grids
the wakes were also shown to rapidly converge to a sine-like shape. We anticipate that
in active-grids, where a larger transverse turbulent diffusion is generated, the sine-like
profiles are probably less prominent. We will come back to this issue later.

By prescribing the shape of the mean-flow, we have simplified the problem considerably.
It will now be possible to describe the interaction of the mean flow with the fluctuating
turbulent field in a fairly simple manner. We consider the kinetic energy of the mean
field, averaged over one mesh length,

K =
1

M

∫ M

0

1

2
U(y, t)2dy =

1

4
U(t)2. (2.3)

The evolution of this quantity is simply derived from the Reynolds averaged Navier-
Stokes equations (see appendix 1),

K̇ = −p−D (2.4)

where

p = − 1

M

∫ M

0

uv∂yUdy, (2.5)
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and

D =
1

M

∫ M

0

ν
(
∂yU

)2
dy, (2.6)

with uv the Reynolds stress. The contribution of the turbulent diffusion in the cross-
stream direction vanishes in the energy balance since its integral over a period M is
zero (see appendix 1, where we derive this average balance from the pointwise evolution
equations).

The fluctuating part of the turbulence, i.e., the turbulent flow that is studied in most
investigations of grid-turbulence, is governed by the balance (see appendix 1)

k̇ = p− ε, (2.7)

where

k =
1

M

∫ M

0

1

2
uiuidy. (2.8)

and

ε =
1

M

∫ M

0

ν∂jui∂juidy. (2.9)

where k and ε are the kinetic energy and dissipation rate of kinetic energy, both averaged
over a grid-period. We have therefore at this point a flow-field, described by the two
quantities k and K, and their equations contain the unknown terms uv and ε. We note
that the formulation is in particular simple because we consider the kinetic energy budgets
averaged over a grid-period, and not pointwise (see appendix 1), so that the turbulent
diffusion terms vanish. This simplification is no approximation, but a consequence of the
periodicity of the flow. To proceed we need to introduce a model.

3. Modeling the turbulence production

The most widely known turbulence model is the k-ε model (Jones & Launder, 1972).
To describe the turbulence, equations are written for the quantities k and ε. In addition to
its simplicity, it is known to give good results both in self-similar decaying turbulence and
in shear-flows, even though some precise quantitative features are mispredicted (Pope,
2000). Since we consider the transition zone between a simple shear-flow and a freely
decaying flow, the k − ε model seems to be the ideal starting point of our investigation.

The k− ε model is an eddy-viscosity closure, where the Reynolds stresses are modeled
by

uv = −νT∂yU. (3.1)

The eddy viscosity νT is modeled as a function of k and ε,

νT = Cν
k2

ε
. (3.2)

The kinetic energy of the mean flow (constituted by the shearlayers behind the grid) is
determined by relation (2.4). The k− ε equations reduce in our description to expression
(2.7) for the turbulent kinetic energy and the ε-equation,

ε̇ =
ε

k
(Cε1p− Cε2ε) (3.3)

with

p = Cν
k2

ε

1

M

∫ M

0

(
∂yU

)2
dy. (3.4)
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In order to close the system, we need to determine the average squared shear which
appears in expressions (2.6) and (3.4) for D and p, respectively. We can obtain this
quantity exactly by averaging the squared gradient of the mean velocity profile given by
(2.2) over the y direction,

1

M

∫ M

0

(
∂yU

)2
dy =

2π2

M2
U2

=
8π2

M2
K. (3.5)

Thereby, we have reduced our problem to the three ODEs,

K̇ = −k
2

ε

K

M̃2

(
1 +

Cν
Re

)
(3.6)

k̇ =
k2

ε

K

M̃2
− ε (3.7)

ε̇ =
ε

k

(
Cε1

k2

ε

K

M̃2
− Cε2ε

)
, (3.8)

where M̃ = M/(
√

8Cνπ) and Re = k2/(εν). In the following we will consider the high
Reynolds number case, where the last term in brackets of equation (3.6) is negligible.
Evidently, since k and ε are positive quantities, all quantities will eventually decay. We
have therefore an initial value problem depending on the values of K, M , k and ε. Since
we consider the high Reynolds number case, the viscosity does not enter the system.

Further insights into this system are obtained by rewriting the equations of k and ε in
their original form, and the equation of the mean-field as an equation for p

k̇

k
=
ε

k

(p
ε
− 1
)

(3.9)

ε̇

ε
=
ε

k

(
Cε1

p

ε
− Cε2

)
(3.10)

ṗ

p
=
ε

k

(
(2− Cε1)

p

ε
− (2− Cε2)− k3

ε2M̃2

)
. (3.11)

A salient feature of this representation is that, apart from k, p, ε, the dynamics of the
production depend explicitly on the square of a lengthscale ratio,

αL(t) ≡ k(t)3/2

ε(t)

1

M̃
∼ L(t)

M
. (3.12)

where we introduce a lenghtscale L ∼ k(3/2)/ε, characterizing the turbulence. For given
values of k, p, ε, the dynamics can thus be different depending on the initial value of
αL. Clearly, this term in the equations shows how the initial conditions explicitly affect
the decay of grid turbulence. We note here that in the experiments (Vassilicos, 2015),
it is also a ratio of a local parameter and a parameter linked to the initial conditions
which pilots the behaviour of the turbulence. A similar observation was made in Meldi &
Sagaut, 2018, who identified a timescale ratio which quantifies the influence of the initial
conditions. We note in this context that α2

L can also be interpreted as a timescale ratio,
and we will come back to this in section 5.4.

It has long been argued that initial conditions might influence a freely evolving turbu-
lent flow for a long time (George, 1992). The present description shows how this influence
shows up in the evolution equations of the turbulent kinetic energy. In real experiments
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a drastic way to increase the initial value of this parameter is to use active grids (Makita,
1991). Indeed, in active grids the typical lengthscale of the turbulence is largely increased,
since instead of developing gradually from instabilities in the grid-wakes, the turbulent
kinetic energy is immediately generated by the grid, at the expense of the energy of the
mean wake-flow. In the present investigation, in order to illustrate the importance of the
initial conditions on the turbulence, we will assess the influence of αL on the downstream
turbulence.

4. Non-equilibrium scaling of unsteady turbulence

In the absence of production, the k− ε model depends only on two parameters, k and
ε. Therefore, the turbulence is represented by a single lengthscale, determined by relation
(1.1), or equivalently, a single timescale k/ε. In unsteady flows, another timescale can be
defined, determined by the time-variation of the dissipation rate,

τε =

(
ε̇

ε

)−1

. (4.1)

It is this second timescale which becomes important when there is a significant imbalance
between production and dissipation.

In our recent theory (Bos & Rubinstein, 2017) we acknowledged the importance of this
second timescale in the description of unsteady turbulence. We decomposed a turbulent
flow into an equilibrium part, consisting in the turbulence which would result when
an equilibrium is established between production and dissipation (p − ε = 0), and the
remaining, disequilibrium part k̃. In the equilibrium part of the flow, the normalized
dissipation (expression (1.1)) yields a constant value Cε0.

We found for the ideal case of high Reynolds number isotropic turbulence a relation
between the equilibrium and non-equilibrium parts, given by

k̃

k
=

2

9

ε̇k

ε2
. (4.2)

Since this relation depends on ε̇, for which the k− ε model gives an expression [equation
(3.3)], we find that

k̃

k
=

2

9

(
Cε1

p

ε
− Cε2

)
. (4.3)

Furthermore, we showed that the normalized dissipation can be expressed as a function
of this perturbation, leading to the relation

Cε
Cε0

=

(
1 +

k̃

k

)− 15
14

. (4.4)

In the following we will use the k − ε model to compute k and ε, and we will determine
the unsteady perturbation k̃ a posteriori, using expression (4.3). This will allow us to
estimate the non-equilibrium within the context of a two-equation turbulence model. We
note here that this is possible in a 2-equation model, since we have access to the values
of k, ε and ε̇. An even more reduced description, using only one equation (as for instance
the model of Spalart & Allmaras, 1992) does not provide enough information on the
turbulence to assess the imbalance in this way.
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5. Results

5.1. Choice of the parameters

Equations (3.6-3.8) are integrated numerically in the high Reynolds number limit. The
model constants are given their classical values (Jones & Launder, 1972) Cε1 = 1.44,
Cε2 = 1.92 and Cν = 0.09. We have chosen initial conditions which are in the range of
experimentally relevant values. To characterize the grid-spacing, we have chosen M =
10cm. The value of U is typically an order of magnitude smaller than the mean flow
velocity, which is of order 10ms−1. We have therefore set the average-field kinetic energy
to K = 1m2s−2. The initial value of the fluctuating quantities k and ε are hard to
estimate. Indeed, they depend on the precise instability mechanisms of the grid-bar-
wakes and the incoming turbulence intensity. We have therefore proceeded by taking two
different values for k. We define the turbulence intensity by

Ik =
k

K
. (5.1)

Our first set of experiments corresponds to the intensity Ik = 0.1, the second one where
the initial velocity fluctuations are an order of magnitude smaller than the mean-field
amplitude, Ik = 0.01.

The initial values of ε are even harder to estimate. The variation of ε is in particular
important, since for given k and M , it determines the initial lengthscale ratio αL(0),
defined in expression (3.12). The influence of this parameter on the dynamics constitutes
one of the main issues of this investigation. Very large values of αL(0) correspond to
a strong transverse mixing of the turbulence near the grid as expected in active grids.
Small initial values correspond to the case where the wakes are slowly perturbed by the
developing turbulence, and the influence of the mean-flow, i.e. the wakes, is sensible far
behind the grid. This corresponds to small initial turbulent intensity with a small initial
lenghtscale. Since the variation of this parameter is the key parameter in our study, we
have varied it over three orders of magnitude, in the range 0.01 6 αL(0) 6 10.

The initial values of Ik and αL are the physical control parameters of our system.
The numerical integration of three coupled ODEs is performed using an explicit Euler
integration scheme. The conservation of energy was estimated by monitoring the sum
of the integral of the dissipation and the total kinetic energy in the system. Timesteps
were set to ∆t = 10−4. A typical simulation of the system upto t = 100 takes several
seconds on a common desktop computer. More complicated numerics did not seem to be
necessary.

5.2. Evolution of the kinetic energy and dissipation

In Figure 2(a,b) we show the evolution of the turbulent kinetic energy for both turbulence
intensities we studied, and a wide range of values of αL(0). Clearly, it is shown that the
results are not very sensitive with respect to the choice of the initial turbulent intensity,
at least for the values Ik = 0.1 and 0.01 which we considered. We further see that for
long times the model behaves as expected, with a power law decay

k ∼ t−n, (5.2)

where n = 1/(Cε2 − 1) ≈ 1.1.
In Figure 2(c) the kinetic energy for Ik = 0.01 is replotted, normalized by its peak-

value. Time is normalized by tpeak, the time at which the kinetic energy peaks. Around
the peak, the time-dependence differs for the different cases. In particular it is observed
that a very good agreement with experiments is obtained for values of αL(0) ≈ 0.3. In
this timespan the time-dependence of the kinetic energy can be approximated, for the
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Figure 2. Temporal evolution of the kinetic energy of the turbulence for values of the lenghtscale
ratio 0.01 6 αL(0) 6 10. (a) Initial intensity Ik = 0.1; (b) Ik = 0.01. (c) Same results as in (b)
but time is normalized by tpeak and kinetic energy by kpeak. Also shown is a comparison with
data obtained from a Fractal Square Grid (FSG) and a Regular Square Grid (RG), data from
Valente & Vassilicos, 2014. (d) Local power law decay exponent of the kinetic energy n.

smallest values of αL(0), by a power law with an exponent n ≈ 2.3, but this interval
is too short to identify a true power law. The steeper-than-expected decay of kinetic
turbulence seems rather to be due to a change in virtual origin than in a qualitative
change of the physics. For a further discussion on the fitting of power law behaviour to
the data and the choice of virtual origins we refer to the investigations of Mohamed &
Larue, 1990 and Valente & Vassilicos, 2011. The local decay exponent, i.e., when the
function is approximated by a power law, is

n = −d log(k)

d log(t)
. (5.3)

This exponent is plotted in figure 2(d). It is observed that in the active grid limit (large
αL(0)), the decay exponent monotonically increases from n = 0 at the peak to n ≈ 1.1
for long times. Only for small initial values of αL an overshoot is observed with maximum
values of the order of n ≈ 2.5.

The mean-flow energy evolution is shown in figure 3(a). We observe, that irrespective
of the parameters, the mean-energy decays rapidly, reducing its value by approximately
10 orders of magnitude in the interval 0 < t < 1. It is thus in this interval that the
influence of the production of kinetic energy by the shear-layer decreases from order
unity to negligible. Clearly, it is this very fast decay of the mean field that makes grid-
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(b)

Figure 3. Temporal evolution of (a) the kinetic energy of the mean field and (b) the dissipation
of the turbulence, for values of the lenghtscale ratio 0.01 6 αL(0) 6 10; initial intensity Ik = 0.01.

turbulence such a good candidate to study freely decaying isotropic turbulence. In the
limit of large αL(0), the kinetic energy of the mean field is thus rapidly absorbed by the
turbulence. For this limit the flow should approach the freely decaying limit for which
an analytical solution exists. For further discussion of this analytical solution we refer to
appendix 2.

In Figure 3(b) we show the evolution of the dissipation of turbulent kinetic energy. The
qualitative behaviour ressembles that of the kinetic energy in most aspects. The overall
shapes of the curves are similar. But since we fixed the initial value of k and varied the
value of αL(0), the initial values of ε are not the same for the different runs so that the
peak values of the dissipation behave differently from those of the kinetic energy plotted
in figure 2. For long times the expected power law, proportional to t−(n+1) is observed.

5.3. Nonequilibrium dissipation scaling

The equilibrium value of Cε is obtained when the production is equal to the dissipation.
Such a steady state, which is in addition isotropic is hard to obtain experimentally, but
in numerical simulations, forced isotropic turbulence in a periodic domain is a canonical
flow (Ishihara et al., 2009). The exact value might depend on the type of forcing, but
for a given flow, for increasing Rλ the value of Cε0 tends to a constant value (Kaneda
et al., 2003). In freely decaying isotropic turbulence, the normalized dissipation rate, at
high Reynolds numbers tends to a different constant value, which depends weakly on the
initial conditions (Bos et al., 2007). The reason for this is that in the case of decaying
turbulence, where p goes to zero, the non-equilibrium will tend to an asymptotic value.
The analytical prediction of this value is, according to equations (4.3) and (4.4),

Cε
Cε0

=

(
1− 2

9
Cε2

)− 15
14

≈ 1.8. (5.4)

In figure 4 we show our estimate of Cε/Cε0, as determined by (4.3) and (4.4). We have also
compared to the data of Vassilicos, 2015, figure 4(b), where different data-sets produced
from wind-tunnel measurement behind a fractal grid are reported. Since we do not exactly
know how to match the initial conditions of the experiments with our simulations, our
comparison will be at best qualitative. Therefore, we have collapsed the asymtotic long-
time value of 1.8 with the experimental data, and we have shifted the data-points in
time to get a best agreement. This will only assess whether the transient towards the
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(d)

Figure 4. (a) Normalized dissipation rate for values of the lenghtscale ratio 0.01 6 αL(0) 6 10
and initial intensity Ik = 0.01. (b) Same results but with time normalized by tpeak, the time
where the kinetic energy peaks. Also shown experimental data from Vassilicos, 2015. (c,d) The
production of turbulent kinetic energy as a function of time, or normalized time.

self-similar decaying state in our model shows the same time-dependence as the one
observed in the experiments, but will not assess the quantitative agreement.

Clearly, the behaviour of the experiments is qualitatively reproduced. Furthermore,
the transition from a monotonically rising value of Cε to a plateau-value is abrubt as in
the experiments. The physical reason for this is the rapid decrease of the production term
as observed in Figure 4(c,d). The production shows, as the mean-kinetic energy, a rapid
decay at later times. The time at which this decay sets in is increasing with decreasing
αL(0).

5.4. Short-time evolution and determination of the peak-value of the kinetic energy.

In figure 5(a) we show how the peak of the kinetic energy of the turbulence depends on
the parameter αL(0). It is observed that for large values of αL(0) almost all energy of the
mean field K is converted in turbulent fluctuations. This corresponds to the case where
the lengthscale of the turbulence is initially large, so that the mean field is immediately
distorted by the turbulent fluctuations. This limit corresponds to active grid turbulence.
When the initial fluctuations are initially very small, an asymptotic value of roughly 30%
of the mean field energy is converted into turbulent fluctuations. The system seems to
become independent on the size of the initial fluctuations for this limit. In figure 5(b) the
location of the peak is determined. The quantity tpeak corresponds to the time-instant
where the kinetic energy attains its peak value. Obviously, this value cannot become
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Figure 5. Peak values of the kinetic energy for 0.001 6 αL(0) 6 10 and Ik = 0.01.
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(b)

Figure 6. Temporal evolution of the turbulent timescale τ = k/ε for 0.01 6 αL(0) 6 10 and
Ik = 0.01.

negative. It is observed that in the limit where all the mean field energy is converted into
fluctuations, the peak is located very close to the grid. For decreasing values of αL(0)
this distance is located further downstream. We will now explain these observations.

From equation (3.6) we can deduce the typical time-scale over which the mean-flow
evolves,

T =

(
1

K

dK

dt

)−1

=
εM̃2

k2
. (5.5)

The typical timescale of the turbulence is τ ≡ k/ε. Comparing these timescales we find
that in the limit

τ

T
=

k3

ε2M̃2
� 1, (5.6)

the mean flow evolves much slower than the turbulence. In this case the shear induced
by the wakes can thus be treated as a steady shear. Note that this time-scale ratio is the
square of the lengthscale ratio, αL.

In figure 6(a) we show how αL evolves. Clearly for small initial values of αL, its value
becomes of order unity approximately at t = tpeak, and before this time it is smaller.
In the early times, the turbulent flow behaves thus as turbulence subjected to a steady
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shear. The average value of this shear is according to expression (3.5),

S ∼ K1/2

M
. (5.7)

It is well known that the k−εmodel applied to steady shear predicts exponential evolution
of the kinetic energy and dissipation (Pope, 2000),

k ∼ k∗ exp(St) (5.8)

ε ∼ ε∗ exp(St) (5.9)

The values of k∗ and ε∗ are set by the asymptotic value of S∗ ≡ Sk∗/ε∗ ≈ 3. We can
therefore estimate the time at which the shear-layers start to decay, by comparing

τ

T
|t=t∗ = O(1) (5.10)

we find that

t∗ ∼ 1

S
ln

(
M̃2ε∗2

k∗3

)
. (5.11)

In order to find the peak value of the turbulent kinetic energy, we determine k(t∗) by
combining (5.11) and (5.8). This yields

k(t∗) ∼ ε∗2M̃2

k∗2
, (5.12)

which can be simplified to

k(t∗) ∼ K(t = 0)

S2
∗

. (5.13)

This shows that the peak of the turbulent kinetic energy corresponds to a fixed fraction
of the total injected energy. In Figure 6(b), we show the evolution of the turbulent time-
scale τ . It is observed that for sufficiently small initial values of αL(0), τ is approximately
constant for a short time-interval 0.2 < tpeak < 0.8. It is in this region that exponential
increase of the kinetic energy and dissipation (eqs. (5.8) and (5.9)) is simultaneously
observed.

The short-time evolution of the energy budget of the system can thus be accurately
described as homogeneous, steady shearflow and the asymptotic behaviour of this system
sets the peak of the turbulent kinetic energy and the time instant where the peak occurs.
This approximation is only valid for small initial values of αL(0).

6. Concluding remarks

The main goal of this investigation was to obtain a better understanding of the influence
of initial conditions on grid turbulence. In order to achieve this goal we have shown how
to describe, statistically, the interaction of a mean field generated behind a grid with a
spatially developing turbulent flow. The application of an eddy-viscosity model allowed
to identify a parameter αL, proportional to the ratio of the mesh-size to the integral
lenghtscale, which appears explicitly in the evolution equations of the energy budget.
It is this αL which is arguably large in active-grids, so that the influence of the initial
conditions in turbulence generated by such grids is rapidly negligible. However for passive
grids this parameter is smaller since the turbulence has to develop through the interaction
with the shear layers. In such flows the influence of the initial conditions is expected to
persist for longer time intervals.
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The k−ε model turns out to be a convenient tool to understand and evaluate the energy
budget in near-grid grid turbulence. That such a simple model can be so performant is
due to several reasons. First of all, we consider integral quantities, such as the kinetic
energy averaged over a period of the grid. This average allows to remove the influence
of turbulent diffusion from our description. Secondly, the used model is known to give
reasonable results for both shear flows and free decay. The present flow does not contain
more complicated effects (mean swirl, rotation, pressure gradients, obstacles, ...) and is
therefore easier to predict than flows which do contain such features.

These insights allow now to give answers to the questions which were raised in the
introduction.
• The sudden transition from the power law evolution of Cε to a constant value is

caused by the rapid decay of the production term in this zone. The turbulence evolves
here from a state where the production is equal or larger than the dissipation, to a state
where the production becomes negliglible.
• The downstream distance where this happens depends on the initial lengthscale ratio

αL. In particular, when this ratio is decreasing, the distance behind the grid where the
kinetic energy peaks increases.
• For active grids this distance is arguably much smaller than for passive grids.
• The peak of the kinetic energy is naturally bounded by the total kinetic energy in

the flow. The minimum fraction of the mean energy converted into turbulent kinetic
energy tends to a constant of order 0.3 for small values of αL(0).

We showed that in this latter limit, of small initial value of the lengthscale ratio, the
time-dependence of the kinetic energy directly behind the peak of the kinetic energy is
steeper than the asymptotic power law exponent, the opposite trend is observed for large
values of αL(0)

We showed that the non-equilibrium, as quantified by the normalized dissipation, can
be evaluated a posteriori from the results of the k − ε model. The next challenge is
to use this estimate to improve the performance of the model in cases where the non-
equilibrium deteriorates its performance. One application is the modeling of turbulent
flow around obstacles, since the non-equilibrium affects the spreading of the radial extent
of the wake (see for example Obligado et al., 2016). This seems an excellent subject for
further research.

Appendix 1: derivation of the equations for K and k.

We start from the incompressible Navier-Stokes equations,

∂tUi + Uj∂jUi = −∂iΠ + ν∂2jUi, (6.1)

and ∂iUi = 0. We decompose the flow into an ensemble averaged part and a fluctuating
part Ui = U i + ui and the pressure divided by density is Π = Π + π. The three compo-
nents of the fluctuating velocity are indicated by (u1, u2, u3) = (u, v, w). Furthermore we
consider the case where the mean flow is unidirectional, homogeneous in the x-direction
and varying in only one direction y perpendicular to the flow direction x,

U i = U(y)δi1. (6.2)

For grid-turbulence this means that we are moving in a reference frame with constant
velocity U0. The equation for the mean field then reads

∂tU = −∂juuj + ν∂2yU. (6.3)
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The equation for the fluctuations reads,

∂tui + U∂xui + v∂yUδi1 = −∂j(δijπ + uiuj) + ν∂2j ui, (6.4)

so that the kinetic energy of the mean field and of the fluctuations obey

1

2
∂tU

2
= −∂j

(
Uuuj

)
+ uv∂yU + ν∂2y

(
1

2
U

2
)
− ν

(
∂yU

)2
, (6.5)

and

1

2
∂tuiui +

1

2
U∂xuiui + uv∂yU = −∂j

(
δijuiπ +

1

2
uiuiuj

)
+ ν∂2j

(
1

2
uiui

)
− ν∂jui∂jui,

(6.6)
The turbulence is considered statistically homogeneous in the x− and z-direction. All
gradients of averaged quantities then vanish in these directions, leading to

1

2
∂tU

2
= −∂y

(
Uuv

)
+ uv∂yU + ν∂2y

(
1

2
U

2
)
− ν

(
∂yU

)2
, (6.7)

and

1

2
∂tuiui + uv∂yU = −∂y

(
vπ +

1

2
uiuiv

)
+ ν∂2y

(
1

2
uiui

)
− ν∂jui∂jui. (6.8)

These equations give the precise, pointwise evolution of the kinetic energy of the flow
with a cross-stream mean profile, in a reference frame moving with the mean-velocity. If
we want to simplify, we have to know more on the mean-profile. In a periodic grid, of
whatever type with a periodic spacing, the mean field will be periodic. Integrating the
kinetic energy over one period, all terms which can be written as the gradient in the
y-direction will cancel out. Defining the average kinetic energies,

K =
1

2M

∫ M

0

U
2
dy (6.9)

k =
1

2M

∫ M

0

uiuidy, (6.10)

we have

K̇ = −p−D (6.11)

and

k̇ = p− ε (6.12)

with

p = − 1

M

∫ M

0

uv∂yUdy (6.13)

ε =
ν

M

∫ M

0

∂jui∂juidy (6.14)

D =
ν

M

∫ M

0

(
∂yU

)2
dy. (6.15)

Equations (6.11) and (6.12) are thus exact for flows with a mean flow which is unidi-
rectional and homogeneous in the streamwise direction and with a transverse periodic
variation.
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Figure 7. Analytical solution for the temporal evolution of the turbulent kinetic energy for
freely decaying turbulence for different initial values of the ratio t0 = k(0)/ε(0).

Appendix 2: Analytical solution for the kinetic energy in the active
grid limit

The total energy of the flow, corresponding to both the fluctuating energy plus the
mean field does not have a source term once the flow has passed the grid. Indeed, summing
equations (6.11) and (6.12), the overall budget is evolving according to,

K̇tot = −εtot. (6.1)

where Ktot = K + k and εtot = D+ ε. In principle, in the present investigation D can be
neglected compared to ε. The k − ε model reduces now to

K̇tot = −ε (6.2)

ε̇ = −Cε2
ε2

k
. (6.3)

This system is not closed, and in the present investigation we have modeled the repartition
of energy between K and k. Let us now consider the limiting case, which was identified
for αL(0) � 1. In this case, which we coined the active grid limit, the energy is almost
immediately transferred to the turbulence such that Ktot ≈ k. For this case the above
system has an analytical solution

k

k(0)
=

(
t+ t0
t0

)−n

(6.4)

with n = 1/(Cε2 − 1) and t0 = nk(0)/(ε(0)). This expression is plotted in figure 7, for
different values of t0.
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