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Abstract

Strongly out-of-equilibrium regimes in magnetic nanostructures exhibit novel properties, linked

to the nonlinear nature of magnetization dynamics, which are of great fundamental and practical

interest. Here, we demonstrate that field-driven ferromagnetic resonance can occur with substantial

spatial coherency at unprecedented large angle of magnetization precessions, which is normally

prevented by the onset of spin-wave instabilities and magnetization turbulent dynamics. Our

results show that this limitation can be overcome in nanomagnets, where the geometric confinement

drastically reduces the density of spin-wave modes. The obtained deeply nonlinear ferromagnetic

resonance regime is probed by a new spectroscopic technique based on the application of a second

excitation field. This enables to resonantly drive slow coherent magnetization nutations around the

large angle periodic trajectory. Our experimental findings are well accounted for by an analytical

model derived for systems with uniaxial symmetry. They also provide new means for controlling

highly nonlinear magnetization dynamics in nanostructures, which open interesting applicative

opportunities in the context of magnetic nanotechnologies.
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Spectroscopy based on the resonant interaction of electromagnetic fields with material

media has been of tremendous impact on the development of physics since the beginning of

the 20th century and remains of crucial importance till nowadays in the study of nanotech-

nologies. In this area, a central role is played by magnetic resonance spectroscopy, which

includes various techniques such as nuclear magnetic resonance (NMR), electron paramag-

netic resonance (EPR), and ferromagnetic resonance (FMR), all based on the excitation of

the Larmor precession of magnetic moments around their equilibrium position [1].

FMR differs from NMR and EPR by the fact that in ferromagnetic media, magnetic

moments are coupled by strong exchange interactions which tend to align them, leading

to a large macroscopic spontaneous magnetization. In these conditions, magneto-dipolar

effects become important and determine large internal fields which enrich both the ground

state, that can be spatially non-uniform, and the dynamics of magnetic moments. The

complex interactions taking place in the media can be described by an appropriate effective

field which sets the time scale of the magnetization precession, and which itself depends on

the magnetization, making the dynamics, for sufficiently large deviations from the ground

state, highly nonlinear [2]. A special role in FMR is also played by the spin-waves (SWs),

which are the collective eigenmodes associated to small magnetization oscillations around

the equilibrium configuration [3]. When pumping fields excite SWs well above their thermal

amplitudes, a rich variety of phenomena emerges, such as the formation of dynamical solitons

[4, 5], SW turbulences and chaos [4, 6–8], and Bose-Einstein condensation of magnons [9],

the quanta of SWs.

Recent developments in magnetic nanotechnologies have also demonstrated that FMR

and SW dynamics can be excited either by microwave magnetic fields or by spin transfer

torques, with the promise of innovative magnonic and spintronic devices for information and

communication technologies [10]. In this area, spin torque nano-oscillators (STNOs) [11–15],

which exhibit strong nonlinear properties [16], have even been successfully implemented to

perform neuromorphic tasks [17, 18].

The complexity of magnetization dynamics when strongly nonlinear regimes set in is usu-

ally detrimental to the reliable control of nanomagnetic devices, such as oscillators, memo-

ries, and logic gates. In this respect, it is important to establish how far from equilibrium

magnetic nanostructures can be driven before the coherent magnetization dynamics be-

comes highly perturbed by the onset of SW instabilities [19]. In this article, we provide a
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crucial advancement in this problem. We demonstrate that FMR in a sufficiently confined

nanostructure can exhibit unprecedented large angle magnetization precessions which are

spatially quasi-uniform. The experimental evidence of the coherence of large precessions is

brought by a new spectroscopic technique based on the application of a second probe exci-

tation field, with frequency close to the one of the main time-harmonic field. This second

excitation is used to drive small eigen oscillations of magnetization around the FMR large

angle periodic oscillations, corresponding to coherent nutations of the magnetization. These

nutation modes are substantially different from the usual SW modes around the ground

state because they correspond to eigenmodes around a far-from-equilibrium state and their

existence is connected to the one of a large coherent precession. Moreover, we show that the

resonant excitation of these nutations can be used to control the nonlinear magnetization

dynamics by affecting the switching fields associated with the bistability of the large angle

FMR response pictured in Fig.1a, which occurs beyond the foldover instability predicted by

Anderson and Suhl [20].

The preservation of coherent magnetization dynamics, which we report on a thin disc

with sub-micrometric diameter, is mainly due to the geometric confinement. It significantly

reduces the density of normal modes and suppresses the nonlinear SW interactions present

in bulk ferromagnets [21, 22]. In addition, in our experiments the ground state is with the

magnetization perpendicular to the plane. In this case, the uniform mode in thin films lies at

the bottom of the SW manifold, so that it has no degenerate mode to couple to [23, 24] and

the angle of the purely circular precession driven by FMR can reach large values [25]. These

combined circumstances allow for the excitation of large-amplitude quasi-uniform precession

of magnetization without simultaneous excitation of other SWs.

The experimental results of the present work also address the important issue of compar-

ison between theory and experiments. In fact, by using the framework of dynamical systems

[2], exact analytical solutions of the Landau-Lifshitz-Gilbert (LLG) equation in the presence

of an arbitrarily large time-harmonic excitation have been found in high symmetry cases

[26] and their stability analyzed [27], but have not been verified experimentally yet. For in-

stance, the hysteretic FMR illustrated in Fig.1a has already been observed in measurements

[28, 29], but with much weaker bistable response characteristics than expected from theory.
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RESULTS

In the following, we investigate the FMR of an individual nanodisc of yttrium iron garnet

(YIG) in the perpendicular configuration. The choice of YIG is natural as it is the magnetic

material with the smallest SW damping, making it attractive to study weakly dissipative

magnetization dynamics in the linear and nonlinear regimes [30]. The nanodisc has a diame-

ter of 700 nm and is patterned from a 20 nm thick YIG film of magnetization µ0Ms = 0.21 T

[31], µ0 being the vacuum permeability. It is saturated out-of-plane by a magnetic field H0

applied along its normal, z. A broadband antenna supplies a spatially uniform, linearly

polarized microwave field of pulsation ω1 oriented in the plane of the nanodisc. It can be

decomposed into the left and right circularly polarized components, only the latter being effi-

ciently coupled to the Larmor precession of the magnetization. In the following, h1 will refer

to the circular amplitude of the excitation field produced by the output power P1 from the

synthesizer. It drives the YIG nanodisc into FMR, thereby opening a precession angle θ of

the magnetization M around H0 and decreasing its longitudinal component Mz = Ms cos θ.

This dynamics is characterized by magnetic resonance force microscopy (MRFM), which

sensitively probes the variation ∆Mz = Ms − Mz through the dipolar force between the

YIG nanodisc and a magnetic nanosphere attached at the end of a soft cantilever [32], as

sketched in Fig.1b. Further details about the sample, the MRFM set-up and the microwave

calibration can be found in the Methods.

Linear spin-wave spectroscopy

In Fig.1c, the SW spectroscopy of the YIG nanodisc is performed at ω1/(2π) = 10.5 GHz

and low power P1 = −30 dBm, which is pulse modulated at the frequency of the MRFM

cantilever to improve the signal to noise ratio. Quantized radial SW modes are excited by the

uniform pumping field [33]. Their spatial profiles indexed by the radial number are shown

above the spectrum. The fundamental Kittel mode is the one excited at the largest field,

µ0HK = 0.569 T, and corresponds to a uniform phase of the transverse magnetization in the

disc. Due to the geometric confinement, it is well separated from other SW modes at lower

field [34]. Its full width at half maximum, µ0∆H = 0.35 mT, is determined at even lower

power (P1 = −38 dBm) to avoid distortions of the resonance line due to the onset of foldover,
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which occurs when the change in effective field becomes comparable to the FMR linewidth,

at P th
1 = −33 dBm or µ0h

th
1 = 0.009 mT (see Methods). It corresponds to a Gilbert damping

parameter α = γµ0∆H/(2ω1) = 4.7 · 10−4, where γ is the gyromagnetic ratio, in agreement

with the value determined from broadband measurements (see Supplementary Fig.S1).

Deeply nonlinear FMR

The FMR spectrum of the YIG nanodisc radically changes at much stronger pumping

fields. Fig.1d shows the measurement with a continuous wave (cw) excitation at P1 =

+12 dBm, i.e., more than four orders of magnitude larger than the threshold of foldover

instability. The cw excitation allows to reveal the bistable character of the nonlinear mag-

netization dynamics. By sweeping down the applied field (red curve) through the resonance

of the Kittel mode, the precession angle substantially increases, which decreases the static

demagnetizing field µ0Mz and shifts the FMR condition ω1 = γµ0(H0 −Mz) to lower mag-

netic field by the same amount. This foldover shift to lower field continues until the pumping

field cannot sustain anymore the large-amplitude magnetization dynamics, causing the sharp

downward jump to the lower stable branch observed at µ0Hdown = 0.381 T. By sweeping

up the applied field (blue curve), an upward jump to the higher stable branch is observed

at µ0Hup = 0.516 T. The extremely hysteretic foldover witnessed in this experiment is re-

markable. Moreover, the maximal foldover shift µ0(HK −Hdown) = 0.188 T corresponds to

a reduction of nearly 90% of µ0Mz induced by the microwave pumping, which translates

into a mean precession angle of 84◦ in the nanodisc. The evolution of the maximal normal-

ized foldover shift as a function of the pumping field h1 is plotted in Fig.1e together with

∆Mmax
z /Ms = 1 −

√
1− 4h2

1/∆H
2 calculated from the macrospin LLG equation [3]. The

measured foldover shift starts to deviate from the macrospin model beyond µ0h1 ' 0.1 mT,

which is an order of magnitude larger than the threshold for foldover, when the angle of the

uniform precession increases above 30◦, corresponding to ∆Mz/Ms ' 15%. This is the signa-

ture of the onset of SW instabilities [19], which is here significantly postponed compared to

what is observed in larger YIG samples, where the Suhl threshold is reached even before the

onset of foldover, for a uniform precession angle of only a couple of degrees [35, 36]. In this

respect, the experimental results presented in Fig.1 demonstrate that the discretization of

the excitation spectrum in nanostructures efficiently inhibits nonlinear interactions between
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SW modes, which drastically modifies the high amplitude magnetization dynamics [21, 22].

Nutation spectroscopy in the rotating frame

We now aim at probing the stability of the large-amplitude magnetization dynamics

demonstrated above, which is periodic at ω1 in the laboratory frame, hence referred to as

P-mode [26]. In the frame rotating with h1 at ω1 around the z-axis, the magnetization M0

of a P-mode is fixed at a polar angle θ0 and a phase lag ϕ0 (see Fig.2a and supplementary

information). For this, we conduct two-tone measurements, where in addition to the strong

cw excitation h1 at ω1 a second weak microwave field h2, pulse modulated at the cantilever

frequency, is applied at ω2, as shown in Fig.2b. MRFM is used to simultaneously detect

∆M1 induced by the main cw pumping at ω1 (by monitoring the cantilever frequency, as

in Fig.1d) and the additional change in longitudinal magnetization, ∆M2, induced by the

second excitation at ω2 (by monitoring the amplitude of the cantilever vibrations, as in

Fig.1c). The former informs us about the time-harmonic steady state regime driven by h1,

whereas the latter allows us to spectroscopically probe the eigen excitations on top of this

P-mode. The ∆M2 spectrum measured at constant bias field µ0H0 = 0.52 T by sweeping

ω2/(2π) at low power P2 = −16 dBm in the vicinity of the frequency ω1/(2π) = 10.5 GHz

of the main pumping (P1 = +8 dBm) is shown in Fig.2d. It displays two narrow resonance

peaks centered at 10.2 GHz and 10.8 GHz, i.e., symmetrically with respect to ω1/(2π).

This means that in the frame rotating with h1 at ω1, the magnetization is precessing at

(ω2 − ω1)/(2π) = ±ωP,0/(2π) = ±0.3 GHz around its equilibrium position M0 (cf. Fig.2a).

In other words, it is submitted to a slow nutation motion in the laboratory frame. The

dependence of the nutation frequency ωP,0 on the main pumping field h1 at fixed µ0H0 =

0.52 T is presented in Fig.2e, whereas its evolution measured as a function of the down

swept field H0 at fixed P1 = +8 dBm and P1 = +1 dBm is shown in the 2D spectroscopy

maps of Fig.2f and 2h, respectively.

Following the theoretical approach of ref.[27], it is possible to calculate analytically the

frequency ωP,0 of spatially uniform nutation around a given P-mode based on the macrospin

LLG equation. Technical details are given in the Methods (the full derivation is presented in

the supplementary information). In the limit of small damping, α� 1, it can be expressed
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as a function of h1 and the angles θ0 and ϕ0 of the P-mode as follows:

ω2
P,0

γ2
=
µ0h1 cosϕ0

sin θ0

(
µ0h1 cosϕ0

sin θ0

+ µ0Ms sin2 θ0

)
. (1)

This analytical expression is plotted as green dashed lines in Figs.2e, 2f and 2h, using the

amplitude h1 of the main driving field in the experiments, the angle of precession at the bias

field H0 determined from the normalized foldover shift, cos θ0 = (HK − H0)/Ms, and the

phase lag which satisfies γµ0h1 sinϕ0 = αω1 sin θ0 in the macrospin model. It reproduces

rather well the experimental data, except in regions where the level of excitation is very large,

due to the deviation from the macrospin behavior already observed in Fig.1e. In addition,

we have conducted full micromagnetic simulations in the time domain (see Methods), which

allow us to extract the nutation frequency from the relaxation of the magnetization towards

the steady state regime driven by h1, shown in Fig.2c. The obtained results, plotted as red

dotted lines in Figs.2e, 2f and 2h, quantitatively agrees with the data on the full range of

parameters investigated.

The dependence of the nutation frequency on h1 observed in Fig.2e can be explained

as follows. There is a minimum amplitude of µ0h1 ' 0.15 mT to drive the P-mode at

µ0H0 = 0.52 T, which corresponds to a normalized foldover shift (HK−H0)/Ms = 23%, i.e.,

an angle of precession θ0 ' 40◦. Above this amplitude, the nutation frequency is defined and

increases with h1 as predicted by Eq.1, which shows that there are two torques driving the

nutation dynamics of the magnetization. The first one is linear, and directly provided by

h1, which sets the Rabi frequency in a magnetic resonance experiment [37]. The second one

is a demagnetizing torque specific to nonlinear FMR, which stiffens the nutation resonance.

We now interpret the nutation spectroscopy maps of Figs.2f and 2h, where ∆M2 is mea-

sured at fixed h1 by sweeping H0 and ω2. When H0 > HK , the magnetization dynamics

is driven off resonantly by h1 and has small amplitude. Hence, the weak microwave field

h2 simply excites the linear Kittel resonance on top of it, which explains the bright linear

dispersion ω2 = γµ0(H0−Ms) observed in this region. The situation is quite different when

H0 < HK . In this case, h1 drives the strong foldover regime demonstrated in Fig.1 upon

sweeping down H0, and h2 excites the magnetization dynamics on top of the corresponding

P-mode. The evolution of the two resonance branches symmetrically distributed around the

main pumping frequency ω1 as a function of H0 is reproduced qualitatively by Eq.1, and

quantitatively by micromagnetic simulations. The fact that the upper branch is continuous
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with the linear Kittel resonance branch observed above HK indicates that the perturbation

of the P-mode driven by h2 has a uniform phase, i.e., corresponds to a uniform nutation of

the magnetization.

The experimental results presented in Fig.2 also demonstrate that the weak resonant

excitation of the nutation mode can destabilize the strong foldover dynamics. Figs.2g and

2i display the evolution of ∆M1 induced by the cw pumping h1 at ω1, while exciting the

nutation dynamics with h2 as a function of H0 and ω2, whose ∆M2 spectroscopy is presented

in Figs.2f and 2h, respectively. In these 2D maps, the foldover breakdown occurring at

Hdown is easily identified thanks to the associated sharp change of ∆M1, and is anticipated

as the nutation mode is excited. This is particularly clear in Fig.2i, where the maximal

foldover shift µ0(HK −Hdown) is reduced by almost 0.05 T when |ω2 − ω1|/(2π) ' 0.2 GHz,

which corresponds to the nutation resonance. Moreover, these data suggest that higher

order nutation modes can be excited by h2, since an anticipated foldover breakdown is also

observed at |ω2 − ω1|/(2π) ' 0.35 GHz.

In order to investigate these other nutation modes, we perform the same measurements as

in Figs.2f–i, but for larger detunings ω2−ω1 (P2 is also increased from−19 to−13 dBm). The

results obtained at P1 = +1 dBm are reported in Figs.3b–c (those obtained at P1 = +8 dBm

are presented in Supplementary Fig.S2). The spectroscopy map of the SW modes excited

by h2 in the absence of h1 is shown in Fig.3a. It displays the linear dispersion relation of

the radial SW modes excited by the uniform field h2, already discussed in Fig.1c. Due to

the strong foldover regime driven by h1 at H0 < HK in Fig.3b, each of these radial SW

branches transforms into a pair of branches symmetric around ω1. Additionally, there is a

pair of branches which appears at twice the main nutation frequency, which is due to the

ellipticity of the trajectory, apparent on Fig.2c. The macrospin approach used to derive

Eq.1 cannot be used to account for these higher order nutation modes, although plane wave

perturbations to the P-mode can also be analytically calculated [27]. We therefore use

micromagnetic simulations to calculate the SW nutation spectra shown in Fig.3d, which

are in good agreement with the experiments. The extracted SW nutation modes profiles

(see Methods), shown as insets in Fig.3d, indicate that there is some continuity between

the radial SW modes excited in the linear regime on top of the equilibrium magnetization

and the nutation modes excited on top of the P-mode driven in the nonlinear regime by h1.

Finally, Fig.3c confirms that the excitation of the nutation resonances can destabilize the
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strong foldover dynamics.

DISCUSSION

As in the case of a spinning top, the nutation of magnetization demonstrated above is

made possible by the specific properties of the dynamics on the unit sphere [2]. Namely, it

is topologically allowed for the magnetization to oscillate around its fixed point M0 (θ0, ϕ0)

in the rotating frame, which is set by the drive h1. The nutation frequency results from

the balance of torques acting on the angular momentum, and is given by Eq.1 in the case

of a macrospin governed by the LLG equation. The accuracy of the latter to account for

the experimental data means that the coherent precession of the magnetization vector is

dominating the deeply nonlinear driven dynamics, despite the signatures of SW instabilities

observed at very large pumping power. Their main effect is to slightly reduce the nutation

frequency, which is well captured by full micromagnetic simulations. This can be ascribed

to the shift of the phase between the pumping field and the average magnetization [38]

observed in our simulations, a key effect to explain the above threshold dynamics [7, 39].

The nutation spectroscopy of magnetization thus allows a more detailed investigation of the

highly nonlinear regime, where auto-oscillation instabilities [6, 23, 40, 41] and instability

patterns [42] have been evidenced. Moreover, its quantitative understanding, made possible

thanks to the low density of SW modes in nanomagnets, should enable to test further the

LLG equation governing the motion of magnetization against experimental measurements.

Our results also highlight that the dynamical states driven by a high power microwave

signal can be controlled using a second signal with much lower power by the resonant ex-

citation of the nutation modes. This could be applied in devices taking advantages of the

bistable magnetization dynamics for microwave signal processing [28], in analogy to mi-

crowave assisted magnetization switching [43–45]. Furthermore, the frequency selectivity

and energy efficiency of nutation excitations provide new potentials for the scheme of neu-

romorphic computing. Cognitive tasks have already been implemented using the nonlinear

dynamics of nanomagnets, from the transient regime of a single STNO [17] to the collective

behavior of mutually coupled STNOs controlled by external microwave signals [18, 46]. An

appropriate use of the nutation dynamics of magnetization would allow to gain additional

control on nonlinear dynamics, which is highly desired in this field.
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METHODS

Sample preparation. A 20 nm thick Y3Fe5O12 (YIG) film was grown by pulsed laser

deposition on a (111) Gd3Ga5O12 (GGG) substrate, as described in ref.[31]. It was used

to pattern the studied YIG nanodisc by electron lithography and dry etching. After the

insertion of a 50 nm thick SiO2 insulating layer, a 150 nm thick and 5 µm wide gold antenna

was defined on top of the nanodisc to provide the microwave excitation [34].

MRFM set-up. The magnetic resonance force microscope is located between the poles

of an electromagnet and operated under vacuum (10−6 mbar) at a stabilized temperature

of 288 K. The cantilever is an Olympus Biolever (spring constant 5 mN·m−1) with a 700-

nm-diameter sphere of an amorphous FeSi alloy (magnetic moment 0.28 pA·m2) glued to

its apex. In this study, MRFM spectroscopy is achieved by placing the center of this mag-

netic nanosphere at a distance of 1.5–1.8 µm above the center of the YIG nanodisc. The

strayfield of the MRFM probe (10–16 mT) is subtracted from the corresponding spectra.

The displacement of the cantilever is monitored using optical techniques. Its mechanical

frequency (fc ≈ 12.3 kHz) is tracked using a phase-locked loop and its vibration amplitude

stabilized to 4 nm using a piezoelectric bimorph. When the cw microwave pumping excites

the magnetization dynamics in the sample, its longitudinal component is reduced, so the

static dipolar force with the magnetic probe diminishes. The associated variation of the

cantilever frequency provides a quantitative magnetometry of the sample [47]. In order to

improve the signal to noise ratio, the microwave excitation is pulsed on and off at fc. In

that case, the cantilever vibrations induced by the magnetization dynamics excited in the

sample are enhanced by the quality factor Q ≈ 2000 of the mechanical detection [32].

Microwave field calibration. We use the onset of foldover as a mean to calibrate the

amplitude of the excitation field produced by the microwave antenna at the sample location

[33]. At the threshold of foldover instability hth
1 = 0.62∆H3/2/M

1/2
s [20], and the slope of the

FMR curve becomes infinite on the low field side of the resonance, which is experimentally

observed at 10.5 GHz for an output power from the synthesizer P th
1 = −33 dBm. Using

the FMR line width measured in the linear regime, one gets µ0h
th
1 = 0.009 mT, i.e., a

calibration factor a = 0.4 mT/
√

mW between microwave field and power. To get a better

precision, we also fit the dependences on power of the critical fieldsHdown andHup determined

experimentally beyond the foldover onset [29], which yields a = 0.41± 0.03 mT/
√

mW.
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Analytical calculations. The nonlinear FMR excited in a uniaxial system by the

superposition of two time-harmonic external fields, hac(t) = h1(t) + h2(t) with |h2(t)| �

|h1(t)|, is calculated based on the macrospin LLG equation. The main stages of the analytical

derivation presented in the supplementary information are the following. The LLG equation

is first written in the frame of reference rotating around the z-axis at the angular frequency

ω1 of the dominant time-harmonic component: ṁ−αm×ṁ = −m×(heff − ω1ez)+αω1m×

(ez ×m) where heff = κeffmzez + h0ez + hac(t), ṁ is the time derivative of the normalized

magnetization vector taken in the rotating frame, h0 the normalized bias field, ez the unit

vector along it, and κeff the effective anisotropy constant. It is then written in spherical

coordinates and considered in the case where only the right circularly polarized component

of h1 is applied. This allows to find its equilibrium points m0 (P-modes), or equivalently

(θ0, ϕ0), and to analyze the foldover of FMR [26]. The standard analysis of the stability

of these P-modes allows to calculate the nutation frequency given in Eq.1 [27]. Shortly,

m is expanded around m0 to linearize the LLG equation, and the complex amplitudes of

magnetization perturbations are calculated in the rotating frame by projecting them in the

plane (e1, e2) orthogonal to m0, where sin θ0e1 = (ez×m0)×m0 and sin θ0e2 = (ez×m0).

Finally, the P-mode linear response to the small additional microwave field h2 is studied.

Micromagnetic simulations. The magnetization dynamics in the YIG nanodisc is

calculated using the python module MicroMagnum, a micromagnetic finite difference simu-

lator which can be runned on GPU [48]. The nominal geometry of the nanodisc (diameter

700 nm, thickness 20 nm) is discretized using a 128×128×1 rectangular mesh. The following

magnetic parameters are used: Ms = 1.67 · 105 A·m−1, Aex = 4.3 · 10−12 J·m−1 (exchange

length ' 16 nm), γ/(2π) = 28.5 GHz·T−1·s−1, and α = 5 · 10−4. The bias magnetic field is

applied along the normal of the disc. The static equilibrium configuration of the magnetiza-

tion is calculated at 0.59 T. Then a linearly polarized excitation field of constant amplitude

is applied at 10.5 GHz in the plane of the disc, and for each value of the bias magnetic field,

which is decreased by steps of 0.02 T, the resulting magnetization dynamics is calculated over

100 ns with a typical step of 3 ps. This allows to reproduce the foldover regime demonstrated

in the experiments and to calculate the nutation frequencies. Those are obtained by fast

Fourier transformation of the transient dynamics of the average magnetization simulated at

each bias field. The nutation mode profiles are obtained by stroboscopically averaging the

magnetization dynamics at the corresponding nutation frequencies in the rotating frame.
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FIGURES

FIG. 1. Ultrastrong foldover of FMR. (a) Illustration of hysteretic foldover in the nonlinear

regime of FMR, where jumps between the two stable branches of the dynamics occur at Hdown

and Hup. The dotted line is the unstable branch. The black Lorentzian curve centered at HK

corresponds to linear FMR. (b) Schematics of the experiment. A microwave field h1 of pulsation

ω1 drives the magnetization M of a YIG nanodisc into FMR, opening a precession angle θ around

the perpendicularly applied field H0. The associated variation in the longitudinal component

of the magnetization, ∆Mz, is mechanically detected by the cantilever of a magnetic resonance

force microscope. (c) Spin-wave spectroscopy performed at 10.5 GHz in the linear regime. The

profiles of the quantized radial SW modes, calculated using a micromagnetic code, are shown above

(different colors display regions precessing in opposite phase). (d) FMR spectrum in the deeply

nonlinear regime exhibiting ultrastrong hysteretic foldover and nearly complete suppression of Mz.

(e) Evolution of the maximal normalized foldover shift as a function of the pumping field h1. The

dashed line shows the behavior expected for a macrospin and the inset a zoomed view of the low

amplitude regime.
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FIG. 2. Nutation of magnetization. (a,b) Principle of the experiment. A low power pulse

modulated microwave field h2 of pulsation ω2 is added to the main pumping cw field h1. This

enables the spectroscopy in the frame rotating with h1 at ω1, where the magnetization M0 of the

P-mode is fixed at an angle θ0 and a phase lag ϕ0. (c) Relaxation trajectory of the magnetization

towards the P-mode in the plane (e1, e2) orthogonal to M0 defined in the Methods, calculated using

micromagnetic simulations. (d) Spectroscopy performed at ω1/(2π) = 10.5 GHz and µ0H0 = 0.52 T

as a function of ω2. The two resonance peaks symmetric with respect to ω1 correspond to a motion

of nutation in the laboratory frame. (e) Evolution of the nutation frequency as a function of

the main pumping field h1 at fixed µ0H0 = 0.52 T. (f) Nutation spectroscopy map at fixed h1

of the small amplitude dynamics ∆M2 excited by ω2 as a function of the down swept field H0.

(g) Simultaneous measurement of ∆M1 induced by the main pumping at ω1. (h,i) Same as (f,g)

for a smaller main pumping power. In panels (e)–(i), the green dashed lines show the analytical

predictions from Eq.1 and red dotted lines the results from micromagnetic simulations.

FIG. 3. Spin-wave nutation modes. (a) Spectroscopy map of the SW modes excited by the

low power excitation at ω2 in the absence of the main pumping at ω1/(2π) = 10.5 GHz. They

correspond to the same radial modes as probed in the linear regime in Fig.1c, whose profiles are

recalled as insets. (b) ∆M2 spectroscopy map of the SW nutation modes excited by the low power

excitation at ω2 in the presence of the main excitation at ω1 (P1 = +1 dBm). (c) Simultaneous

measurement of ∆M1 induced by the main pumping at ω1. (d) Micromagnetic simulations of the

experimental data shown in (b). The SW mode profiles shown as insets are extracted at some

specific ω2 − ω1 and H0. In all the panels, the perpendicular field H0 is swept down.
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FIG. 4. (Supplementary Fig.S1) Gilbert damping of the YIG nanodisc. (a) FMR peak

measured at ω1/(2π) = 10.5 GHz and P1 = −38 dBm. A Lorentzian fit to the data yields the

full width at half maximum µ0∆H together with the associated error bar. (b) Dependence on

excitation frequency of µ0∆H determined in the linear regime. A linear fit to the data yields the

Gilbert damping parameter of the YIG nanodisc.

FIG. 5. (Supplementary Fig.S2) Spin-wave nutation modes at larger main pumping power.

(a) Spectroscopy map of the SW modes excited by the low power excitation at ω2 in the absence

of the main pumping at ω1/(2π) = 10.5 GHz. (b) ∆M2 spectroscopy map of the SW nutation

modes excited by the low power excitation at ω2 in the presence of the main excitation at ω1

(P1 = +8 dBm). (c) Simultaneous measurement of ∆M1 induced by the main pumping at ω1.

(d) Micromagnetic simulations of the experimental data shown in (b). In all the panels, the

perpendicular field H0 is swept down.
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