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Quotients and invariants of AS-sets equipped with a finite group

action

Fabien Priziac

Abstract

Using the geometric quotient of a real algebraic set by the action of a finite group G,
we construct invariants of G-AS-sets with respect to equivariant homeomorphisms with
AS-graph, including additive invariants with values in Z.
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6 Properties of the equivariant virtual Poincaré series and applications 37

1 Introduction

In [14], C. McCrory and A. Parusiński showed the existence (and the uniqueness) of an ap-
plication β which associates to any affine algebraic variety a polynomial in Z[u], and which
is additive, invariant with respect to biregular isomorphisms and coincides with the classical
Poincaré polynomial with coefficients in Z2 := Z/2Z on compact nonsingular varieties : they
called β the virtual Poincaré polynomial. The coefficients of β are called the virtual Betti
numbers. In [7], G. Fichou extended β to the wider and more flexible class of AS-sets (see
below definition 3.6) and proved that the virtual Poincaré polynomial is an invariant with re-
spect to Nash isomorphisms (i.e. semialgebraic and analytic isomorphisms). Finally, in [15],
C. McCrory and A. Parusiński associated to each AS-set X a filtered complex NC∗(X), called
the Nash constructible filtration, which induces a spectral sequence from which one can recover
the virtual Betti numbers. Since the Nash-constructible filtration is invariant under homeo-
morphisms with AS-graph, so is the virtual Poincaré polynomial (it is actually invariant under
bijections with AS-graph).

In this paper, we consider AS-sets equipped with a biregular action of a finite group G
(defined on the projective Zariski closure). We associate to each such G-AS-set X a filtered
complex NC∗(X;G), called the equivariant Nash constructible filtration (definition 5.1). By
construction, the equivariant Nash constructible filtration is invariant with respect to equiv-
ariant homeomorphisms with AS-graph. As in the non-equivariant case, we can extract, from
the induced spectral sequence, additive invariants βq( · ;G), q ∈ N, with coefficients in Z (the-
orem 5.12) : we call them the equivariant virtual Betti numbers (they are different from the
equivariant virtual Betti numbers of [9]). They are invariant with respect to equivariant home-
omorphisms with AS-graph (because so is NC∗( · ;G)) and coincide with the dimensions of
equivariant homology groups HG

∗ (X) if X is compact and nonsingular. The equivariant ho-
mology HG

∗ (X) is the equivariant singular homology of X with coefficients in Z2, which can
be computed as the singular homology of the (topological) quotient of X ×EG by G, with EG
being any contractible topological space equipped with a free action of G. The infinite real
Stiefel manifold V|G|(R

∞) is such a space.
The construction of the equivariant Nash contructible filtration deeply involves the prop-

erties of the geometric quotient of a real algebraic set by a finite group action. Indeed, if X
is a G-AS-set, NC∗(X;G) is an (inductive) limit of the Nash constructible filtrations of quo-
tients X × V k/G, k ∈ N. For k ∈ N, V k is the real Stiefel manifold V|G|(R

k) (it is a compact
nonsingular real algebraic set) equipped with a free action of G. For the equivariant Nash con-
structible filtration to be well-defined, the quotients X × V k/G have to be given a compatible
AS-structure. Actually, each X × V k is an example of free G-AS-set (definition 3.12) and the
quotient of a free G-AS-set by G can be given a well-defined AS-structure (corollary 3.11).

For compact G-AS-sets, the equivariant Nash constructible filtration induces a filtration
on HG

∗ that we call the equivariant weight filtration (definition 5.8) in analogy with the non-
equivariant case ([15]). It is different from the equivariant weight filtration of [18] (which was
based on a different equivariant homology).
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Constructing the equivariant virtual Betti numbers, we have in mind their future use in the
classification of real analytic germs. Denote by β( · ;G) the generating function of the equiv-
ariant virtual Betti numbers : we call it the equivariant virtual Poincaré series. Even if it is
different from the equivariant virtual Poincaré series of [9], it shares with it several properties
including one (proposition 6.1) that should allow to define an invariant, in terms of (motivic)
zeta functions, for an equivariant arc-analytic (see [6]) or equivariant blow-Nash equivalence
(see [8]) of equivariant Nash germs, in a way similar to [19] and [20]. An advantage of our
equivariant virtual Poincaré series is that it is an invariant with respect to equivariant homeo-
morphism with AS-graph, which we do not know for the equivariant virtual Poincaré series of
[9]. On the other hand, G. Fichou’s equivariant virtual Poincaré series encodes the dimension,
which is not the case for ours : the two equivariant virtual Poincaré series have to be thought
as complementary.

The structure of the paper is as follows.
In section 2, we review the definition and properties of the geometric quotient of a real

algebraic set by a finite group action. We focus on the properties that we need in the rest of
the paper, such as functoriality or regularity, making precise some proofs.

In section 3, we give a precise well-defined (up to Nash isomorphism) and functorial AS-
structure on the quotient of a free G-AS-set, that is a G-AS-set such that the action of G on
its compact arc-symmetric closure is free. This uses the key proposition 3.9.

In section 4, we give the definition and the basic properties of the equivariant homology and
cohomology with respect to which are constructed the equivariant AS invariants of section 5.
The first paragraph is dedicated to the equivariant singular homology and cohomology, defined
using the Borel construction. We show in particular that they can be computed using the
Stiefel manifolds and the real geometric quotient (proposition 4.5 and corollary 4.6). In the
second part, we define the equivariant homology (and cohomology) with closed supports, as the
homology of the inductive limit of the semialgebraic chain complexes with closed supports ([15]
Appendix) of the quotients X × V k/G, k ∈ N. The two equivariant (co)homologies, singular
and with closed supports, coincide on compact G-AS-sets (lemma 4.9).

In section 5, we construct the equivariant Nash constructible filtration : if X is G-AS-set,
it is the inductive limit of the Nash constructible filtration of the AS quotients X × V k/G.
We then prove three essential properties of the equivariant Nash constructible filtration : it is
functorial with respect to equivariant proper continuous maps with AS graph (theorem 5.3),
it is additive with respect to equivariant closed inclusions in terms of a short exact sequence
(theorem 5.4) and the lines of the induced spectral sequence are bounded (theorem 5.11). We
then define the equivariant virtual Betti numbers (theorem 5.12). At the end of this section,
we also define the cohomological counterpart of the equivariant Nash constructible filtration
(definition 5.19) and give its properties.

The final section of this paper is dedicated to some further properties of the equivariant
virtual Poincaré series, including the statement that should be useful for the classification of
real analytic germs (proposition 6.1). The other proposition 6.3 gives the behaviour of the
equivariant virtual Poincaré series on free G-AS-sets and on AS-sets equipped with a trivial
action of G.

Throughout this paper, G will always denote a finite group and Z2 := Z/2Z will denote the
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two-elements field.

Acknowledgements. The author wishes to thank J.-B. Campesato and G. Fichou for
useful discussions and comments.

2 Quotient of a real algebraic set by a finite group action

2.1 Construction of the geometric quotient of a real algebraic set by a poly-

nomial finite group action

Let G be a finite group of order N ∈ N \ {0}.
In this section, we will consider a real algebraic set X ⊂ R

d on which G acts via polyno-
mial maps αg : X → X, g ∈ G. We are going to recall the construction of the semialgebraic
geometric quotient of X by G (see also for instance [22] or [16]).

Denote by P(X) := R[x1, . . . , xd]/I(X) the R-algebra of polynomial functions on X. The
action of G on X induces an action of G on P(X), defined by

g · f := f ◦ α−1
g

if f ∈ P(X) and g ∈ G. Since P(X) is a finitely generated R-algebra and G is finite, the
subalgebra P(X)G of invariant polynomial functions on X is a finitely generated R-algebra as
well (see for instance [24] Algebraic Appendix, section 4) : there exist invariant polynomial
functions p1, . . . , pm on X which generate P(X)G as an R-algebra.

Now, consider the complexification XC ⊂ C
d of X : it is, by definition, the Zariski closure

of X considered as a subset of Cd (see [1] II.2). Notice that the coordinate ring C[XC] of XC

is the tensor product P(X) ⊗R C. We extend linearly the action of G on P(X) into an action
on C[XC], which corresponds (via the contrafunctorial equivalence between the category of
complex algebraic sets and the category of reduced finitely generated C-algebras, given by the
Nullstellensatz) to an action of G on XC (the “complexified” action being given by the same
polynomials with real coefficients as for the action of G on X).

Since the action of G on C[XC] = P(X) ⊗R C is induced by linear extension, we have
C[XC]

G = P(X)G ⊗R C and the C-algebra C[XC]
G is then generated (as a C-algebra) by the

invariant real polynomial functions p1, . . . , pm (considered as functions on XC).
Therefore, the reduced finitely generated C-algebra C[XC]

G corresponds to the complex
algebraic subset Z := V ({P ∈ C[z1, . . . , zm] | P (p1, . . . , pm) = 0}) of C

m and the inclusion
C[XC]

G ⊂ C[XC] corresponds to the polynomial map

π :
XC → Z
x 7→ (p1(x), . . . , pm(x))

.

The morphism π is a finite map ([24] I.5.3 Example 1), hence surjective ([24] I.5.3 Theorem 4).
Finally, we shall consider the image Y := π(X) of X by π. Since π is given by real

polynomials, Y is a semialgebraic subset of Rm ([3] Chap. 2). Notice also that, if we denote
by W the Zariski closure of Y in R

m, then Z =WC (see [16] Lemma 1.3).
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Definition 2.1. We call π : X → Y the geometric quotient of X by G. By abuse of terminology,
we will also call Y the geometric quotient of X by G.

Remark 2.2.

• A (direct) correspondence between the real algebraic setW and the real finitely generated
R-algebra P(X)G is given by the real Nullstellensatz ([3] Theorem 4.1.4).

• Different sets of generators for P(X)G provides isomorphic geometric quotients, via (real)
polynomial mappings (consider the complexified algebra C[Z] = P(X)G⊗RC : two differ-
ent sets of real invariant generators provide isomorphic algebraic sets via real polynomial
mappings).

• If x1, x2 ∈ X then π(x1) = π(x2) if and only if there exists g ∈ G such that x2 = αg(x1)
(see for instance [24] Chapter 1, section 2.3, Example 11).

Example 2.3. 1. Consider the action of G := Z/2Z on X := R
2 given by the involu-

tion σ : (x1, x2) 7→ (−x1, x2). Then P(X) = R[X1,X2], P(X)G = R〈X2
1 ,X2〉 and

π : (x1, x2) 7→ (x21, x2), so that the geometric quotient of X by G is the half-plane{
(y1, y2) ∈ R

2 | y1 ≥ 0
}
.

2. Now, consider the action of G on X given by σ : (x1, x2) 7→ (−x1,−x2). We have
P(X)G = R〈X2

1 ,X
2
2 ,X1X2〉 and π : (x1, x2) 7→ (x21, x

2
2, x1x2), so that the geometric

quotient of X by G is the half elliptic cone
{
(y1, y2, z) ∈ R

3 | z2 = y1y2, y1 ≥ 0, y2 ≥ 0
}
.

2.2 Basic properties of the construction of the real geometric quotient

We give some basic properties of the previous construction. First, it is functorial with respect
to polynomial maps :

Lemma 2.4. Let X and X ′ be real algebraic sets on which G acts via polynomial maps, and
let π : X → Y and π′ : X ′ → Y ′ be the respective geometric quotients of X and X ′ by G. If
ψ : X → X ′ is an equivariant polynomial map, there exists a unique polynomial map ρ : Y → Y ′

such that the following diagram

X
ψ
−→ X ′

↓ π ↓ π′

Y
ρ
−→ Y ′

commutes.

Proof. The polynomial map ψ : X → X ′ induces, by complexification, a polynomial map ψC :
XC → X ′

C
(given by the same polynomials with real coefficients), which is also equivariant (with

respect to the complexified actions of G) thanks to the functoriality of the complexification
process.

This morphism corresponds to a morphism of C-algebras ψ∗
C
: C[X ′

C
] → C[XC]. We then

consider the restriction C[X ′
C
]G → C[XC]

G of this last morphism (ψC is equivariant), which
corresponds to a polynomial map ρ : Z → Z ′, (where Z and Z ′ are the respective geometric
quotient of XC and X ′

C
), given by real polynomials.
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Precisely, we can describe the polynomial map ρ in the following way. Suppose that (P(X))G

is generated by the real polynomial functions p1, . . . , pm and that (P(X ′))G is generated by
q1, . . . , qm′ . For each j ∈ {1, . . . ,m′}, we have ψ∗

C
(qj) = qj ◦ ψC = qj ◦ ψ ∈ (P(X))G (ψ is

equivariant), so that ψ∗
C
(qj) is a real polynomial Qj in the real polynomial functions p1, . . . , pm.

If z ∈ Z, we then have
ρ(z) = (Q1(z), . . . , Qm′) (1)

Using this description of the map ρ, we can check that the diagram

XC

ψC−→ X ′
C

↓ π ↓ π′

Z
ρ
−→ Z ′

commutes. In particular, ρ(Y ) = ρ(π(X)) = π′(ψ(X)) ⊂ Y ′ and the diagram

X
ψ
−→ X ′

↓ π ↓ π′

Y
ρ
−→ Y ′

commutes as well (notice that we also have a restriction ρ :W →W ′ if W and W ′ denote the
respective (real) Zariski closures of Y and Y ′).

Furthermore, we can also check functoriality by using the description (1) of the map ρ.

Remark 2.5. In particular, if X is embedded in some other RD via an equivariant polynomial
embedding, the semialgebraic geometric quotient ofX and the semialgebraic geometric quotient
of its embedding are isomorphic via polynomial maps.

If we have an equivariant inclusion of real algebraic sets X ⊂ X ′, the geometric quotient of
X can be naturally embedded in the geometric quotient of X ′ :

Lemma 2.6. Keep the notation of previous lemma 2.4 and suppose that we have an equivariant
inclusion X ⊂ X ′. It induces an equivariant inclusion Y ⊂ Y ′ of the corresponding geometric
quotients.

Proof. The inclusion i : X →֒ X ′ induces a surjective morphism of R-algebras i∗ : P(X ′) →
P(X) given by the restriction. Since i is equivariant, we can consider the restriction morphism
i∗ : P(X ′)G → P(X)G, which is surjective as well since G is finite (if f = i∗(h) ∈ P(X)G with

h ∈ P(X ′), write f = i∗
(

1
|G|

∑
g∈G g · h

)
).

Consequently, if theR-algebra P(X ′)G is generated by invariant polynomial functons p1, . . . , pm,
the invariant polynomial functions i∗(p1), . . . , i

∗(pm) generate the R-algebra P(X)G.
It follows that the morphism i∗

C
: C[Z ′] = C[X ′

C
]G → C[Z] = C[XC]

G (which is also
surjective) corresponds to the closed embedding Z ⊂ C

m → Z ′ ⊂ C
m given by (z1, . . . , zm) 7→

(z1, . . . , zm), so we can consider it as an inclusion Z ⊂ Z ′ ⊂ C
m. Hence the inclusion Y ⊂ Y ′ ⊂

R
m.
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Remark 2.7. In particular, if the action of G on X comes from the action of G on an algebraic
set X ′ ⊃ X, its geometric quotient is (up to polynomial isomorphim) the image of X under
the quotient map of X ′.

Example 2.8. 1. Consider the action of G := Z/2Z on the unit circle S
1 given by the

involution σ : (x1, x2) 7→ (−x1, x2). We then apply the quotient map π of example
2.3 (i) to obtain that the geometric quotient of S

1 by G is the semialgebraic subset{
(y1, y2) ∈ R

2 | y1 + y2 = 1, y1 ≥ 0
}
.

2. Now, consider the free action of G on S
1 given by the involution σ : (x1, x2) 7→ (−x1,−x2).

We apply the quotient map π of example 2.3 (ii) and the geometric quotient of S1 by G
is the section of the half elliptic cone by the hyperplane of equation y1 + y2 = 1, hence
an ellipse (it is then polynomially isomorphic to the unit circle).

3. Consider the free action of G on the hyperbola X := {x1x2 = 1} of R2 given by the
same involution σ : (x1, x2) 7→ (−x1,−x2). The geometric quotient of X by G is the
section of the half elliptic cone by the hyperplane y3 = 1, hence the “half-hyperbola”
{y1y2 = 1, y1, y2 ≥ 0, y3 = 1} (polynomially isomorphic to the half-hyperbola {x1x2 =
1, x1, x2 ≥ 0} of R2).

2.3 Geometric properties of the real geometric quotient

Let X be a real algebraic set acted by G via polynomial maps αg : X → X, g ∈ G, and
π : X → Y ⊂W be the associated quotient map, where W is the Zariski closure of Y .

We will give some geometric properties of the quotient : we begin by checking that the
geometric quotient preserves the dimension.

Lemma 2.9. We have
dimY = dimW = dimX.

Proof. The left-hand equality follows from the fact that W is the Zariski closure of Y ([3]
Proposition 2.8.2). To establish the right-hand side equality, we use the fact that the dimension
of X as a real algebraic set is equal to the dimension of XC as a complex algebraic set (see
[1] II.2, in particular Proposition 2.2.1.d and Proposition 2.2.5.b). Furthermore, the geometric
quotient map π : XC → Z is a finite map (see [24] I.5.3 Example 1) : this means that the
coordinate ring of XC is integral over the coordinate ring of Z, in particular the two coordinate
rings have the same Krull dimension, that is dimXC = dimZ. Since Z = WC, we obtain
dimW = dimX.

We then prove the essential fact that the image under the quotient map of a nonsingular
point with trivial stabilizer is nonsingular :

Proposition 2.10. Let x be a nonsingular point of X. If Gx = {e}, then π(x) is a nonsingular
point of W .

Proof. We first follow the proof of [24] II.2.1 Example, showing that it works over the real
algebraic sets as well.
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Denote by n the dimension of the real algebraic set X. Since x is a nonsingular point of
X, by definition, the local ring RX,x at x is a regular local ring of dimension n. In particular,
dimRmx/m

2
x = n, wheremx denotes the maximal ideal of the germs of functions of RX,x which

vanish at x (see [3] section 3.3).
By Proposition 3.3.7 of [3], there exist functions u1, . . . , un in RX,x generating mx and such

that u1, . . . , un is a basis of mx/m
2
x as a R-vector space (such a family u1, . . . , un is called a

regular system of parameters of RX,x). We can assume that u1, . . . , un are given by polynomial
functions on X.

In the first part of the proof, we are going to construct, from the ui’s, generators w1, . . . , wn
of the maximal ideal mπ(x) of the local ring RW,π(x), whose classes in mπ(x)/m

2
π(x) are linearly

independent. In particular, the dimension of the dual mπ(x)/m
2
π(x) of the Zariski tangent space

at π(x) is equal to n. In a second part, we will prove that the ringRW,π(x) is also n-dimensional,
so that it is a regular local ring of dimension n i.e. π(x) is a nonsingular point of W (the di-
mension of W is n by previous lemma 2.9).

The first step will be to construct a regular system of parameters for RX,x with elements
in P(X)G. We begin by showing that we can assume the ui’s to belong to m2

αg(x)
for all g ∈ G

different from e. Indeed, for each g ∈ G different from e, consider a polynomial function hg on
X which verifies hg(x) = 1 and hg(αg(x)) = 0 : this is possible because the ideal of polynomial
functions vanishing at x cannot be equal to the ideal of polynomial functions vanishing at αg(x)
(otherwise, αg(x) would be equal to x). Then denote by h the product of all the polynomial
functions hg : we have h(x) = 1 and, for all g ∈ G different from e, h(αg(x)) = 0. Finally,
multiply each ui by the square of h : if we denote h0 := h− 1 ∈ mx, we obtain

uih
2 = ui + 2uih0 + h0

2 ≡ ui mod m2
x,

while uih
2 ∈ m2

αg(x)
if g 6= e.

Now, consider the invariant polynomial functions

vi :=
1

|G|

∑

g∈G

ui ◦ αg

of P(X)G. For each i, we have vi ∈ mx (because ui ∈ mg(x) for all g ∈ G) and vi ≡
1
|G|ui

mod m2
x (because, for g 6= e, ui ∈ m2

αg(x)
i.e ui ◦ αg ∈ m2

x) so that the vi’s form a regular
system of parameters of RX,x as well.

Let i ∈ {1, . . . , n}. Since the R-algebra P(X)G is generated by polynomial functions
p1, . . . , pm and since, for all x ∈ X, π(x) = (p1(x), . . . , pm(x)), there exist a polynomial
wi ∈ R[X1, . . . ,Xm] such that vi = wi ◦ π. Because π has values in W , we are going to
consider wi as a polynomial function of P(W ) and, furthermore, as an element of the maximal
ideal mπ(x) of RW,π(x) (since wi(π(x)) = vi(x) = 0).

Finally, we prove that the wi’s generate the ideal mπ(x). Let h ∈ mπ(x) ∩ P(W ). Then
h ◦ π ∈ mx so that there exist h1, . . . , hn ∈ RX,x such that h ◦ π =

∑n
i=1 hivi. Moreover,
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h ◦ π ∈ P(X)G (because π ◦ αg = π) and consequently

h ◦ π =
1

|G|

∑

g∈G

h ◦ π ◦ αg =
1

|G|

∑

g∈G

n∑

i=1

(hi ◦ αg)(vi ◦ αg) =
n∑

i=1

vi


 1

|G|

∑

g∈G

hi ◦ αg




(recall that the vi’s are in P(X)G). Now, for each i = 1, . . . , n, 1
|G|

∑
g∈G hi ◦ αg ∈ P(X)G so

there exists qi ∈ P(W ) such that 1
|G|

∑
g∈G hi ◦ αg = qi ◦ π. Finally, we obtain

h ◦ π =

n∑

i=1

(qi ◦ π)(wi ◦ π)

i.e. h−
∑n

i=1 qiwi ∈ ker π∗ (recall that Z :=WC = V (ker π∗) and that kerπ∗ is a radical ideal).
Since the polynomial function h −

∑n
i=1 qiwi has real coefficients and since W ⊂ Z, we have

h−
∑n

i=1 qiwi ∈ I(W ) and h =
∑n

i=1 qiwi in P(W ).
We then show that the classes w1, . . . , wn in mπ(x)/m

2
π(x) are linearly independent over R :

let λ1, . . . , λn ∈ R such that λ1w1 + . . .+ λnwn = 0, then compose with π to obtain

λ1w1 ◦ π + . . .+ λnwn ◦ π = λ1v1 + . . .+ λnvn = 0,

and use the fact that the vi’s form a regular system of parameters of RX,x.
As a conclusion, the wi’s form a basis of the R-vector space mπ(x)/m

2
π(x), which is then

n-dimensional. In order to show that π(x) is a nonsingular point of W , it remains to show that
the dimension of the ring RW,π(x) is n as well.

Recall that x is a nonsingular point of X. In particular, there exists a unique irreducible n-
dimensional component V of X such that x is a nonsingular point of V ([3]Proposition 3.3.10).
Moreover, if X =

⋃
j V

j is the decomposition of X into (real) algebraic irreducible components,

XC =
⋃
j V

j
C
is the decomposition of XC into (complex) algebraic irreducible components ([1]

II.2). Therefore, x belongs to a unique irreducible component of XC, namely VC, which is also
n-dimensional.

Now, the group G acts on the set of irreducible components of XC, so we can write XC

as the union of G-stable algebraic subsets Sk
C
, where each Sk

C
is the union of the irreducible

components of XC being in a same orbit. Then Z =
⋃
k π
(
Sk
C

)
is the decomposition of Z into

irreducible components (indeed, each π
(
Sk
C

)
is algebraic – see lemma 2.6 – and irreducible,

since it is the image by π of an irreducible component of XC) and we obtain the decomposition

W =
⋃

k

[
π
(
SkC

)
∩ R

m
]

for W into (real algebraic) irreducible components.
The point π(x) then belongs to a unique irreducible component of W , namely W0 :=

π(VC)∩R
m, which is n-dimensional by lemma 2.9. As a consequence, RW,π(x) = RW0,π(x) and,

since W0 is irreducible,
dimRW0,π(x) = dimW0 = n,
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which the dimension of mπ(x)/m
2
π(x), so that RW,π(x) is a regular local ring of dimension n, i.e.

π(x) is a nonsingular point of W .

In the proof, we moreover showed that π induces an isomorphism

mπ(x)/m
2
π(x) → mx/m

2
x

between the duals of the respective Zariski tangent spaces of W at π(x) and of X at x. As a
consequence :

Proposition 2.11. Suppose that x is a nonsingular point of X and that Gx = {e}. There exist
a semialgebraic open neighborhood U of x in X and a semialgebraic open neighborhood U ′ of
π(x) in W such that π|U is a Nash (i.e. semialgebraic and analytic) diffeomorphism from U
to U ′.

Proof. In previous proposition 2.10, we proved that π(x) is a nonsingular point of W and that
π induces an isomorphism

TxX → Tπ(x)W.

We then use Proposition 8.1.2 of [3] to conclude.

2.4 Real geometric quotient of a product

At some moment in the next part of this paper, we will need to consider the geometric quotient
of the cartesian product of real algebraic sets under the action of the product group. Precisely,
we have the following property :

Lemma 2.12. Let H be another finite group. Let X ⊂ R
d and X ′ ⊂ R

d′ be two algebraic
sets equipped with polynomial actions of G and H respectively, and let π : X → Y ⊂ R

m and
π′ : X ′ → Y ′ ⊂ R

m′

be the corresponding quotient maps.
The quotient map corresponding to the induced action of G×H on X ×X ′ is

π × π′ :
X ×X ′ → Y × Y ′

(x, x′) 7→ (π(x), π′(x′))

Proof. We have P(X)⊗R P(X
′) ∼= P(X ×X ′) via the equivariant (with respect to the induced

actions of G×H) isomorphism f ⊗ h 7→ f × h (notice that C[XC]⊗ C[X ′
C
] ∼= C[XC ×X

′
C
] via

the same equivariant isomorphism).
Furthermore, (P(X) ⊗R P(X

′))G×H = P(X)G ⊗R P(X
′)H so that, if p1, . . . , pm are gener-

ators of P(X)G and q1, . . . , qm′ are generators of P(X ′)H , p1⊗ 1, . . . , pm⊗ 1, 1⊗ q1, . . . , 1⊗ qm′

are generators of (P(X) ⊗R P(X
′))G×H and

X ×X ′ → Y × Y ′

(x, x′) 7→ (p1(x), . . . , pm(x), q1(x
′), . . . , qm′(x′))

is the quotient map.

10



3 Quotient of an arc-symmetric set by a free finite group action

3.1 Quotient of a semialgebraic set by a polynomial finite group action

Let X ⊂ R
d be a semialgebraic set. We suppose that the Zariski closure X

Z
of X is equipped

with a polynomial action of G which globally stabilizes X (G still denotes a finite group).

Let π : X
Z
→ Y be the geometric quotient of X

Z
by G.

Definition 3.1. We call the restriction π : X → π(X), or simply π(X), the geometric quotient
of X by G.

Remark 3.2. As π
(
X

Z
)
, the geometric quotient of X by G is well-defined up to polynomial

isomorphism. Moreover, if the action of G on X
Z

comes from a polynomial action on a real

algebraic set X ′ containing X
Z
, the geometric quotient of X can be obtained as the image of

X under the quotient map of X ′ : see remark 2.2, lemma 2.4 and lemma 2.6.

Example 3.3. Consider the action of the involution σ : (x1, x2) 7→ (−x1, x2) on the upper half-
plane {x2 ≥ 0} of R2. Its geometric quotient is the first quadrant {y1 ≥ 0, y2 ≥ 0} of R2 (see
example 2.3).

Lemma 3.4. The continuous map π : X → π(X) is proper, closed and open. Furthermore, it
is homeomorphic to the topological quotient map q : X → X/G.

In order to prove this lemma, we will suppose without loss of generality that X is globally
stabilized under an orthogonal linear action :

Lemma 3.5. Let V ⊂ R
d be a real algebraic set on which G acts via polynomial isomorphisms.

There exists an equivariant polynomial isomorphism ϕ : V → V ′, where V ′ ⊂ R
D is a real

algebraic set equipped with a linear action of G on R
D given by permutation matrices.

Proof. Indeed, denote G := {g1, . . . , gN} where g1 is the identity element of G and consider the
morphism

ϕ :
V → V × · · · × V
x 7→ (x, αg−1

2
(x), . . . , αg−1

N
(x))

Now, equip the cartesian product V ×· · ·×V with the action of G given by the permutations
induced by the product in G. The morphism ϕ is then equivariant.

Furthermore, ϕ induces a polynomial isomorphism between V and its image ϕ(V ) : the
direct image of V by ϕ is an algebraic subset of Rd × · · · × R

d given by the equations y1 ∈ V ,
yi = αgi(y1) (recall that each αi is a polynomial isomorphism).

Proof of lemma 3.4. Up to polynomial isomorphism, we can then suppose that X is globally
stabilized by a linear orthogonal action of G on R

d, and π : X → π(X) is then the restriction
of the corresponding quotient map π = (p1, . . . , pm) : R

d → R
m on R

d (lemma 2.4 and lemma
2.6).
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The map π : Rd → R
m is proper. Indeed, let us recall the argument of [23] : the map

φ :
R
d → R

x = (x1, . . . , xd) 7→ 〈x, x〉 = x21 + . . .+ x2d

is a proper polynomial map, which is invariant under right composition with the orthogonal
action of G on R

d. Therefore, φ ∈ P(Rd)G and there exists a polynomial Q ∈ R[Y1, . . . , Ym]
such that φ = Q(p1, . . . , pm) = Q ◦ π. Now, let K be a compact set in R

m. Then Q(K) is a
compact of R and φ−1(Q(K)) is a compact set of Rd (because φ is proper). Finally, π−1(K) is
a closed subset of Rd (because π is continuous) included in φ−1(Q(K)), hence it is compact as
well.

The restriction of a proper map being a proper map, the map π : X → π(X) is also proper.

Since R
m is a Hausdorff locally compact space, the proper map π : Rd → R

m is closed.
Now, consider a closed subset F ∩X of X, where F is a closed subset of Rd. Since X is stable
under the action of G, π(F ∩X) = π(F )∩π(X) and this is a closed subset of π(X) since π(F )
is a closed subset of Rm (π is closed on R

d). Consequently, π : X → π(X) is a closed map.
It is open as well. Indeed, take U to be an open subset of X, then π(U) = π(

⋃
g∈G g ·U) so

we can assume U to be globally stable under the action of G. Now, π(X \U) is a closed subset
of π(X), but π(X \U) = π(X) \ π(U) (since U is stable under the action of G) therefore π(U)
is an open subset of π(X).

Now, let us show that the map π : X → π(X) is homeomorphic to the topological quotient
map q : X → X/G.

The map π : X → π(X) is a continuous surjective map such that if x, y ∈ X, π(x) = π(y) if
and only if there exists g ∈ G such that x = g · y. As a consequence, there exists a continuous
bijective map π : X/G → π(X) such that π = π ◦ q. The map π is a homeomorphism since π
is an open (or closed) map.

3.2 G-AS-sets

In this paragraph, we assume that X is an AS-set X of Pd(R) in the sense of [11] (Definition
3.1 and Definition 2.7). We recall below the definitions of an arc-symmetric set of Pd(R) and
of an AS-set of Pd(R).

Definition 3.6. Let A be a subset of Pd(R).

• A is called an arc-symmetric subset of Pd(R) if A is semialgebraic and if, for every real
analytic arc γ : (−1, 1)→ P

d(R), the inclusion γ((−1, 0)) ⊂ A implies the entire inclusion
γ((−1, 1)) ⊂ A.

• A is called an AS-set X of Pd(R) if A is Boolean combination of arc-symmetric sets of
P
d(R).

Remark 3.7.
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• The arc-symmetric sets of Pd(R) are closed (with respect to strong topology) hence com-
pact (the arc-symmetric sets of Pd(R) are the closed AS-sets of Pd(R)).

• A set A ⊂ P
d(R) is an AS-set if and only if, for every real analytic arc γ : (−1, 1)→ P

d(R)
such that γ((−1, 0)) ⊂ A, there exists ǫ > 0 such that γ((0, ǫ)) ⊂ A.

• The real algebraic sets, or more generally any Zariski open subset of a real algebraic set,
are AS-sets, as well as their compact connected components.

We will suppose furthermore that the projective Zariski closure of X in P
d(R) is equipped

with an action of G by biregular isomorphisms, and that X is globally stabilized under this
action : we will say that X is a G-AS-set (see [9], paragraph 3.1.1).

Now, recall that the real algebraic variety P
d(R) can be biregularly embedded into a com-

pact algebraic subset of R(d+1)2 ([3],Theorem 3.4.4), so that X can be supposed to be, up to
equivariant biregular isomorphism, an AS-subset of R(d+1)2 such that its (affine) Zariski closure
(in R

(d+1)2) is compact and equipped with an action of G by biregular isomorphisms which
globally preserves X (X is a boolean combination of compact arc-symmetric sets of R(d+1)2 :
see Remark 3.5 of [11]). For the sake of simplicity, let us denote again R

(d+1)2 by R
d.

Moreover, since G is finite, we can suppose, again up to equivariant biregular isomorphism,

that the action of G on X
Z

is linear, given by permutation of coordinates : use the biregular
analog of lemma 3.5.

Remark 3.8. A real algebraic set (or more generally a Zariski open subset of a real algebraic set)
equipped with an action of G via biregular isomorphisms is equivariantly biregularly isomorphic
to a G-AS-set : use the biregular analog of lemma 3.5 and extend the action on R

D by
permutation matrices to an action on P

D(R). Such a set will also be called a G-AS-set and we
will implicitly confound it with its isomorphic image.

We can then consider the image of the semialgebraic set X under the quotient map π :

R
d → Y ⊂ R

m (the action of G on X
Z
is induced from the action on R

d : lemma 2.6).
We will now recall the proof of an important result of [9] (Proposition 3.15) : if we suppose

X to be compact and that the action of G on X is free, then π(X) is also a compact arc-
symmetric set :

Proposition 3.9. Suppose that X is compact (in particular, X is a compact arc-symmetric
subset of Rd) and that, for all x ∈ X, Gx = {e}. Then π(X) is a compact arc-symmetric subset
of Rm.

Proof. π(X) is a semialgebraic subset of Rm as the image of a semialgebraic set by the poly-
nomial map π. It is furthermore compact since X is compact and π is continuous.

Now, considering the standard embedding R
m ⊂ P

m(R), we are going to prove that π(X) is
an AS-set of Pm(R). Consider a real analytic map γ : (−1, 1)→ P

m(R) such that γ((−1, 0)) ⊂
π(X). First, notice that y := γ(0) ∈ π(X) because π(X) is closed. Let x ∈ X ⊂ R

d such that
y = π(x). Since x is a nonsingular point of Rd and Gx = {e}, by proposition 2.11, there exists
a semialgebraic open neighborhood U of x in R

d and a semialgebraic open neighborhood U ′ of
y = π(x) in the Zariski closure W of Y , such that π|U is a Nash diffeomorphism from U to U ′.
Denote by η the inverse map.
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Let ǫ′ > 0 such that γ((−ǫ′, 0]) ⊂ U ′. Composing γ|(−ǫ′,0] with η, we obtain an analytic

map η ◦ γ : (−ǫ′, 0] → U ⊂ R
d that we can extend into an analytic map γ̃ : (−ǫ′, ǫ)→ U , with

0 < ǫ < 1. Since γ((−ǫ′, 0]) ⊂ π(X), we have γ̃((−ǫ′, 0]) = η ◦ γ((−ǫ′, 0]) ⊂ X and, since X is
arc-symmetric, γ̃((−ǫ′, ǫ)) ⊂ X.

We finally apply π to obtain a real analytic arc π ◦ γ̃ : (−ǫ′, ǫ) → R
m ⊂ P

m(R) which
coincides with the real analytic arc γ : (−1, 1) → P

m(R) on (−ǫ′, 0). As a consequence, by
analytic continuation, γ((−ǫ′, ǫ)) = π ◦ γ̃((−ǫ′, ǫ)) ∈ π(X). As a conclusion, π(X) is an AS-set
of Pm(R).

Since it is compact, it is an arc-symmetric subset of Pm(R) and, since π(X) ⊂ R
m, π(X) is

an arc-symmetric subset of Rm (Remark 3.5 of [11]).

Remark 3.10. 1. Under the same hypotheses, if we suppose X to be an algebraic set, the
quotient π(X) is not algebraic in general. Consider the example of Remark 3.16 of [9] :
the quotient of the compact algebraic subset

{
y2 + (x2 − 2)(x2 − 1)(x2 + 1) = 0

}
of R2

by the free involution (x, y) 7→ (−x, y) is the compact connected component {x ≥ 0}
of the algebraic set

{
y2 + (x− 2)(x− 1)(x+ 1) = 0

}
(it is non-algebraic arc-symmetric

set).

2. If the action of G on X is free but X is not compact, the quotient π(X) is not an AS-set
in general. Consider the third example of 2.8 : the half-hyperbola is not an AS-set (see
also remark 3.19 below).

We can actually establish a slightly more general result. If A is a subset of Pd(R), denote

by A
AS

the smallest arc-symmetric set of Pd(R) containing A (it is the intersection of all arc-

symmetric subsets of Pd(R) containing A). If A ⊂ Rd and if the Zariski closure A
Z
of A in Rd

is compact, then A
AS
⊂ A

Z
.

Corollary 3.11. Suppose that the action of G on the AS-closure X
AS

of X is free. Then
π(X) is an AS-set of Pm(R) contained in R

m (in the following, we will simply say AS-set of
R
m).

Proof. First, notice that the action of G on X
Z

globally stabilizes X
AS

(because it stabilizes
X and the image of a compact AS-set by a regular isomorphism is a compact AS-set).

Now, even if X is not anymore supposed to be compact, X
AS

is, and, since for all x ∈ X
AS

,

Gx = {e}, π
(
X

AS
)
is a compact arc-symmetric subset of Rm.

We then proceed by induction on the dimension of X using that dim
(
X

AS
\X

)
< dim(X)

(Proposition 3.3 of [11]), and that π
(
X

AS
\X

)
= π

(
X

AS
)
\ π(X) i.e. π(X) = π

(
X

AS
)
\

π
(
X

AS
\X

)
.

Definition 3.12. If the action of G on X
AS

is free, we will say that X is a free G-AS-set.
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3.3 Functoriality of the quotient of a free G-AS-set with respect to equiv-

ariant continuous maps with AS-graph

Consider an equivariant continuous map with AS-graph f : X → X ′ between two free G-AS-
sets. As in the previous paragraph, we can suppose (because a biregular isomorphism is in
particular an analytic isomorphism with semialgebraic graph) that X and X ′ are AS-sets of
some R

d and R
d′ respectively, such that their affine Zariski closures are compact, and that the

respective actions of G are given by permutations of coordinates.
If π : Rd → Y and π′ : Rd

′

→ Y ′ are the respective geometric quotients of Rd and R
d′ by G,

we define a continuous map with AS-graph

f/G : π(X)→ π′(X ′)

between the AS-sets π(X) and π′(X), such that the following diagram commutes :

X
f
−→ X ′

↓ π ↓ π′

π(X)
f/G
−→ π′(X ′)

Precisely, if y = π(x) ∈ π(X), we set f/G(y) := π′(f(x)) (notice that this definition is
independent of the chosen preimage of y since f is equivariant and because the fiber of π at y
is the orbit of x under the action of G on X).

Remark 3.13. If X and X ′ are algebraic (that is X = X
Z

and X ′ = X ′Z) and ψ : X → X ′ is
an equivariant polynomial map, then ψ/G : π(X) → π′(X ′) is a polynomial map as well (it is
the map ρ of lemma 2.4).

We first prove that f/G : π(X)→ π′(X ′) is continuous :

Proposition 3.14. Suppose that f is a Ck-map with k ∈ N, k = ∞ or k = ω. Then f/G is a

Ck-map as well.

Proof. Let y = π(x) ∈ π(X). Denote by W the Zariski closure of Y . Since x is a nonsingular
point of R

d and Gx = {e}, according to proposition 2.11, there exist a semialgebraic open
neighborhood U of x in R

d and a semialgebraic open neighborhood U ′ of π(x) in W such that
π|U is a Nash diffeomorphism from U to U ′. As a consequence, on the open neighborhood

U ′ ∩ π(X) of y, f/G can be described as π′ ◦ f ◦ π−1
|U , hence the result (recall that π′ is a

polynomial map).

Remark 3.15. By the same argument, we can show that, if f : X → X ′ is arc-analytic (that is
sends real analytic arcs on real analytic arcs), then so is f/G : π(X)→ π′(X ′).

We will now show that the graph of f/G is an AS-set, by describing it as the image of a
free (G ×G)-AS-set by a geometric quotient :

Proposition 3.16. Suppose Y ⊂ R
m and Y ′ ⊂ R

m′

. The graph of f/G is an AS-set of Rm+m′

.
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Proof. The graph Γf/G is

Γf/G =
{(
π(x), π′(x′)

)
∈ Y × Y ′ | x ∈ X,x′ ∈ X ′, x′ = f(x)

}
.

Hence, it is the image of the graph Γf of f under the geometric quotient π × π′ : Rd × R
d′ →

Y × Y ′ of Rd ×R
d′ under the product action of G×G (lemma 2.12).

Notice that Γf is not globally stable under the action of G×G. However, we also have

Γf/G = π




⋃

(g,g′)∈G×G

αg × αg′ (Γf )


 ,

the union
⋃

(g,g′)∈G×G αg×αg′ (Γf ) being a free (G×G)-AS-set of Rd×R
d′ (the arc-symmetric

closure of this AS-set is included in X
AS
×X ′AS

). We conclude by corollary 3.11.

Remark 3.17. If f is a proper map, so is f/G. Indeed, let K be a compact subset of π′(X ′),
then

f−1
/G (K) = π

(
f−1

(
π′

−1
(K)

))

is a compact subset of π(X) since π′ is proper (lemma 3.4), f is proper and π is continuous.

The operation which associates to f the continuous map with AS-graph f/G is functorial :

Lemma 3.18. Let X ′′ be a free G-AS-set and let h : X ′ → X ′′ be an equivariant continuous
map with AS-graph.

Then the equivariant continuous composition h ◦ f : X → X ′′ has AS-graph and

(h ◦ f)/G = h/G ◦ f/G.

Furthermore, if idX denotes the identity map on X, (idX )/G = idπ(X).

Proof. Denote by π′′ : Rd
′′

→ Y ′′ the geometric quotient of Rd
′′

by G. Then, for any π(x) ∈
π(X),

h/G ◦ f/G(π(x)) = h/G(π
′(f(x))) = π′′(h ◦ f(x)).

Remark 3.19. Let i another equivariant regular affine embeddings of the (compact) Zariski
closure of X. Then the Nash equivariant isomorphism i : X → i(X) induces a Nash isomor-
phism i/G between the respective quotients of X and i(X) by G (use proposition 3.14 and recall
that the image of a semialgebraic set under a quotient map is semialgebraic). Therefore, the
geometric quotient of free G-AS-sets is well-defined, that is unique up to Nash isomorphism.

By the same arguments as above, we can prove that an equivariant Nash diffeomorphism (for
instance an equivariant biregular isomorphism) between two semialgebraic sets equipped with
free actions of G induces a Nash diffeomorphism (which has AS-graph in particular) between
their geometric quotients. Therefore, the geometric quotient of semialgebraic sets equipped
with a free action of G is unique up to Nash isomorphism (see also Theorem 3.4 of [11]).
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4 Equivariant homologies and cohomologies

Keep G to be a finite group. From now on, we want to consider and study invariants of G-AS-
sets. First, we choose the “equivariant” homologies and cohomologies with which we are going
to work.

4.1 Equivariant singular homology and cohomology

LetX be a topological space on which G acts via homeomorphisms. We consider the equivariant
singular homology

HG
∗ (X) := H∗(X ×G EG,Z2)

and equivariant singular cohomology

H∗
G(X) := H∗(X ×G EG,Z2)

of X with coefficients in Z2 := Z/2Z, defined using the Borel construction ([4]) :

• H∗( · ) := H∗( · ,Z2) and H
∗( · ) := H∗( · ,Z2) stand for the singular homology and coho-

mology with coefficients in Z2,

• EG is the total space of a universal principal G-bundle EG → BG,

• X ×GEG denotes the topological quotient of the product space X ×EG by the diagonal
action of G.

Remark 4.1. 1. The equivariant singular homology and cohomology are independent of the
choice of a universal G-bundle.

2. Let E be a contractible topological space equipped with a free action of G. Since G is a
finite group, the action of G on E is proper and the quotient map E → E/G is a universal
principal G-bundle.

3. Since EG is a contractible space, X×EG is equivariantly homotopic to X and X×GEG =
(X × EG)/G is called the homotopy quotient of X by G.

4. The equivariant map X → {pt} induces a fibration X ×GEG → {pt}×EG/G = BG with
fiber X. In particular, we have Leray-Serre spectral sequences

E2
p,q = Hp(BG,Hq(X))⇒ HG

p+q(X)

and
Ep,q2 = Hp(BG,H

q(X))⇒ Hp+q
G (X)

(see for instance [13] section 11.4).

5. If G = {e}, HG
∗ (X) = H∗(X). If X is contractible (e.g. if X is a point), HG

∗ (X) =
HG

∗ (BG) = H∗(G,Z2), since G is finite, where H∗(G,Z2) is the homology of the group
G with coefficients in Z2 (see for instance [5]). If the action of G on X is trivial,
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HG
∗ (X) = H∗(X)⊗Z2H∗(G,Z2) (in this case, X×GEG = X×BG and we use the Künneth

isomorphism). Finally, if the action of G onX is free, we haveHG
∗ (X) = H∗(X/G) (in this

case, the equivariant map EG → {pt} induces a fibration X×GEG → X/G with fiber EG,
which is contractible). We have similar statements for the cohomological counterparts.

6. If X is a G-CW -complex, i.e. if X is a CW -complex and the action of G permutes its
cells, the equivariant singular homology and cohomology coincide respectively with the
equivariant homology and cohomology defined in [5] Chap. VII, sect. 7. Indeed, consider
a contractible G-CW -complex E such that G freely permutes its cells (see for instance
the construction of [10] Example 1B.7). We have an equivariant chain isomorphism

Ccell∗ (E)⊗Z2 C
cell
∗ (X)→ Ccell∗ (E ×X),

where Ccell∗ ( · ) denotes the cellular chain complex with coefficients in Z2, which induces
a chain isomorphism

Ccell∗ (E)⊗G C
cell
∗ (X)→ Ccell∗ (E ×X)G → Ccell∗ ((E ×X)/G)

(see [5] Chap. III sect. 0 and Chap. II Proposition 2.4), which itself induces an isomor-
phism in equivariant homology (the cellular complex of the homotopy quotient (E×X)/G
computes its homology, and Ccell∗ (E) is a free resolution of Z over Z[G] since E is a free
G-CW -complex : see [5] Chap. I Proposition 4.1).

As for the cohomological counterpart, apply the duality functor HomZ2( · ,Z2) to the
above chain isomorphism and use the tensor-hom adjunction to obtain natural isomor-
phisms

HomZ2

(
Ccellp (E)⊗G C

cell
q (X),Z2

)
∼= HomG

(
Ccellp (E),HomZ2

(
Ccellq (X),Z2

))
.

4.2 A real algebraic model for the total space EG

In order to study the equivariant geometry of G-AS-sets via these equivariant homology and
cohomology, we choose for EG a convenient “real algebraic” model : for n ∈ N \ {0} and
k ∈ N ∪ {∞}, consider the Stiefel manifold Vn(R

k), which is the set of the orthonormal n-
frames of Rk, that is n-tuples of orthonormal vectors of Rk (recall that R∞ denotes the space
of sequences (xn)n∈N\{0} such that xn 6= 0 for finitely many i’s).

Remark that, if k is finite, Vn(R
k) is a compact space, as closed subspace of the product of n

copies of the unit sphere in R
k. Besides, the natural inclusions Vn(R

k) →֒ Vn(R
k+1) →֒ Vn(R

∞)
fit into the equality

Vn(R
∞) = lim

−→
k∈N

Vn(R
k)

(it is an infinite increasing union in Vn(R
∞)).

Furthermore, Vn(R
∞) is a contractible space (see for instance Example 4.53 of [10]) and

one can equip Vn(R
∞), as well as any Vn(R

k), with a free action of G :

Lemma 4.2. Let n ∈ N \ {0} and k ∈ N ∪ {∞}, and let H be a subgroup of the orthogonal
group On(R). There is a free action of H on Vn(R

k).
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Proof. Identify Vn(R
k) with the set of matrices A ∈Mk,n(R) such that tAA = In and, ifM ∈ H

and A ∈ Vn(R
k), set M · A := AM−1 ∈ Vn(R

k) (we have t(AM−1)AM−1 = t(M−1)tAAM−1 =
In).

This action of H on Vn(R
k) is free since, if M ∈ H, A ∈ Vn(R

k), AM = A⇒M = In.

Remark 4.3.

• We can describe the action of H on Vn(R
k) as a restriction of a linear action of H on

(Rn)k. Indeed, if A = (v1, . . . , vn) ∈ Vn(R
k), write vi = (a1,i, . . . , ak,i) and associate to

(v1, . . . , vn) the single vector

v := (a1,1, . . . , a1,n, . . . , ak,1, . . . , ak,n).

Now, let M be an element of H and M0 be the block diagonal matrix with k copies of M
as diagonal blocks. Then, via this correspondence, the action of M on A corresponds to
the (left) application of the matrix M0 to the vector v ∈ (Rn)k (recall that M−1 = tM).

• If |G| = N , we can embed the finite group G into the orthogonal group ON (R) via
permutation matrices.

As a consequence, the quotient map Vn(R
∞)→ Vn(R

∞)/G is a universal principalG-bundle.
Moreover :

Lemma 4.4. For any n ∈ N \ {0} and k ∈ N, the Stiefel manifold Vn(R
k) is a compact

nonsingular algebraic subset of Rnk.

Proof. The set Vn(R
k) ⊂

(
R
k
)n

is described by the real algebraic equations

Pi := a21,i + . . .+ a2k,i − 1 = 0, 1 ≤ i ≤ n

and
Qi,j := a1,ia1,j + . . .+ ak,iak,j = 0, 1 ≤ i < j ≤ n.

Now, the columns of the matrix




2a1,1 a1,2 a1,3 · · · a1,n
...

...
...

...
2ak,1 ak,2 ak,3 · · · ak,n

2a1,2 a1,1 a1,3 · · · a1,n
...

...
...

...
2ak,2 ak,1 ak,3 · · · ak,n

. . .
. . .

. . .

2a1,n a1,1 a1,2 a1,n−1
...

...
. . .

...
...

2ak,n ak,1 ak,2 ak,n−1



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of the partial derivatives of the polynomials Pi’s and Qi,j’s, at any point (ai,j)i,j of Vn(R
k),

are linearly independent (otherwise we would have a nontrivial linear relation between the
orthonormal vectors (a1,j, . . . , an,j), 1 ≤ j ≤ n, which is impossible), so that the real algebraic

set Vn(R
k) is nonsingular of dimension nk − n(n+1)

2 .

Denote N := |G| and suppose that X is a G-AS-set. We are going to realize the equivariant
singular homology

HG
∗ (X) = H∗ (X ×G VN (R

∞))

of X as an inductive limit of the singular homologies of the geometric quotients of X×VN (R
k)

by G.

First, recall (section 3) that we can assume X to be an AS-subset of Rd with compact

Zariski closure (in R
d) such that X (and then X

Z
) is globally stabilized under a linear action

of G on R
d.

Now, let k ∈ N. The Stiefel manifold VN (R
k) is acted by a linear action of G on R

Nk

(remark 4.3), and X×VN (R
k) is an AS-subset of Rd+Nk globallly stabilized under the induced

diagonal linear action of G on R
d+Nk.

Denote Nk := d + Nk and let p1, . . . , pm be generators of the corresponding invariant al-
gebra R[X1, . . . ,XNk

]G. The action of G on X × VN (R
k+1) ⊂ R

Nk+1 is the diagonal action of
G on R

Nk × R
N (remark 4.3). We can then suppose the generators of the invariant algebra

R[X1, . . . ,XNk
,XNk+1, . . . ,XNk+N ]

G to be the polynomials p1, . . . , pm together with polyno-
mials q1, . . . , qm′ ∈ R[X1, . . . ,XNk

,XNk+1, . . . ,XNk+N ] such that qj(X1, . . . ,XNk
, 0, . . . , 0) = 0

for j ∈ {1, . . . ,m′}.
If we denote by i the natural embedding of RNk in R

Nk+N , it induces by functoriality of
the real geometric quotient (lemma 2.4) the following commutative diagram

R
Nk

i
−→ R

Nk+1

↓ πk=(p1,...,pm) ↓ πk+1=(p1,...,pm,q1,...,qm′)

Y ⊂ R
m ρ

−→ Y ′ ⊂ R
m+m′

of geometric quotients, where ρ :
Y → Y ′

(y1, . . . , ym) 7→ (y1, . . . , ym, 0, . . . , 0)
. Notice that, if we

denote by y1, . . . , ym, z1, . . . , zm′ the coordinates in R
m+m′

, ρ(Y ) = Y ′ ∩ {z1 = . . . = zm′ = 0}.
Finally, we restrict to the inclusion i : X × VN (R

k) →֒ X × VN (R
k+1) to obtain the com-

mutative diagram

X × VN (R
k)

i
−→ X × VN (R

k+1)
↓ πk ↓ πk+1

πk
(
X × VN (R

k)
)
⊂ R

m ρ
−→ πk+1

(
X × VN (R

k+1)
)
⊂ R

m+m′

In particular, ρ
(
πk
(
X × VN (R

k)
))

= πk
(
X × VN (R

k+1)
)
∩ {z1 = . . . = zm′ = 0}. Remark

that the AS-closure of X × VN (R
k) is X

AS
× VN (R

k) (use an induction of dimension together
with Proposition 3.3 of [11]), on which the diagonal action of G is free. As a consequence, the
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geometric quotient πk
(
X × VN (R

k)
)
of X × VN (R

k) by G is an AS-set of Rm (corollary 3.11).

The maps πk : X × VN (R
k)→ πk

(
X × VN (R

k)
)
form an inductive system which induces a

map

Π : X × VN (R
∞) = lim

−→
k∈N

X × VN (R
k)→ lim

−→
k∈N

πk

(
X × VN (R

k)
)
.

Since each map πk is continuous, closed, open and verifies, for x, y ∈ VN (R
k), πk(x) = πk(y)

if and only there exists g ∈ G such that x = g · y, the map Π is continuous, closed, open and
verifies for x, y ∈ VN (R

∞), Π(x) = Π(y) if and only there exists g ∈ G such that x = g · y as
well.

In particular, the surjective map

Π : X × VN (R
∞)→ lim

−→
k∈N

πk

(
X × VN (R

k)
)

is (up to homeomorphism) the topological quotient map X × VN (R∞) → (X × VN (R∞)) /G.
As a consequence,

HG
∗ (X) = H∗

(
lim
−→
k∈N

πk

(
X × VN (R

k)
))

.

We then use Proposition 3.33 of [10] to establish the following statement :

Proposition 4.5. Denote X(k) := πk
(
X × VN (R

k)
)
. The inductive system of inclusions

X(k) → X(k+1) induces an isomorphism

lim−→
k∈N

H∗(X(k))→ HG
∗ (X).

Proof. The inductive limit lim−→k∈N
X(k) can be considered as an increasing union in R

∞. Let K
be a compact of lim−→k∈N

X(k). Then K is a compact of R∞.

Now, if l ∈ N, consider the CW -complex structure on R
l whose 0-dimensional cells are the

points of Zl and the higher dimensional open cells are the open hypercubes of edge-length one
and vertices in Z

l. These CW -complex structures on R
l, l ∈ N, are compatible with the natural

inclusions Rl → R
l+1, so that Rl is a subcomplex of Rl+1. Moreover, via these inclusions, they

induce a CW -complex structure on R
∞, such that each R

l is a subcomplex of R∞.
By, for instance, Proposition A.1 of [10], the compact set K is then included in a finite

subcomplex of R∞. Therefore, it is included in some R
l for l ∈ N and there exists k0 ∈ N such

that K ⊂ R
mk0 , where πk0 = (p1, . . . , pmk0

). Finally,

K ⊂ lim−→
k∈N

X(k) ∩R
mk0 = X(k0)

and we conclude by Proposition 3.33 of [10].

Dually, we obtain :
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Corollary 4.6. The inductive system of inclusions X(k) → X(k+1) induces a projective system
in singular cohomology H∗(X(k+1))→ H∗(X(k)) and an isomorphism

H∗
G(X)→ lim

←−
k∈N

H∗(X(k)).

Proof. We have

H∗
G(X) ∼= HomZ2

(
HG

∗ (X),Z2

)

∼=
−→ HomZ2

(
lim−→
k∈N

H∗(X(k)),Z2

)

= lim←−
k∈N

HomZ2

(
H∗(X(k)),Z2

)

∼= lim←−
k∈N

H∗(X(k))

(see also Proposition 3F.5 of [10] and its proof).

4.3 Equivariant homology and cohomology with closed supports

We now define another equivariant homology for the G-AS-set X using the semialgebraic chain
complexes with closed supports and coefficients in Z2 (see [15], Appendix) of the AS-sets X(k),
k ∈ N. Precisely, the natural inclusions X(k) → X(k+1) induce an inductive system of injective
chain morphisms

C∗

(
X(k)

)
→ C∗

(
X(k+1)

)

and we denote by C∗(X;G) its inductive limit.
As for the cohomological counterpart, the inclusions X(k) → X(k+1) induce a projective

system of surjective cochain morphisms

C∗
(
X(k+1)

)
→ C∗

(
X(k)

)
,

where C∗ denote the dual cochain complex of C∗ (see [12], section 2.3), and we denote by
C∗(X;G) its projective limit.

Definition 4.7. We define by

H∗(X;G) := H∗(C∗(X;G))

and
H∗(X;G) := H∗(C∗(X;G))

the respective equivariant homology and cohomology of X with closed supports.

Remark 4.8. • Because homology commutes with inductive limits (see for instance [25]
Chap. 4, Sec. 1, Theorem 7) and since the semialgebraic chain complex with closed
supports computes Borel-Moore homology, we have

H∗(X;G) = lim
−→
k∈N

HBM
∗

(
X(k)

)
.
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• We also have
H∗(X;G) = HomZ2 (H∗(X;G),Z2) = lim←−

k∈N

H∗
c

(
X(k)

)
:

the left Hom functor of an inductive limit is the projective limit of the Hom functors
(see for instance the proof of Proposition 3F.5 of [10]), and the dual semialgebraic chain
complex computes the cohomology with compact supports (see [12], section 2.3).

• The equivariant homology with closed supports H∗(X;G) of X is different from the one
considered in [18] and [21]. When X is compact, the equivariant cohomology with closed
supports H∗(X;G) of X coincides with the equivariant cohomology considered in [21] :
see remark 4.10 below.

Lemma 4.9. If X is compact, then H∗(X;G) = HG
∗ (X) and H∗(X;G) = H∗

G(X).

Proof. If X is compact, so is each quotient set X(k) (as the image of a compact set by a

continuous map), and we have isomorphisms HBM
∗

(
X(k)

)
→ H∗

(
X(k)

)
, such that the diagrams

HBM
∗

(
X(k)

)
−→ HBM

∗

(
X(k+1)

)

↓ ∼= ↓ ∼=

H∗

(
X(k)

)
−→ H∗

(
X(k+1)

)

are commutative. As a consequence, the inductive systems HBM
∗

(
X(k)

)
, k ∈ N and H∗

(
X(k)

)
,

k ∈ N are isomorphic and the induced direct limits are isomorphic.
Application of the duality functor HomZ2( · ,Z2) provides the isomorphism H∗(X;G) ∼=

H∗
G(X).

Remark 4.10. By [17], X has a (unique) semialgebraic G-CW -structure so that, ifX is compact,
H∗(X;G) coincides with the equivariant cohomology of [5] Chap. VII, sect. 7 (see remark 4.1
(6)), that is the homology H∗(G,C

cell
∗ (X)) of the group G with coefficients in the chain complex

Ccell∗ (X).
Furthermore, since G is a finite group, X admits a (unique) G-equivariant semialgebraic

triangulation (which induces its semialgebraic G-CW -structure) and we can use it to relate the
chain complexes C∗(X) and Ccell∗ (X) via an equivariant quasi-isomorphism. Consequently, if
X is compact, H∗(X;G) = H∗(G,C∗(X)) ([5] Chap. VII, Proposition 5.2), and by dualization,
H∗(X;G) = H∗(G,C∗(X)) (this was the definition of the equivariant cohomology considered
in [21], Definition 3.3).

Example 4.11. We compute the equivariant homology of the real 2-dimensional unit sphere
X := S

2 in R
3 equipped with two different kind actions of G := Z/2Z, using the spectral

sequence
E2
p,q = Hp(G,Hq(X))⇒ Hp+q(X;G),

induced by the double complex F∗ ⊗G C∗(X), if F∗ is a projective resolution of Z2 over Z2[G]
(see [5] Chap. VII, see also [18] section 3).

Another equivariant homology of the sphere was computed in [9] (Example 2.8) and [18]
(Example 3.13), and the equivariant cohomology of the circle was computed in [21] (Example
3.5).
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1. Consider the action ofG onX given by the central symmetry σ : (x1, x2, x3) 7→ (−x1,−x2,−x3).
The projective resolution of Z2 over Z2[G] we consider is

Z2 ← Z2[G]
1+σ
←−− Z2[G]

1+σ
←−− Z2[G]← · · ·

so that the above spectral sequence is induced by the double complex

C∗(X)
id∗+σ∗←−−−− C∗(X)

id∗+σ∗←−−−− C∗(X)← · · ·

We have E3 = E2 and in order to compute E4, we have to compute the image of a point
p by the differential d3.

Apply id∗ + σ∗ to p to obtain the union of two opposite points : they are the boundary
of a half-equator. If we apply id∗ + σ∗ to this half-equator, we obtain an entire equator
which is the boundary of an hemisphere. Finally, the sum of this hemisphere with its
image by σ is the entire sphere, so that the page E4 of the spectral sequence is

0 0 0 0 · · ·
0 0 0 0 · · ·

Z2[p] Z2[p] Z2[p] 0 · · ·

As a consequence,

Hk(X;G) =

{
Z2 if k = 0, 1, 2,

0 otherwise.

Notice that, since the action on X is free, we could have used the equality H∗(X;G) =
H∗(X/G) = H∗(P2 (R)) (remark 4.1 (5)).

2. If we consider any non-free action of G on X, we can represent the 0-homology of X by
a fixed point. The image of this fixed point by id∗ + σ∗ is 0, so E2 = E∞ and

Hk(X;G) =

{
Z2 if k = 0, 1,

Z2 ⊕ Z2 if k ≥ 2.

3. More generally, the equivariant homology of the real d-dimensional unit sphere Sd of Rd+1

by an action of G (via a biregular involution) is

Hk(S
d;G) =

{
Z2 if 0 ≤ k ≤ d,

0 otherwise,

if the action is free, and

Hk(X;G) =

{
Z2 if 0 ≤ k ≤ d− 1,

Z2 ⊕ Z2 if k ≥ d,

if there is at least one fixed point.
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5 The equivariant Nash constructible filtrations

In this section, we construct invariants for G-AS-sets with respect to equivariant homeomor-
phisms with AS-graph.

Precisely, for any G-AS-set, we begin by constructing a filtration N• on the equivariant
chain complex C∗(X;G) using the Nash constructible filtration of [15]. This filtered complex
N•C∗(X;G) is invariant with respect to equivariant homeomorphisms with AS-graph, as well
as the induced spectral sequence E(X;G). From this spectral sequence E(X;G), we recover
invariants with values in Z which are additive with respect to equivariant inclusions of G-AS-
sets, and coincide with equivariant homology on compact nonsingular G-AS-sets : we call them
the equivariant virtual Betti numbers of X. They are different from the equivariant virtual
Betti numbers of [9].

5.1 The homological equivariant Nash constructible filtration

To any AS-set T , we can associate its semialgebraic chain complex C∗(T ), which we can equip
with the (bounded and increasing) Nash constructible filtration N•C∗(T ) (see [15] section 3) :

0 = N−q−1Cq(T ) ⊂ N−qCq(T ) ⊂ · · · ⊂ N−1Cq(T ) ⊂ N0Cq(T ) = Cq(T ).

This filtration on chain level induces a filtration on the Borel-Moore homology with Z2-
coefficients of T .

The Nash constructible filtration NC∗ is a functor with respect to proper continuous maps
with AS graph. It is additive on closed inclusions so that we can recover from the induced
spectral sequence the virtual Betti numbers of AS-sets ([7], see also [14]). If T is an affine real
algebraic variety, the filtered complex N•C∗(T ) induces the weight spectral sequence of T and
its weight filtration on Borel-Moore homology (see [15] subsection 1C).

The Nash constructible filtration can also be dualized to induce a cohomological Nash fil-
tration on the cochain complex C∗(T ) (see [12] section 4) : we denote it by N •C∗(T ). The
functorNC∗ is contravariant and have the cohomological counterparts of the properties ofNC∗.

In this paragraph, we are going to define an equivariant analog of the Nash constructible
filtration on the equivariant chain complex C∗(X;G) of any G-AS-set X.

So let X be a G-AS-set. For each k ∈ N, we consider the Nash constructible filtration

0 = N−q−1Cq
(
X(k)

)
⊂ N−qCq

(
X(k)

)
⊂ · · · ⊂ N−1Cq

(
X(k)

)
⊂ N0Cq

(
X(k)

)
= Cq

(
X(k)

)
.

The closed inclusions Xk →֒ Xk+1, k ∈ N (see subsection 3.2 above), induce an inductive
system of injections of filtered chain complexes

N•C∗

(
X(k)

)
→ N•C∗

(
X(k+1)

)

(see Theorem 3.6 of [15]). We also denote by N• the induced direct limit filtration on the
complex C∗(X;G). Notice that

• for each p and q, NpCq(X;G) = lim−→k∈N
NpCq

(
X(k)

)
,
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• for each q, we have

0 = N−q−1Cq(X;G) ⊂ N−qCq(X;G) ⊂ · · · ⊂ N−1Cq(X;G) ⊂ N0Cq(X;G) = Cq(X;G),

• N•C∗(X;G) is bounded filtration in the sense of [13] Theorem 2.6.

Definition 5.1. We call the filtered complex N•C∗(X;G) the equivariant Nash constructible
filtration of X.

Remark 5.2. The filtered complex N•C∗(X;G) is well-defined up to filtered chain complex
isomorphism by remark 3.19 and the fact that the functorial Nash filtration is invariant under
Nash isomorphisms (a Nash isomorphism is in particular a homeomorphism with AS-graph).

We are now going to show that the operation which associates to any G-AS-set its equiv-
ariant Nash constructible filtration is an additive and acyclic functor. These properties are
induced by the functoriality, the additivity and the acyclicity of the Nash constructible filtra-
tion (Theorem 3.6 of [15]).

Theorem 5.3. The map which associates to a G-AS-set X its equivariant Nash constructible
filtration N•C∗(X;G) is a functor with respect to equivariant continuous proper maps with
AS-graph.

Proof. Let X and Y be two G-AS-sets and let f : X → Y be an equivariant continuous proper
maps with AS-graph between X and Y .

Let k ∈ N. We consider the cartesian product map

f × id : X × VN (R
k)→ X × VN (R

k)

of f with the identity of VN (R
k). f × id is again an equivariant continuous proper map, and

has AS-graph as well (the graph of f × id is isomorphic to the cartesian product of the graph
of f , which is AS, and the graph of the identity of VN (R

k), which is algebraic).
Now, since the sets X×VN (R

k) and Y ×VN (R
k) are free G-AS-sets, the map f×id induces a

map f(k) := (f×id)/G : X(k) → Y(k) (see subsection 3.3) which is continuous (proposition 3.14),
proper (remark 3.17) and has AS-graph (proposition 3.16). As a consequence, by functoriality
of the Nash constructible filtration, it induces a filtered chain map

f(k)∗ : N•C∗

(
X(k)

)
→ N•C∗

(
Y(k)

)
.

Furthermore, the operation which associates to f the map f(k)∗ is functorial (use lemma 3.18).
By functoriality of the constructions, the maps f(k)∗, k ∈ N, are compatible with the

injections N•C∗

(
X(k)

)
→ N•C∗

(
X(k+1)

)
and N•C∗

(
Y(k)

)
→ N•C∗

(
Y(k+1)

)
, k ∈ N (see also

remark 3.13) : precisely, we have commutative diagrams

N•C∗

(
X(k)

)
−→ N•C∗

(
X(k+1)

)
yf(k)

∗

yf(k+1)
∗

N•C∗

(
Y(k)

)
−→ N•C∗

(
Y(k+1)

)

which fit into a direct limit map fG∗ : N•C∗(X;G) → N•C∗(Y ;G). Of course, the operation
which to f associates fG∗ is functorial as well.
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The additivity property of the Nash constructible filtration (Theorem 3.6 of [15]) induces the
additivity property of the equivariant Nash constructible filtration with respect to equivariant
closed inclusions of G-AS-sets :

Theorem 5.4. Any equivariant closed inclusion of G-AS-sets Y ⊂ X induces a short exact
sequence of filtered complexes

0→ N•C∗(Y ;G)→ N•C∗(X;G)→ N•C∗(X \ Y ;G)→ 0.

Proof. Let k ∈ N. The equivariant closed inclusion Y ⊂ X induces an equivariant closed
inclusion Y ×VN (R

k) ⊂ X × VN (R
k). We then apply the geometric quotient map πk to obtain

the closed inclusion of AS-sets Y(k) ⊂ X(k) (recall lemma 2.6, and recall that πk is a closed
map by lemma 3.4).

We then use the additivity of the Nash constructible filtration (Theorem 3.6 (2) of [15]) to
induce the short exact sequence of filtered complexes

0→ N•C∗(Y(k))→ N•C∗(X(k))→ N•C∗((X \ Y )(k))→ 0

(we have X(k) \ Y(k) = (X \ Y )(k)). We conclude by taking the direct limit : the direct limit is
an exact functor on modules.

Remark 5.5. By a diagram chasing, we also have short exact sequences

0→
NpC∗(Y ;G)

Np−1C∗(Y ;G)
→
NpC∗(X;G)

Np−1C∗(X;G)
→
NpC∗(X \ Y ;G)

Np−1C∗(X \ Y ;G)
→ 0,

p ≤ 0, of graded complexes.

The acyclicity of the Nash constructible filtration induces the acyclicity of the equivariant
Nash constructible filtration as well :

Corollary 5.6. Let

Ỹ −→ X̃y
ys

Y
i
−→ X

(2)

be an acyclic square of G-AS-sets, i.e. a commutative diagram of G-AS-sets and equivariant
proper continuous map such that i is an equivariant closed inclusion, X̃ = s−1(X) and the
restriction s : X̃ \ Ỹ → X \ Y is an equivariant homeomorphism. It induces a short exact
sequence of filtered complexes

0→ N•C∗(Ỹ ;G)→ N•C∗(Y ;G) ⊕N•C∗(X̃ ;G)→ N•C∗(X;G)→ 0.

Proof. The above acyclic square induces, by additivity of the equivariant Nash constructible
filtration, the following commutative diagram of short exact sequences

0 → N•C∗(Ỹ ;G) → N•C∗(X̃;G) → N•C∗(X̃ \ Ỹ ;G) → 0y
y

y∼=

0 → N•C∗(Y ;G) → N•C∗(X;G) → N•C∗(X \ Y ;G) → 0

Now, the above short exact sequence of the statement follows from a diagram chasing.
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Remark 5.7. By a diagram chasing argument, we have short exact sequences

0→
NpC∗(Ỹ ;G)

Np−1C∗(Ỹ ;G)
→
NpC∗(Y ;G)

Np−1C∗(Y ;G)
⊕
NpC∗(X̃ ;G)

Np−1C∗(X̃ ;G)
→
NpC∗(X;G)

Np−1C∗(X;G)
→ 0.

5.2 The induced equivariant weight spectral sequence

For X a G-AS-set, the filtered complex N•C∗(X;G) induces a spectral sequence that we denote
by E∗

∗,∗(X;G). Since the equivariant Nash filtration filtration is bounded, the induced spectral
sequence E∗

∗,∗(X;G) converges to H∗(C∗(X;G)) = H∗(X;G).

Definition 5.8. We call E∗
∗,∗(X;G) the equivariant weight spectral sequence of X and we call

the induced filtration

0 = N−q−1Hq(X;G) ⊂ N−qHq(X;G) ⊂ · · · ⊂ N−1Hq(X;G) ⊂ N0Hq(X;G) = Hq(X;G)

on the equivariant homology of X with closed supports, the equivariant weight filtration of X.

Remark 5.9. These equivariant weight spectral sequence and filtration are different from the
ones obtained in [18].

Moreover, E∗
∗,∗(X;G) is the direct limit spectral sequence of the inductive system of spectral

sequences E∗
∗,∗(X(k)), k ∈ N, where E∗

∗,∗( · ) is the weight spectral sequence induced by the Nash
constructible filtration (see [15]). Indeed, the direct limit of the inductive system of spectral
sequences induced by an inductive system of filtered complexes is the spectral sequence induced
by the direct limit of the filtered complexes (use the definition of the direct limit and the
exactness of the direct limit functor on modules).

In particular, for all, r, p, q ∈ Z,

Erp,q(X;G) = lim
−→
k∈N

Erp,q
(
X(k)

)
.

As in [15] subsection 1C, we reindex the spectral sequences Erp,q into spectral sequences

Ẽr
′

p′,q′ , well-defined from r′ = 1, by setting r′ = r + 1, p′ = 2p + q, q′ = −p. Since, for each

k ∈ N, the non-zero terms of Ẽrp,q
(
X(k)

)
lie in the closed triangle with vertices (0, 0), (0, dk) and

(dk, 0), where dk is the dimension of X(k), the spectral sequence Ẽrp,q(X;G) is a first quadrant
spectral sequence.

We will show in theorem 5.11 below that it is right-bounded as well. First, let us mention
how the additivity and acyclicity properties of the equivariant Nash constructible filtration
translates on the induced spectral sequence :

Lemma 5.10. 1. Let Y ⊂ X be an equivariant closed inclusion of G-AS-sets. For any
q ∈ N, it induces a long exact sequence

· · · → Ẽ2
p,q(Y ;G)→ Ẽ2

p,q(X;G)→ Ẽ2
p,q(X \ Y ;G)→ Ẽ2

p−1,q(Y ;G)→ · · ·

on the qth line of the second page of the (reindexed) equivariant weight spectral sequence.
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2. Consider an acyclic square (2) of G-AS-sets. For any q ∈ N, it induces a long exact
sequence

· · · → Ẽ2
p,q(Ỹ ;G)→ Ẽ2

p,q(Y ;G) ⊕ Ẽ2
p,q(X̃ ;G)→ Ẽ2

p,q(X;G) → Ẽ2
p−1,q(Ỹ ;G)→ · · ·

on the qth line of the second page of the equivariant weight spectral sequence.

Proof. These long exact sequences are induced by the short exact sequences of additivity and
acyclicity of the equivariant Nash constructible filtration just as in [15] section 1C.

Theorem 5.11. Let d be the dimension of X. If r ≥ 2 and Ẽrp,q(X;G) 6= 0 then 0 ≤ p ≤ dimX.

Proof. We use an induction on the dimension of X (see also [9], proof of Proposition 3.10 for
instance).

First, suppose that X is a compact and nonsingular AS-set, that is X does not intersect
the set of singular points of its Zariski closure (in P(R)). Then, if k ∈ N, the AS-set X(k) =

πk(X × VN (R
k)) is also compact (πk is a continuous map) and nonsingular (proposition 2.10).

As a consequence, X(k) is a compact Nash submanifold of an affine space (see for instance
Proposition 3.3.11 of [3]) and its weight spectral sequence, for r ≥ 2, is then concentrated in
column p = 0 (Theorem 3.7 of [15]), i.e. Erp,q

(
X(k)

)
= E2

p,q

(
X(k)

)
= 0 if p 6= 0. Hence the

same property for the direct limit : Erp,q (X;G) = E2
p,q (X;G) = 0 if p 6= 0.

This case apply in particular when X is zero-dimensional, that is when X is a finite union
of points.

Now, suppose that X is non-compact and nonsingular. There exists a compact and nonsin-
gular G-AS-set X such that X can be equivariantly biregularly embedded in X and dim(X \

X) < dimX. Indeed, consider the AS-closure X
AS

of X as well as the (projective) Zariski clo-

sure X
Z
of X, and consider an equivariant resolution of singularities s of X

Z
(which exists by

[2]). Since X is away from the singularities of X
Z
, s−1(X) is equivariantly biregularly isomor-

phic to X and s−1
(
X

AS
)
is a compact (s is proper) and nonsingular G-AS-set (the inverse im-

age of anAS-set by a map withAS-graph is anAS-set) such that dim
(
s−1

(
X

AS
)
\ s−1(X)

)
<

dimX.
We then denote Y := X \X. The AS-closure of Y is a G-AS-set as well and Y

AS
∩X ⊂ X

is an equivariant closed inclusion. On the other hand, X \
(
Y

AS
∩X

)
= X \ Y

AS
⊂ X is

an equivariant open inclusion. Consider the long exact sequence of additivity of lemma 5.10

associated to the equivariant open inclusion X \
(
Y

AS
∩X

)
⊂ X :

· · · → Ẽ2
p,q

(
Y

AS
;G
)
→ Ẽ2

p,q

(
X;G

)
→ Ẽ2

p,q

(
X \

(
Y

AS
∩X

)
;G
)
→ Ẽ2

p−1,q

(
Y

AS
;G
)
→ · · · .

If p 6= 0, Ẽ2
p,q

(
X;G

)
= 0 by the previous case and, by the induction hypothesis, Ẽ2

p,q

(
Y

AS
;G
)
=

0 if p ≥ d (recall that dimY
AS

= dimY < dimX). Consequently, if p > d,

Ẽ2
p,q

(
X \

(
Y

AS
∩X

)
;G
)
= 0.
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Finally, consider the long exact sequence of additivity associated to the equivariant closed

inclusion Y
AS
∩X ⊂ X :

· · · → Ẽ2
p,q

(
Y

AS
∩X;G

)
→ Ẽ2

p,q (X;G)→ Ẽ2
p,q

(
X \

(
Y

AS
∩X

)
;G
)
→ Ẽ2

p−1,q

(
Y

AS
∩X;G

)
→ · · ·

We use again the induction hypothesis (dimY
AS
∩X < dimX) to deduce that Ẽ2

p,q (X;G) = 0
if p > d.

We conclude the proof with the general case : if X is singular, the singular points of X
Z

included in X form a closed AS-subset of X which is globally stabilized under the (biregular)
action of G and of dimension stricly smaller than dimX (see for instance Proposition 3.3.14 of
[3]). We can then use the previous cases along with the induction hypothesis to conclude.

As a consequence, the long exact sequences of additivity and acyclicity of lemma 5.10 are
actually finite long exact sequences. This allows us to define the following invariants :

5.3 The equivariant virtual Betti numbers

Theorem 5.12. Let X be a G-AS-set and let q ∈ N. We denote

βq(X;G) :=
∑

p∈N

(−1)p dimZ2 Ẽ
2
p,q (X;G)

the qth equivariant virtual Betti number of X.

The qth equivariant virtual Betti number βq( · ;G) has values in Z and is

1. an invariant of G-AS-sets with respect to equivariant homeomorphisms with AS-graph,

2. additive with respect to equivariant closed inclusions of G-AS-sets, i.e., if Y ⊂ X is an
equivariant closed inclusion, βq(X;G) = βq(Y ;G) + βq(X \ Y ;G),

3. coincides with the dimension (over Z2) of the q
th equivariant homology group on compact

nonsingular G-AS-sets.

Moreover, the qth equivariant virtual Betti number is unique with these properties.

Proof. First, notice that βq(X;G) is well-defined since the sum over p is finite by theorem 5.11.
The qth equivariant virtual Betti number is invariant with respect to equivariant homeo-

morphisms with AS-graph because so is the equivariant Nash constructible filtration and the
induced equivariant weight spectral sequence. It is additive because of the long exact sequence
of additivity of lemma 5.10, which is finite for a given equivariant closed inclusion by theorem
5.11.

If X is compact nonsingular, the equivariant weight spectral sequence of X converges at
Ẽ2 (X;G) and is concentrated in the column p = 0 (see the proof of theorem 5.11). Since the
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equivariant weight spectral sequence of X converges to the equivariant homology of X with
closed supports, we have

βq(X;G) = dimZ2 Ẽ
2
0,q = dimZ2 Hq(X;G) = dimZ2 H

G
q (X)

(X is compact : see lemma 4.9).

We finally show the uniqueness of the qth equivariant virtual Betti number. Consider an
application Bq( · ;G) with the same above properties 1), 2) and 3) as βq( · ;G). We prove that
Bq(X;G) = βq(X;G) for any G-AS-set X, proceeding by induction on the dimension.

Just as in the proof of theorem 5.11, suppose first that X is compact and nonsingular. Then

Bq(X;G) = dimZ2 Hq(X;G) = βq(X;G).

Secondly, suppose that X is nonsingular and non-compact and consider an equivariant
nonsingular compactification X of X such that dim(X \ X) < dimX. Denote Y := X \ X.

Then Y
AS
∩X ⊂ X is an equivariant closed inclusion, so

Bq(X;G) = Bq

(
Y

AS
∩X;G

)
+Bq

(
X \ Y

AS
;G
)
,

and X \ Y
AS

= X \ Y
AS
⊂ X is an equivariant open inclusion, so that

Bq

(
X \ Y

AS
;G
)
= Bq

(
X;G

)
−Bq

(
Y

AS
;G
)
.

As a consequence, Bq(X;G) = βq(X;G) thanks to the induction hypothesis and the previous
case (X is compact nonsingular).

The final step consists in considering the closed subset of singular points of X and to
use again the additivity of Bq( · ;G) and βq( · ;G), the induction hypothesis and the previous
cases.

Remark 5.13. • In the proof of uniqueness, we used the invariance of βq( · ;G) with re-
spect to equivariant biregular isomorphisms in order to replace X by a subset of a com-
pact nonsingular G-AS set with complement of strictly smaller dimension. Actually, we
showed that any additive invariant of G-AS-sets with respect to equivariant biregular
isomorphisms, with values in Z and coinciding with the dimension of the qth equivariant
homology group on compact nonsingular G-AS-sets, coincides with βq( · ;G) and is, in
particular, invariant with respect to equivariant homeomorphisms with AS-graph.

• If X is a real algebraic set equipped with an action of G via biregular isomorphisms, to
compute βq(X;G), we can first consider an equivariant open compactification X of X
and then an equivariant resolution of singularities of X. We can construct an equivariant
open compactification of X using a trick similar to lemma 3.5 : consider an (a priori
non-equivariant) open compactification i : X →֒ X̃ of X and construct the morphism

j :
X → X̃ × · · · × X̃

x 7→
(
i(x), i

(
αg−1

2
(x)
)
, . . . , i

(
αg−1

N
(x)
))
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(if G = {g1, . . . , gN}). The Zariski closure of j(X) in X̃ × · · · × X̃ is then an equivariant
open compactification of X (the action is given by the permutations induced by the
product in G).

Actually, we can relax the “closed inclusion” hypothesis :

Corollary 5.14. If Y ⊂ X is any inclusion of G-AS-sets, then

βq(X;G) = βq(Y ;G) + βq(X \ Y ;G)

for all q ∈ N.

Proof. Let q ∈ N. First, let us prove that, if T be a G-AS-set,

βq(T ;G) = βq

(
T
AS
)
− βq

(
T
AS
\ T ;G

)
.

We proceed by induction on the dimension : the property is true for zero-dimensional AS-sets,
and suppose it to be true for G-AS-sets of dimension ≤ d − 1. Let T be a d-dimensional

G-AS-set and denote S := T
AS
\ T (we have dimS < dimT : see [11] Proposition 3.3). We

have
βq(T ;G) = βq

(
T
AS

;G
)
+ βq

(
S
AS
∩ T ;G

)
− βq

(
S
AS

;G
)

(see the proof of theorem 5.12). But S
AS
∩ T ⊂ S

AS
is an inclusion of G-AS-set of dimension

< d so
βq

(
S
AS

;G
)
− βq

(
S
AS
∩ T ;G

)
= βq

(
S
AS
\ T ;G

)
= βq

(
T
AS
\ T
)
.

We will now show that

βq(X;G) = βq(Y ;G) + βq(X \ Y ;G)

for any inclusion Y ⊂ X of G-AS-sets, proceeding once again by induction on the dimension
(the property is obviously true for zero-dimensional AS-sets) : suppose the above equality to
be true for any G-AS-sets of dimension ≤ d− 1 and consider an inclusion Y ⊂ X of G-AS-sets
of dimension ≤ d.

If X is compact, Y
AS
⊂ X and Y

AS
\ Y ⊂ X \ Y are equivariant closed inclusions so that

βq(X \ Y ;G) = βq

(
Y

AS
\ Y ;G

)
+ βq

(
X \ Y

AS
;G
)

= βq

(
Y

AS
;G
)
− βq(Y ;G) + βq(X;G) − βq

(
Y

AS
;G
)

= βq(X;G) − βq(Y ;G)

If X is not compact, denote X0 := X
AS
\X and consider the equivariant closed inclusion

X0
AS
∩ (X \ Y ) ⊂ X \ Y . We have

βq(X \ Y ;G) = βq

(
X0

AS
∩ (X \ Y );G

)
+ βq

(
(X \ Y ) \X0

AS
;G
)
.
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Since (X \ Y ) \X0
AS

=
(
X

AS
\ Y
)
\X0

AS
⊂ X

AS
\ Y is an equivariant open inclusion, we

also have
βq

(
(X \ Y ) \X0

AS
;G
)
= βq

(
X

AS
\ Y ;G

)
− βq

(
X0

AS
\ Y ;G

)
.

Finally, X0
AS
∩ (X \ Y ) ⊂ X0

AS
\ Y is an equivariant inclusion in dimension < d so

βq

(
X0

AS
\ Y ;G

)
− βq

(
X0

AS
∩ (X \ Y );G

)
= βq

(
X

AS
\X

)

and

βq(X \ Y ;G) = βq

(
X

AS
\ Y ;G

)
− βq

(
X

AS
\X;G

)

= βq

(
X

AS
;G
)
− βq(Y ;G)−

(
βq

(
X

AS
;G
)
− βq(X;G)

)

= βq(X;G) − βq(Y ;G).

Let us then give the following definition :

Definition 5.15. Let e be an application from the category of G-AS-sets and equivariant
continuous maps with AS-graph to a ring A. We say that e is an additive invariant of G-AS-
sets if

• whenever f : X → X ′ is an equivariant homeomorphism with AS-graph, then

e(X) = e(X ′),

• for any equivariant inclusion Y ⊂ X, we have

e(X) = e(Y ) + e(X \ Y ).

The equivariant virtual Betti numbers are additive invariants of G-AS-sets. We define
another one from them :

Definition 5.16. Let X a G-AS-set. We set

β(X;G) :=
∑

q∈N

βq(X;G)uq ∈ Z[[u]].

and we call this formal power series the equivariant virtual Poincaré series of X.
The equivariant virtual Poincaré series is an additive invariant of G-AS-sets, which coin-

cides on compact nonsingular G-AS-sets with the generating function of the dimensions of the
equivariant homology groups (we denote this generating function by b( · ;G)).

Remark 5.17. • The equivariant virtual Betti numbers and the equivariant virtual Poincaré
series defined above are different from the ones in [9] : they are not induced by the same
equivariant homology. In particular, the above equivariant virtual Poincaré series of
definition 5.16 does not encode the dimension (see below example 5.18 (2)).
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• Let q ∈ N. The application which associates to a G-AS-set X the qth virtual Betti
number (see [14], [7] and also [15]) of its fixed points set βq(X

G) is an additive invariant
of G-AS-set with values in Z.

The virtual Poincaré polynomial of the fixed points set is also an additive invariant of
G-AS-set, with values in Z[u].

• If G = {e}, β( · ;G) is the virtual Poincaré polynomial of [7], since H∗(X;G) = H∗(X) if
X is a compact (nonsingular) AS-set (see remark 4.1 (5) and lemma 4.9).

Example 5.18. 1. Consider the d-dimensional affine space A := R
d equipped with any or-

thogonal action of a finite group G. In order to compute the equivariant virtual Poincaré
series of A, we consider the radial projection of A into the d-dimensional sphere S with
center (0, . . . , 0, 12 ) and radius 1

2 of Rd+1 : see for instance the proof of Proposition 3.5.12
of [3].

If we naturally extend the orthogonal action of G into an orthogonal action on R
d+1 (take

the diagonal action fixing the last coordinate), this (bi)regular embedding is equivariant
(because the action preserves the euclidean norm). Denote by p the point (0, . . . , 0, 1) of
R
d+1. We then have

β(A;G) = β(S;G) − β(p;G) = b(S;G)− b(p;G),

since S and p are compact and nonsingular.

We have b(p;G) =
∑

q∈NHq(G,Z2)u
q (remark 4.1 (5)), and consider the G-CW -structure

on S consisting in the G-invariant d-cell A and the G-invariant 0-cell p. Since all the cells
are globally invariant under G, the action on the cellular complex Ccell∗ (S) is trivial and

H∗(S;G) = H∗(G,C
cell
∗ (S)) = H∗(S)⊗Z2 H∗(G,Z2)

(see [5] VII-5 (5.4)), so that

b(S;G) = b(S)



∑

q∈N

Hq(G,Z2)u
q


 = (1 + ud)



∑

q∈N

Hq(G,Z2)u
q




(b( · ) denotes the Poincaré polynomial). Finally

β(A;G) = ud



∑

q∈N

Hq(G,Z2)u
q


 = udb(p;G).

2. We consider two different actions of G := Z/2Z on the hyperbola X := {xy = 1} of R2.

First, consider the action given by the involution σ : (x, y) 7→ (−x,−y). Consider the
projective Zariski closure X := {XY = Z2} of X in P

2(R), equipped with the involution
σ : (X : Y : Z) 7→ (−X : −Y : Z) = (X : Y : −Z). Then X ⊂ X is an equivariant
inclusion (compactification) of G-AS-sets and X \ X = {p, q}, where p and q are the
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points of respective homogeneous coordinates [1 : 0 : 0] and [0 : 1 : 0]. Notice that p
and q are fixed by the action of G on X and that X is a nonsingular compact G-AS-set
equivariantly homeomorphic to a circle equipped with a continuous action of G with two
fixed points. As a consequence,

β(X;G) = β(X ;G) − β({p, q};G) = (1 + u)b(p;G) − 2b(p;G) = (u− 1)
∑

q∈N

uq = −1

(Hk(G,Z2) = Z2 if k ≥ 0 for G = Z/2Z : see for instance [9] Example 2.1).

If now we consider the action of G given by the involution σ : (x, y) 7→ (y, x) (notice that
the points of coordinates (1, 1) and (−1,−1) are fixed by the σ), we equip X with the
involution σ : (X : Y : Z) 7→ (Y : X : Z), for which the two points p and q are exchanged.
Consequently, β({p, q};G) = b({p, q}/G) = b(p) = 1 and

β(X;G) = β(X ;G) − β({p, q};G) = (1 + u)
∑

q∈N

uq − 1 =
∑

q≥1

2uq.

In particular, we can see through this example that the equivariant virtual Poincaré series
does not encode dimension.

3. Let k and l be odd integers and let X be the real algebraic set {y2l = x2k(1 − x2k)
of R2. We will consider the actions of G := Z/2Z on X given by the involutions σ1 :
(x, y) 7→ (−x, y), σ2 : (x, y) 7→ (x,−y) and σ3 : (x, y) 7→ (−x,−y). First, notice that the
map (x, y) 7→ (xk, yl) induces an equivariant homeomorphism with AS-graph (actually
algebraic graph) between the algebraic set X ′ := {y2 = x2(1− x2) of R2 and X, so that

β(X;G) = β(X̃ ;G).

As in [9] Example 4.6, we consider an equivariant resolution of X ′ to compute the equiv-
ariant virtual Poincaré series of X. With the values of our equivariant virtual Poincaré
series on the circle and points, we obtain

β(X;G) =





1 + 2u+
∑

q≥2 u
q if G = {id, σ1},

1 +
∑

q≥1 2u
q if G = {id, σ2},∑

q≥1 u
q if G = {id, σ3}.

In particular, we see that the actions of the involutions σ1 and σ3 are different up to
equivariant homeomorphism with AS-graph, which could not be proven using the equiv-
ariant virtual Poincaré series of [9] or the virtual Poincaré polynomial of the fixed points
set.

5.4 The dual equivariant Nash constructible filtration

We deal with the cohomological counterpart of the previous paragraphs, adapting the con-
struction of the dual geometric filtration of [12] section 4 to our equivariant AS context. First,
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remark that Cq(X;G) = HomZ2 (Cq(X;G),Z2), since

lim
←−
k∈N

HomZ2 (Mk,Z2) = HomZ2

(
lim
−→
k∈N

Mk,Z2

)
(3)

for any inductive system of Z2-vector spaces Mk, k ∈ N.

Definition 5.19. Let X be a G-AS-set. For p ∈ Z, q ∈ N, we set

N pCq(X;G) := {ϕ ∈ Cq(X;G) | ϕ ≡ 0 on Np−1Cq(X;G)} .

This fits into a decreasing filtration N • on C∗(X;G) :

0 = N 1Cq(X;G) ⊂ N 0Cq(X;G) ⊂ · · · ⊂ N−q+1Cq(X;G) ⊂ N−qCq(X;G),

that we call the dual equivariant Nash constructible filtration of X.

Since the filtration N • is bounded, it induces a spectral sequence E∗,∗
∗ (X;G) which con-

verges ([13] Theorem 2.6) to the cohomology of C∗(X;G), that is the equivariant cohomology
with closed supports H∗(X;G) of X. The induced filtration

0 = N 1Hq(X;G) ⊂ N 0Hq(X;G) ⊂ · · · ⊂ N−q+1Hq(X;G) ⊂ N−qHq(X;G)

on H∗(X;G) is called the cohomological equivariant weight filtration of X.
Just as in [12] section 4, we have natural isomorphisms

N pCq(X;G) =

(
Cq(X;G)

Np−1Cq(X;G)

)∨

(4)

(where · ∨ denotes the duality functor HomZ2( · ,Z2), which is exact), so that the cohomological
equivariant weight spectral sequence is naturally dual to the (homological) equivariant weight
spectral sequence :

Ep,qr (X;G) =
(
Erp,q(X;G)

)∨

for all r ≥ 0, p, q ∈ Z.
Moreover, the filtered cochain complex N •C∗ (X;G) is the inverse limit of the projective

system N •C∗
(
X(k+1)

)
→ N •C∗

(
X(k)

)
and the cohomological equivariant weight spectral se-

quence is the inverse limit of the induced cohomological weight spectral sequences (use the
above natural isomorphisms (4), (3) and the exactness of the direct limit and duality functors).

Remark 5.20. The above cohomological equivariant weight filtration and spectral sequence are
different from the ones of [21] section 3.

As in [12] Lemma 4.2, the additivity and acyclicity short exact sequences of theorem 5.4
and corollary 5.6 induces short exact sequences of additivity and acyclicity for the dual equiv-
ariant Nash constructible filtration. We deduce finite long exact sequences of additivity (and
acyclicity) on the lines of the second page of the reindexed (take the same reindexation as in
subsection 5.2) cohomological equivariant weight spectral sequence. We can therefore recover
the equivariant virtual Betti numbers (theorem 5.12) from the cohomological equivariant weight
spectral sequence as well :
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Proposition 5.21. Let X be a G-AS-set and let q ∈ N. We have

βq(X;G) =
∑

p∈N

(−1)p dimZ2 Ẽ
p,q
2 (X;G) .

Proof. Each line of Ẽ2 (X;G) is bounded because it is dual to its homological counterpart
and because of theorem 5.11. Furthermore, thanks to the long exact sequence of additivity
on each line of Ẽp,q2 (X;G), the right member is additive. It is also an invariant of G-AS-
sets because the dual equivariant Nash constructible filtration is a functor with respect to
equivariant proper continuous maps with AS-graph, since so is the homological one (use again
the natural isomorphisms (4)).

Finally, if X is compact and nonsingular, we have

Ẽ2
p,q (X;G) =

{
Hq(X;G) = HG

q (X) if p = 0,

0 if p 6= 0,

and

Ẽp,q2 (X;G) =
(
Ẽ2
p,q (X;G)

)∨
=

{
Hq(X;G) = Hq

G(X) if p = 0,

0 if p 6= 0,

so that
∑

p∈N(−1)
p dimZ2 Ẽ

p,q
2 (X;G) = dimZ2 H

G
q (X).

We conclude by the uniqueness of the qth equivariant virtual Betti number with these
properties.

Remark 5.22. If X is compact nonsingular, we have a Poincaré duality isomorphism between
H∗(X;G) and the equivariant homology considered in [9] (see [26] III Theorem 4.2, [9] 2.3.5
and also [21] Remark 4.26) so that

β(X;G)(u) = udβG(X)(u−1)

where d is the dimension of X and βG is the equivariant virtual Poincaré series of [9].
However, this equality does not hold for general G-AS-sets. Consider for instance the third

example of 5.18 : we have β (X; {id, σ1}) 6= β (X; {id, σ3}) while β
{id,σ1}(X) = β{id,σ3}(X) (see

[9] Example 4.6).

6 Properties of the equivariant virtual Poincaré series and ap-

plications

In this final section, we show that the equivariant virtual Poincaré series of definition 5.16 has
properties similar to the ones of the equivariant virtual Poincaré series of [9], which allows it
to be used to define helpful tools (namely zeta functions) for the classification of real analytic
germs.

All the story begins with the following property, similar to [9] Proposition 3.13 :
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Proposition 6.1. Let X be a G-AS-set and let R
d be an affine space equipped with any

orthogonal action of G. Then

β(X × R
d;G) = udβ(X;G)

(on the left-hand side, we consider the diagonal action of G on X × R
d).

Before proving the above result, we need to mention the following facts. First, remark that,
if G and H are finite groups and X, resp. Y , are topological spaces on which G, resp. H, act
via homeomorphisms, we have a Künneth-type formula

HG
∗ (X)⊗Z2 H

H
∗ (Y ) ∼= HG×H

∗ (X × Y ).

Indeed, if EG, resp. EH , is a contractible topological space equipped with a free action
of G, resp. H, then EG × EH is a contractible space with a free action of G × H and
(X × Y ) ×G×H (EG × EH) is naturally isomorphic to (X ×G EG) × (Y ×H EH), so that the
usual Künneth formula for homology can be applied.

We will use this property together with the following one : suppose that X and Y are two
G-CW -complexes such that the action G globally stabilizes each cell of Y , then HG

∗ (X ×Y ) =

H
G×{e}
∗ (X×Y ), where, on the left-hand side, G acts diagonally onX×Y and, on the right-hand

side, we make the trivial group act on Y .
Indeed, compute the equivariant homology of X×Y as the cellular homology of the quotient

of (X×Y )×EG by G. Take EG to be a G-CW -complex such that its cells are freely permuted
by G ([10] Example 1B.7) : a cell of the quotient is then the orbit of freely permuted cells of
(X × Y ) × EG (which are the products of the cells of X, Y and EG) under the action of G.
Since the actions of G and G× {e} on the cells of (X × Y )×EG have the same orbits, we get
the result.

Proof of proposition 6.1. The proof is analog to the proof of Proposition 3.13 of [9] : first,
suppose that X is a compact and nonsingular G-AS-set and equivariantly compactify R

d into
the d-dimensional sphere S

d as in above example 5.18 (1) : X × R
d →֒ X × S

d is then an
equivariant compactification of X × R

d.
Consider a G-CW -structure on X ([17]) and the G-CW -structure on S

d consisting in the
G-invariant d-cell Rd and the G-invariant 0-cell {p} := S

d \ Rd. Since X and S
d are compact

and nonsingular, we have

β(X×Sd;G) = b(X×Sd;G) = b(X×Sd;G×{e}) = b(X;G)·b(Sd; {e}) = b(X;G)·b(Sd) = (1+ud)b(X;G),

and, by additivity of the equivariant virtual Poincaré series,

β(X×Rd;G) = β(X×Sd;G)−β(X×{p};G) = (1+ud)b(X;G)−b(X;G) = udb(X;G) = udβ(X;G).

The rest of the proof proceeds just as in [9], using an induction on the dimension of X and
the additivity of the equivariant virtual Poincaré series β( · ;G) (see also the proofs of theorems
5.11 and 5.12).

38



Remark 6.2. The equality is true as soon as the affine space R
d can be equivariantly compact-

ified into a d-dimensional sphere.

Thanks to proposition 6.1, the equivariant virtual Poincaré series could be used to define
invariants, in terms of (motivic) zeta functions, of some equivalence relation of equivariant
Nash germs, namely equivariant blow-Nash equivalence (see [8]) or equivariant arc-analytic
equivalence (see [6]), just as as in [19]. Indeed, this is this key property of the equivariant
virtual Poincaré series of [9], together with its additivity, which allow to prove Propositions
3.14 and 3.17 of [19].

This could be applied to study the classification of simple Nash germs invariant under the
involution changing the sign of the first coordinate, as in [20].

We also state the analogs of Proposition 3.14 and 3.15 of [9] for our equivariant virtual
Poincaré series :

Proposition 6.3. Let X be a G-AS-set.

1. If the action of G on X is trivial, then β(X;G) = β(X)
(∑

q∈NHq(G,Z2)u
q
)
.

2. If X is a free G-AS-set, then the quotient X/G is well-defined as an AS-set (corollary
3.11 and remark 3.19) and β(X;G) = β(X/G).

Proof. For the first point, proceed just as in the proof of Proposition 3.14 of [9], using an
induction on dimension, as well as the Kunneth isomorphism H∗(X;G) = H∗(X)⊗Z2H∗(G,Z2)
(see remark 4.1 (5)) when X is compact and nonsingular.

For the second point, use also an induction on dimension. For the compact case, proceed as
in the proof of Proposition 3.15 of [9], considering an equivariant resolution of the singularities

of X. If X is not compact, apply the previous case to X
AS

(the action of G on X
AS

is free by

definition) and the induction hypothesis to X
AS
\X to obtain, by additivity of the equivariant

virtual Poincaré series,

β(X;G) = β
(
X

AS
;G
)
− β

(
X

AS
\X;G

)
= β

(
X

AS
/G
)
− β

(
(X

AS
\X)/G

)
= β(X/G).

Remark 6.4. As pointed out in example 5.18 (2), our equivariant virtual Poincaré series does
not encode the dimension, contrary to the equivariant virtual Poincaré series of [9] (Proposition
3.10). However, our equivariant virtual Poincaré series has been proven to be an invariant with
respect to equivariant homeomorphism with AS-graph, and we saw in example 5.18 (2) that it
could detect differences in some equivariant AS-stuctures that the equivariant virtual Poincaré
series of [9], as well as the virtual Poincaré polynomial of the fixed points set, could not see.
These three additive invariants should be thought as complementary.
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