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Abstract: In 1982, Ball, Marsden, and Slemrod proved an obstruction to the controllability
of linear dynamics with a bounded bilinear control term. This note presents an example of
nonlinear dynamics with respect to the state for which this obstruction still holds while the
control potential is not bounded.
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1. INTRODUCTION AND RESULTS

1.1 Introduction

On the Euclidean space R3 endowed with its natural norm
| · |, we study the control problem:
{

i∂tψ +Hψ = u(t)K(x)ψ − σ|ψ|2ψ, (t, x) ∈ R×R
3,

ψ(0, x) = ψ0(x),
(1)

where H = −∆+ |x|2 is the Hamiltonian of the quantum
harmonic oscillator on R

3, u : R −→ R is the control,
K : R3 −→ R is a given potential and σ ∈ {0, 1}.

The Sobolev spaces based on the domain of the harmonic
oscillator are instrumental in the study of dynamics (1).
They are defined, for s ≥ 0 and p ≥ 1 by

Ws,p = Ws,p(R3) =
{

f ∈ Lp(R3), Hs/2f ∈ Lp(R3)
}

,

Hs = Hs(R3) = Ws,2.

The natural norms are denoted by ‖f‖Ws,p and up to
equivalence of norms (see e.g. Lemma 2.4 of Yajima and
Zhang (2004)), for 1 < p < +∞, we have

‖f‖Ws,p = ‖Hs/2f‖Lp ≡ ‖(−∆)s/2f‖Lp + ‖〈x〉sf‖Lp , (2)

with the notation 〈x〉 = (1 + |x|2)1/2.

1.2 Ball-Marsden-Slemrod obstructions

The dynamical system (1) is called the bilinear Gross-
Pitaevskii equation. It is a nonlinear version of dynamics
of the type ψ̇ = Aψ + u(t)Bψ where A and B are linear
operators in a Banach space X and u : R → R is a
real-valued control which involve a control term uBψ that
is bilinear in (u, ψ). Such dynamics play a major role in
physics and are the subject of a vast literature Khapalov
(2010). In Ball et al. (1982), Ball, Marsden, and Slemrod
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have proven that if A generates a C0 semi-group in X and
if B is bounded on X , then the attainable set from any
source ψ0 in X with Lr controls, r > 1, is contained in a
countable union of compact sets of X . This represents a
deep obstruction to the controllability of bilinear control
systems in infinite dimensional Banach spaces, since this
result implies that the attainable set is meager in Baire
sense and has empty interior.

The original result of Ball et al. (1982) (and its adapta-
tion to the Schrödinger equation in Turinici (2000)) has
been extended to the case of L1 controls in Boussäıd
et al. (2017). More recently, the case where A is non-
linear has been investigated in Chambrion and Thomann
(2018b) (for the Klein-Gordon equation) and Chambrion
and Thomann (2018a) (for the Gross-Pitaevskii equa-
tion (1)).

In (Chambrion and Thomann, 2018a, Theorem 1.6) we
showed in particular that if K ∈ W1,∞(R3), the dynam-
ics (1) is non controllable. Under this assumption, the map

H1(R3) −→ H1(R3)

ψ 7−→ Kψ,

is continuous and this was used in the heart of the proof.

The main result of this note, Theorem 1 below, provides an
example of potential K /∈ L∞(R3) where this condition is
violated, but where the obstruction to controllability result
still holds true.

1.3 Main result

Our main result reads as follows

Theorem 1. Let K(x) = log(|x|)1{|x|≤1} and ψ0 ∈
H1(R3). Assume that u ∈

⋃

r>1L
r
loc(R), then the equa-

tion (1) admits a global flow ψ(t) = Φu(t)(ψ0).

Moreover, for every ψ0 ∈ H1(R3), the attainable set



⋃

t∈R

⋃

u∈Lr
loc(R),
r>1

{

Φu(t)(ψ0)
}

(3)

is a countable union of compact subsets of H1(R3).

In this paper, the solutions to (1) are understood in the
mild sense

ψ(t) = eitHψ0 − i

∫ t

0

u(τ)ei(t−τ)H(Kψ(τ))dτ

+iσ

∫ t

0

ei(t−τ)H(|ψ|2ψ)dτ.

1.4 Content of the paper

The rest of this note provides a proof of Theorem 1.
The proof crucially relies on classical Strichartz estimates,
which we recall in Section 2. The proof itself is split in
two parts. The global well-posedness of the problem (1) is
established in Section 3.1, using among other some energy
estimates. The proof of the obstruction result follows the
strategy used in the paper Ball et al. (1982) and is given
in Section 3.2.

2. STRICHARTZ ESTIMATES

As in Chambrion and Thomann (2018a), the Strichartz
estimates play a major role in the argument, let us recall
them in the three-dimensional case. A couple (q, r) ∈
[2,+∞]2 is called admissible if

2

q
+

3

r
=

3

2
,

and if one defines

X1
T :=

⋂

(q,r) admissible

Lq
(

[−T, T ] ;W1,r(R3)
)

,

then for all T > 0 there exists CT > 0 so that for all
ψ0 ∈ H1(R3) we have

‖ eitH ψ0‖X1
T
≤ CT ‖ψ0‖H1(R3). (4)

Using interpolation theory one can prove that

X1
T = L∞

(

[−T, T ] ;H1(R3)
)

∩ L2
(

[−T, T ] ;W1,6(R3)
)

,

so that one can define

‖ψ‖X1
T
= ‖ψ‖L∞([−T,T ];H1(R3)) + ‖ψ‖L2([−T,T ];W1,6(R3)).

We will also need the inhomogeneous version of Strichartz:
for all T > 0, there exists CT > 0 so that for all admissible
couple (q, r) and function F ∈ Lq

′

([T, T ];W1,r′(R3)),

∥

∥

∫ t

0

ei(t−τ)H F (τ)dτ
∥

∥

X1
T

≤ CT ‖F‖Lq′([−T,T ],W1,r′(R3)),

(5)
where q′ and r′ are the Hölder conjugate of q and r. We
refer to Poiret (2012) for a proof. Let us point out that (5)
implies that

∥

∥

∫ t

0

ei(t−τ)H F (τ)dτ
∥

∥

X1
T

≤

CT
(

‖F1‖L1([−T,T ],H1(R3))+‖F2‖
L2([−T,T ],W1, 6

5 (R3))

)

(6)

for any F1, F2 such that F1 + F2 = F , which will prove
useful.

In the sequel c, C > 0 denote constants the value of which
may change from line to line. These constants will always
be universal, or uniformly bounded. For x ∈ R

3, we write
〈x〉 = (1 + |x|2)1/2. We will sometimes use the notations
LpT = Lp([0, T ]) and LpTX = Lp([0, T ];X) for T > 0.

3. PROOF OF THEOREM 1

3.1 Global existence theory for dynamics (1)

Using the reversibility of the equation (1), it is enough to
consider non-negative times in the proofs.

The following result will be useful to control the bilinear
term in (1).

Lemma 2. Let K(x) = log(|x|)1{|x|≤1} and T > 0. Then
for all 2 ≤ q < ∞, there exists CT > 0 such that for all
ψ ∈ X1

T

‖Kψ‖Lq([−T,T ];H1(R3)) ≤ CT ‖ψ‖X1
T
.

Proof. Firstly by (2) we have
∥

∥Kψ
∥

∥

H1 ≤ c
∥

∥∇Kψ
∥

∥

L2 +c
∥

∥K∇ψ
∥

∥

L2 +c
∥

∥K〈x〉ψ
∥

∥

L2 . (7)

• Let us study the first term in (7). Since |∇K| ≤ C|x|−1,
we can use the Hardy inequality

∥

∥|x|−1ψ
∥

∥

L2(R3)
≤ C

∥

∥ψ
∥

∥

H1(R3)
(8)

(we refer to (Tao, 2006, Lemma A.2) for the general
statement and proof of this inequality), and therefore
the contribution of the first term reads

∥

∥∇Kψ
∥

∥

Lq
T
L2 ≤

CT 1/q‖ψ‖L∞

T
H1 ≤ CT ‖ψ‖X1

T
.

• To bound the contribution of the two last terms in (7),
we will use that K ∈ Lp(R3) for any 1 ≤ p < ∞. Given
2 ≤ q < ∞, we choose r > 2 such that the couple (q, r) is
(Strichartz) admissible and write, using Hölder

∥

∥K∇ψ
∥

∥

L2 ≤ ‖K‖Lp‖∇ψ‖Lr ≤ c‖K‖Lp‖ψ‖W1,r ,

with 1/p+ 1/r = 1/2. Thus
∥

∥K∇ψ
∥

∥

Lq
T
L2 ≤ c‖K‖Lp‖ψ‖Lq

T
W1,r ≤ c‖K‖Lp‖ψ‖X1

T
.

Similarly,
∥

∥K〈x〉ψ
∥

∥

Lq
T
L2 ≤ c‖K‖Lp‖ψ‖Lq

T
W1,r ≤ c‖K‖Lp‖ψ‖X1

T
.

We now state a global existence result for (1) adapted to
our control problem.

Proposition 3. Let u ∈ L1
loc(R) and set K : x 7→

log(|x|)1{|x|≤1}. Let ψ0 ∈ H1(R3), then the equation (1)

admits a unique global solution ψ ∈ C(R;H1(R3)) ∩
L2
loc(R;W1,6) which moreover satisfies the bounds

‖ψ‖L∞([−T,T ];H1(R3))

≤C(‖ψ0‖H1(R3)) exp
(

c

∫ T

−T

|u(τ)|dτ
)

, (9)

and

‖ψ‖L2([−T,T ];W1,6(R3)) ≤ C
(

T, ‖ψ0‖H1(R3),

∫ T

−T

|u(τ)|dτ
)

.

(10)

Proof. The proof is in the spirit of the proof of (Cham-
brion and Thomann, 2018a, Proposition 1.5), but here



we use moreover the Hardy inequality (8) to control the
bilinear term in (1).

Energy bound: Assume for a moment that the solution
exists on a time interval [0, T ]. For 0 ≤ t ≤ T , we define

E(t) =

∫

R3

(

ψHψ + |ψ|2 +
σ

2
|ψ|4

)

dx

=

∫

R3

(

|∇ψ|2 + |x|2|ψ|2 + |ψ|2 +
σ

2
|ψ|4

)

dx.

Then, using that ∂tψ = −i(Hψ + σ|ψ|2ψ) + iu(t)K(x)ψ,
we get

E′(t) = 2ℜ

∫

R3

∂tψ
(

ψ +Hψ + σ|ψ|2ψ
)

dx

=−2u(t)ℑ

∫

R3

KψHψdx

= 2u(t)ℑ

∫

R3

ψ∇K · ∇ψdx.

Observing that |∇K| ≤ C|x|−1, by the Hardy inequal-
ity (8) we get

E′(t)≤ 2|u(t)|
∥

∥ψ∇K
∥

∥

L2

∥

∥∇ψ
∥

∥

L2

≤C|u(t)|
∥

∥|x|−1ψ
∥

∥

L2

∥

∥∇ψ
∥

∥

L2

≤C|u(t)|
∥

∥ψ
∥

∥

2

H1

≤C|u(t)|E(t).

Thus, using that σ ≥ 0, we deduce the bound (9).

Local existence and global existence: We consider the map

Φ(ψ)(t) = eitHψ0 + iσ

∫ t

0

ei(t−τ)H(|ψ|2ψ)dτ

−i

∫ t

0

u(τ)ei(t−τ)H(Kψ)dτ,

and we will show that it is a contraction in the space

BT,R :=
{

‖ψ‖X1
T
≤ R

}

,

with R > 0 and T > 0 to be fixed.

By the Strichartz inequalities (4) and (6)

‖Φ(ψ)‖X1
T

≤ c‖ψ0‖H1 + c
∥

∥|ψ|2ψ
∥

∥

L1
T
H1 + c‖uKψ‖L2

tW
1,6/5(R3).

Then by (Chambrion and Thomann, 2018a, Lemma A.1)

‖Kψ‖W1,6/5(R3) ≤ C‖K‖L3(R3)‖ψ‖H1(R3)

+C‖K‖W1,3/2(R3)‖ψ‖L6(R3).

Next, by the Sobolev embedding H1(R3) ⊂ L6(R3), from
the previous line we get

‖Kψ‖W1,6/5(R3) ≤ C‖ψ‖H1(R3), (11)

which in turn implies

‖Φ(ψ)‖X1
T

≤ c‖ψ0‖H1 + c‖ψ‖L∞

T
H1‖ψ‖2L2

T
L∞ + c‖u‖L1

T
‖ψ‖L∞

T
H1 .

By the Gagliardo-Nirenberg and Sobolev inequalities
on R

3,

‖ψ‖L∞ ≤ C‖ψ‖
1/2
L6 ‖ψ‖

1/2
W1,6 ≤ C‖ψ‖

1/2
H1 ‖ψ‖

1/2
W1,6 ,

thus ‖ψ‖L2
T
L∞ ≤ cT 1/4‖ψ‖

1/2
L∞

T
H1‖ψ‖

1/2

L2
T
W1,6 , and for ψ ∈

BT,R we get

‖Φ(ψ)‖X1
T
≤ c‖ψ0‖H1 + cT 1/2R3 + cR‖u‖L1

T
.

We now choose R = 2c‖ψ0‖H1 . Then for T > 0 small
enough, Φ maps BT,R into itself. With similar estimates
we can show that Φ is a contraction in BT,R, namely

‖Φ(ψ1)− Φ(ψ2)‖X1
T
≤

[

cT 1/2R2 + c‖u‖L1
T

]

‖ψ1 − ψ2‖X1
T
.

As a conclusion there exists a unique fixed point to Φ,
which is a local solution to (1).

The local time of existence only depends on u and on the
H1-norm. Therefore one can use the energy bound to show
the global existence.

Proof of the bound (10): The proof follows the main lines
of (Chambrion and Thomann, 2018a, Bound (1.18)), hence
we do not detail it here.

3.2 Meagerness of the attainable set

Let ǫ > 0 and let u, un ∈ L1+ǫ([0, T ];R) such that
un ⇀ u weakly in L1+ǫ([0, T ];R). This implies a bound
‖un‖L1+ǫ

T
≤ C(T ) for some C(T ) > 0, uniformly in n ≥ 1.

We have

ψ(t) = eitHψ0 − i

∫ t

0

u(τ)ei(t−τ)H(Kψ(τ))dτ

+iσ

∫ t

0

ei(t−τ)H(|ψ|2ψ)dτ,

and

ψn(t) = eitHψ0 − i

∫ t

0

un(τ)e
i(t−τ)H(Kψn(τ))dτ

+iσ

∫ t

0

ei(t−τ)H(|ψn|
2ψn)dτ.

We set zn = ψ − ψn, then zn satisfies

zn = L(ψ, ψn) +N (ψ, ψn), (12)

with

L(ψ, ψn) = −i

∫ t

0

(

u(τ) − un(τ)
)

ei(t−τ)H(Kψ)dτ

−i

∫ t

0

un(τ)e
i(t−τ)H

(

K(ψ − ψn)
)

dτ

and

N (ψ, ψn) = iσ

∫ t

0

ei(t−τ)H
(

(ψ − ψn)(ψ + ψn)ψ
)

dτ

+iσ

∫ t

0

ei(t−τ)H
(

(ψ − ψn)ψ
2
n

)

dτ.

Let us prove that zn −→ 0 in L∞([0, T ];H1(R3)).



Lemma 4. Denote by

ǫn :=
∥

∥

∥

∫ t

0

(

un(τ)− u(τ)
)

ei(t−τ)H(Kψ(τ))dτ
∥

∥

∥

L∞

T
H1(R3)

.

Then ǫn −→ 0, when n −→ +∞.

Proof. We proceed by contradiction. Assume that there
exists ǫ > 0, a subsequence of un (still denoted by un) and
a sequence tn −→ t ∈ [0, T ] such that

∥

∥

∥

∫ tn

0

(

un(τ) − u(τ)
)

ei(tn−τ)H(Kψ(τ))dτ
∥

∥

∥

H1(R3)
≥ ǫ.

(13)
Up to a subsequence, we can assume that for all n ≥ 1,
tn ≤ t or tn ≥ t. We only consider the first case, since the
second is similar. By the Minkowski inequality and the
unitarity of eiτH

∥

∥

∥

∫ tn

0

(

un(τ)−u(τ)
)(

ei(tn−τ)H−ei(t−τ)H
)

(Kψ(τ))dτ
∥

∥

∥

H1(R3)

≤

∫ tn

0

∣

∣un(τ) − u(τ)
∣

∣

×
∥

∥

∥

(

ei(tn−τ)H − ei(t−τ)H
)

(Kψ(τ))
∥

∥

∥

H1(R3)
dτ

=

∫ tn

0

∣

∣un(τ) − u(τ)
∣

∣

∥

∥

∥

(

eitnH − eitH
)

(Kψ(τ))
∥

∥

∥

H1(R3)
dτ.

Then by Hölder

∥

∥

∥

∫ tn

0

(

un(τ)− u(τ)
)(

ei(tn−τ)H−ei(t−τ)H
)

(Kψ(τ))dτ
∥

∥

∥

H1(R3)

≤ ‖un − u‖L1+ǫ
T

∥

∥

∥

(

eitnH − eitH
)

(Kψ(τ))
∥

∥

∥

Lqǫ
τ∈[0,T ]

H1(R3)
,

where 1 < qǫ <∞ is such that 1/(1 + ǫ) + 1/qǫ = 1. Now,
by Lemma 2, we have

‖Kψ‖Lqǫ
T

H1(R3) ≤ CT,ǫ‖ψ‖X1
T
<∞. (14)

Now we apply (Chambrion and Thomann, 2018a, Lemma
3.2) (with d = 3 and s = 1) together with the previous
lines, and we get that
∥

∥

∥

∫ tn

0

(

un(τ)−u(τ)
)(

ei(tn−τ)H−ei(t−τ)H
)

(Kψ(τ))dτ
∥

∥

∥

H1(R3)

(15)
tends to 0 as n −→ +∞.

By the Minkowski inequality, the unitarity of eiτH and the
Hölder inequality

∥

∥

∥

∫ t

tn

(

un(τ) − u(τ)
)

ei(t−τ)H(Kψ(τ))dτ
∥

∥

∥

H1(R3)

≤

∫ t

tn

∣

∣un(τ) − u(τ)
∣

∣

∥

∥Kψ(τ)
∥

∥

H1(R3)
dτ

≤ ‖un − u‖L1+ǫ
T

‖Kψ‖Lqǫ
τ∈[tn,t]

H1(R3)

≤ |t− tn|
1/qǫ‖un − u‖L1+ǫ

T
‖Kψ‖L2qǫ

T
H1(R3).

(16)

Using Lemma 2 and the fact that ‖un − u‖L1+ǫ
T

≤ C, we

deduce that the term (16) tends to 0. We combine this
with (15) to deduce

∥

∥

∥

∫ tn

0

(

un(τ)− u(τ)
)

ei(tn−τ)H(Kψ(τ))dτ

−

∫ t

0

(

un(τ)− u(τ)
)

ei(t−τ)H(Kψ(τ))dτ
∥

∥

∥

H1(R3)
→ 0. (17)

Let us now prove that
∫ t

0

(

un(τ)−u(τ)
)

ei(t−τ)H(Kψ(τ))dτ

tends to 0 in H1(R3), to reach a contradiction with (13).
We set v(τ) = ei(t−τ)H(Kψ(τ)). Then by the unitarity
of H , we have ‖v(τ)‖H1 = ‖Kψ(τ)‖H1 , thus by (14),
v ∈ Lqǫ([0, T ];H1(R3)). We expand v on the Hermite
functions (hk)k≥0 (which are the eigenfunctions of H)
which form a Hilbertian basis of L2(R3)

v(τ, x) =
+∞
∑

k=0

αk(τ)hk(x),

so that we have ‖v(τ, ·)‖2H1 =

+∞
∑

k=0

(2k + 1)|αk(τ)|
2 and

‖v‖Lqǫ
T

H1 =

[
∫ T

0

(

+∞
∑

k=0

(2k + 1)|αk(τ)|
2
)qǫ/2

dτ

]1/qǫ

.

This implies in particular that

(

+∞
∑

k=0

(2k + 1)|αk(τ)|
2
)qǫ/2

∈ LqǫT . (18)

Denote by ρ = supn≥0 ‖un − u‖L1+ǫ
T

. We claim that there

existsM > 0 large enough such that the function g(τ, x) =
∑M
k=0 αk(τ)hk(x) satisfies ‖v−g‖Lqǫ([0,T ];H1(R3)) ≤ ǫ/(4ρ).

Actually,

‖v− g‖Lqǫ
T

H1 =

[
∫ T

0

(

+∞
∑

k=M+1

(2k+1)|αk(τ)|
2
)qǫ/2

dτ

]1/qǫ

tends to zero whenM tends to 0, by the Lebesgue theorem
and (18), hence the claim.

We have
∫ t

0

(

un(τ)−u(τ)
)

g(τ)dτ =

M
∑

k=0

hk

∫ t

0

(

un(τ)−u(τ)
)

αk(τ)dτ.

Then, by (18), for all k ≥ 0, αk ∈ LqǫT , which implies

∥

∥

∫ t

0

(

un(τ)− u(τ)
)

g(τ)dτ
∥

∥

2

H1(R3)

=

M
∑

k=0

(2k + 1)s
∣

∣

∣

∫ t

0

(

un(τ) − u(τ)
)

αk(τ)dτ
∣

∣

∣

2

−→ 0,

by the weak convergence of (un). Finally, for n large
enough,

∥

∥

∥

∫ t

0

(

un(τ) − u(τ)
)

v(τ)dτ
∥

∥

∥

H1(R3)

≤
ǫ

4ρ

∥

∥un − u
∥

∥

L1+ǫ
T

+
∥

∥

∥

∫ t

0

(

un(τ) − u(τ)
)

g(τ)dτ
∥

∥

∥

H1(R3)

≤
ǫ

2

which together with (13) and (17) gives the contradiction.



Thanks to (Chambrion and Thomann, 2018a, Lemma A.3)
we get

‖N (ψ, ψn)(t)‖H1(R3)

≤

∫ t

0

‖(ψ − ψn)(ψ + ψn)ψ‖H1(R3)dτ

+

∫ t

0

‖(ψ − ψn)ψ
2
n‖H1(R3)dτ

≤

∫ t

0

‖zn‖H1(R3)

(

‖ψ‖2W1,6 + ‖ψn‖
2
W1,6

)

dτ. (19)

By (12) we have

H1/2zn(t) = −iH1/2

∫ t

0

(

u(τ)− un(τ)
)

ei(t−τ)H(Kψ)dτ

− i

∫ t

0

un(τ)e
i(t−τ)HH1/2

(

Kzn
)

dτ +H1/2N (ψ, ψn)(t).

Thus from the Strichartz inequality (6) we deduce

‖zn(t)‖H1(R3) ≤ ǫn + ‖unH
1/2

(

Kzn
)

‖L2
tL

6/5(R3)

+‖N (ψ, ψn)(t)‖H1(R3). (20)

By (11)

‖H1/2
(

Kzn
)

‖L6/5(R3) = ‖Kzn‖W1,6/5(R3) ≤ C‖zn‖H1(R3),

which in turn implies

‖unH
1/2

(

Kzn
)

‖L2
tL

6/5(R3)

≤C
(

∫ t

0

|un(τ)|‖zn(τ)‖
2
H1(R3)dτ

)1/2

.(21)

As a conclusion, from (19), (20) and (21) we infer

‖zn(t)‖H1(R3) ≤ ǫn+C
(

∫ t

0

|un(τ)|‖zn(τ)‖
2
H1(R3)dτ

)1/2

+

+

∫ t

0

‖zn(τ)‖H1(R3)

(

‖ψ(τ)‖2W1,6 + ‖ψn(τ)‖
2
W1,6

)

dτ.

Then by the Grönwall inequality, for all 0 ≤ t ≤ T and (10)

‖zn(t)‖H1(R3)

≤
(

ǫn + C
(

∫ t

0

|un(τ)|‖zn(τ)‖
2
H1(R3)dτ

)1/2)

× e
c
∫ t

0

(

‖ψ(τ)‖2

W1,6+‖ψn(τ)‖
2

W1,6

)

dτ

≤C1(T )
(

ǫn +
(

∫ t

0

|un(τ)|‖zn(τ)‖
2
H1(R3)dτ

)1/2)

.

We square the previous inequality and get

‖zn(t)‖
2
H1(R3) ≤ 2C2

1 (T )
(

ǫ2n+

∫ t

0

|un(τ)|‖zn(τ)‖
2
H1(R3)dτ

)

.

By the Grönwall inequality again we deduce

‖zn‖L∞

T
H1(R3)

≤ 2C1(T )ǫn exp
(

C2
1 (T )

∫ T

0

|un(τ)|dτ
)

≤ C2(T )ǫn,

and this latter quantity tends to 0 when n −→ +∞.

4. CONCLUSION

This note provides an example of a Ball-Marsden-Slemrod
like obstruction to the controllability of a nonlinear partial
differential equation with a bilinear control term. The
novelty of the result lies in the unboundedness of the
bilinear control term.

The possible relations of this obstruction result and the
concepts introduced in Boussäıd et al. (2013) will be the
subject of further investigations in future works.
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