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1 Definitions

For any scalars or vectors x and y with convenient sizes, we define:
xn = e†nx

Rxy = Ex,y[xy†]

Rx = Rxx

where en is the (n + 1)th element of the canonic base. The operator Ex,y[xy†] represents the statistical average
with respect to x and y.

For any matrix A, we define A∗ the conjugate matrix of A, AT its transpose matrix and A† =
(
AT
)∗

.

2 Context & Problem formulation

We suppose having the following expressions:
r = HUs + w

I(f , p) = f†r + p

J (f , p) = EI(f ,p) |I(f , p)− sn|2

where :

• f : a (2N × 1) vector,

• p : a scalar,

• H : a (2N × 2Ns) deterministic convolution matrix,

• U : a (2Ns ×Ns) up-sampling matrix,

• D = U† : a down-sampling matrix,

• s : a (Ns×1) probabilistic vector such that E[s] = sd and Rsn,sm = (vdn+|sdn|2)δ(n−m) =⇒ E
[(

s− sd
) (

s− sd
)†]

=

Vd = diag(vd),

• w : a (2N × 1) probabilistic vector such that E[w] = 0N and Rw = σ2
wIN ,
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Typically, the vector r represents a band-limited received signal after the convolution operation of the shaping
filter and the channel H, corrupted by a centered circular white noise w with average power σ2

w. Moreover, this
holds if and only if the shaping filter bandwidth is bounded by 2

Ts
. Hence, r represents a Fractionanally-Spaced (FS)

system model where I(f , p) is the estimator of s with Mean Square Error (MSE) J (f , p). Furthermore, considering
the prior information (sd,Vd) on s leads to an Interference-Cancellation (IC) structure.

Problem formulation: We search for s̃en = I(fn, pn) , ṽen = J (fn, pn) such that:

(fn, pn) = argmin
(f ,p)

J (f , p)

Consequently, ṽen represents the Minimum MSE of the considered system model (FS-MMSE-IC) and with esti-
mator s̃en of sn.

3 Problem resolution

3.1 Expression of the MSE minimizers

J (f , p) = EI(f ,p) |I(f , p)− sn|2

= f†Rrf + f†E[r]p∗ − f†Rrsn + pE[r†]f + |p|2 − pE[s∗n]−Rsnrf − E[sn]p∗ + Rsn

Minimizing J (f , p) leads us to nullify its the first partial derivatives.

∂J (f , p)

∂f
= 0⇐⇒ 2Rrfn + 2E[r]p∗n − 2Rrsn = 0

⇐⇒ fn = R−1r (Rrsn − E[r]p∗n)

∂J (f , p)

∂p∗
= 0⇐⇒ 2E[r†]fn + 2p∗n − 2E[s∗n] = 0

⇐⇒ pn = E[sn]− f†nE[r]

We check that such an extremum corresponds to a minimum :{
∂2J (f ,p)

∂f2 = 2Rr ≥ 0
∂2J (f ,p)

∂p∗2 = 2 ≥ 0

3.2 Computation of the MSE minimizers

Let us first compute :

E[sn] = sdn

E[r] = HUsd

Rr = HURsDH† + σ2
wIN

Rrsn = HURssn
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Then, the MSE minimizers can be computed:

f†n =
(
Rsnr − pnE[r†]

)
R−1†r

=
(
Rsnr − E[sn]E[r†] + f†n |E[r]|2

)
R−1†r

=
(
Rsnr − E[sn]E[r†]

)
R−1†r (IN − |E[r]|2 R−1†r )−1

=
(
Rsnr − E[sn]E[r†]

)
(R−1†r − |E[r]|2)−1

=
(
Rsns − E[sn]E[s†]

)
DH†

(
HU(Rs − E |s|2)DH† + σ2

wI2N

)−1
= vdne†nDH†

(
HUVdDH† + σ2

wI2N
)−1

Using twice the Woodbury identity on any (K1 ×K2) matrix A and (K2 ×K1) matrix B:

A(BA + IK2
)−1 = A(BIK1

A + IK2
)−1

= A(IK2 −B(IK1 + AB)−1A)

= (IK1
−AB(IK1

+ AB)−1)A

= (ABIK1 + IK1)−1A

= (AB + IK1
)−1A

We identify

{
A = σ−2w DH†

B = HUVd
leading to:

f†n = vdne†nDH†
(
HUVdDH† + σ2

wI2N
)−1

= vdne†n
(
DH†HUVd + σ2

wIN
)−1

DH†

= vdne†nΣ−1DH†

where Σ = GVd +σ2
wIN is the MMSE equalization matrix and G = DH†HU is also called global filter and gathers

the up-sampling, channel and matched filtering and down-sampling operations.

pn = E[sn]− f†nE[r]

= sdn − vdne†nΣ−1Gsd

3.3 Computation of the FS-MMSE-IC and its estimator

The FS-MMSE-IC estimator is given by:

s̃en = f†nr + pn

= sdn + vdne†nΣ−1
(
DH†r−Gsd

)
= sdn + vdne†nΣ−1

(
y −Gsd

)
where y = DH†r represents the received signal after matched filtering and down-sampling.

3



The FS-MMSE-IC ṽen of the estimator s̃en can be computed by first deriving:

Rs̃en
= |sdn|2 + 2(sdn)∗vdne†n Re

(
Σ−1Ey[

(
y −Gsd

)
]
)

+ (vdn)2e†nΣ−1Ey[
(
y −Gsd

) (
y −Gsd

)†
]Σ−1†en

= |sdn|2 + (vdn)2e†nΣ−1Es,w

∣∣G(s− sd) + DH†w
∣∣2 Σ−1†en

= |sdn|2 + (vdn)2e†nΣ−1DH†Es,w

∣∣HU(s− sd) + w
∣∣2 Σ−1†en

= |sdn|2 + (vdn)2e†nΣ−1DH†
(
HUVdDH† + σ2

wI2N
)
HUΣ−1†en

= |sdn|2 + (vdn)2e†nΣ−1
(
DH†HUVd + σ2

wIN
)
DH†HUΣ−1†en

= |sdn|2 + (vdn)2e†nΣ−1Gen

Rs̃en,sn
= Ey[

(
sdn + vdne†nΣ−1(y −Gsd)

)
s∗n]

= |sdn|2 + vdne†nΣ−1GEs[
(
s− sd

)
s∗n]

= |sdn|2 + (vdn)2e†nΣ−1Gen

= Rs̃en

Rsn = |sdn|2 + vdn

This leads to the FS-MMSE-IC ṽen expression:

ṽen = Es̃en
|s̃en − sn|

2

= Rs̃en
−Rs̃en,sn

−Rsn,s̃en
+ Rsn

= Rsn −Rsn,s̃en

= |sdn|2 + vdn − |sdn|2 − (vdn)2e†nΣ−1Gen

= vdn
(
1− vdncn

)
where cn = e†nΣ−1Gen.

3.4 Unbiased FS-MMSE-IC and its estimator

We can note that the estimator s̃en of sn has a residual bias :

E [sen|E[sn] = µ] = Es∼{n},w[sdn + vdne†nΣ−1
(
y −Gsd

)
|E[sn] = µ]

= sdn + vdne†nΣ−1GEs∼{n}

[
s− sd|E[sn] = µ

]
= sdn + (µ− sdn)vdncn

= vdncnµ+ sdn(1− vdncn)

where the vector s∼{n} represents all the components of s but sn.

Removing the additive term sdn(1− vdncn) and dividing the multiplicative term vdncn leads to:

sen = (vdncn)−1
(
s̃en − sdn(1− vdncn)

)
= sdn + c−1n e†nΣ−1

(
y −Gsd

)
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We compute the new statistical matrices:

Rsen
= |sdn|2 + c−2n e†nΣ−1Ey[

(
y −Gsd

) (
y −Gsd

)†
]Σ−1†en

= |sdn|2 + c−1n

Rsen,sn
= Ey[

(
sdn + c−1n e†nΣ−1(y −Gsd)

)
s∗n]

= |sdn|2 + c−1n e†nΣ−1GEs[
(
s− sd

)
s∗n]

= |sdn|2 + vdn

Rsn = |sdn|2 + vdn

And finally we find we unbiased FS-MMSE-IC:

ven = Esen
|sen − sn|

2

= Rsen
−Rsen,sn

−Rsn,sen
+ Rsn

= |sdn|2 + c−1n − |sdn|2 − vdn − |sdn|2 − vdn + |sdn|2 + vdn

= c−1n − vdn

4 Conclusion

The biased FS-MMSE-IC receiver is given by:{
s̃en = sdn + vdne†nΣ−1

(
y −Gsd

)
ṽen = vdn

(
1− vdncn

)
where cn = e†nΣ−1Gen is a scalar, y = DH†r is the receive signal after matched filtering and down-sampling,
G = DH†HU is the global effect including up-sampling, channel and matched filtering and down-sampling, Σ =
GVd + σ2

wIN is the MMSE equalization matrix.

Moreover, the unbiased FS-MMSE-IC receiver is given by:{
sen = sdn + c−1n e†nΣ−1

(
y −Gsd

)
ven = c−1n − vdn

Consequently, the FS-MMSE-IC receiver leads to a FS matched filter followed by a symbol time
equalizer.
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