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Abstract
Similarity learning is an active research area in machine
learning that tackles the problem of finding a similar-
ity function tailored to an observable data sample in
order to achieve efficient classification. This learning
scenario has been generally formalized by the means of
a (ε, γ, τ)−good similarity learning framework in the
context of supervised classification and has been shown
to have important theoretical guarantees. In this pa-
per, we propose to extend the theoretical analysis of
similarity learning to the domain adaptation setting,
a particular situation occurring when the similarity is
learned and then deployed on samples following differ-
ent probability distributions. We give a new definition
of an (ε, γ)−good similarity for domain adaptation and
prove several results quantifying the performance of a
similarity function on a target domain after it has been
trained on a source domain. We particularly show that
if the source domain support contains that of the tar-
get then a notable improvement of the adaptation is
achievable.

Keywords: metric learning, similarity learning, do-
main adaptation

1 Introduction
Many popular supervised learning algorithms rely on
pairwise metrics calculated based on the instances of
a given data set in order to learn a classifier. For in-
stance, a famous family of k-nearest neighbors algo-
rithms [CH06] uses distance matrices in order to define
the label of a given test point while support vector
machines [BGV92] can be extended to handle the non-
linear classification using kernel functions. Despite a
widespread use of metrics in machine learning, existing
distances often do not capture the intrinsic geometry
of data with respect to the labels of the available data
points. To tackle this problem, the emerging field of

metric learning (also known as similarity learning) aims
to provide solutions that allow to learn pairwise metrics
explicitly from the data, thus making them tailored for
the classification or regression problem at hand. As an
example, one may consider the first approach of this
kind presented in [XNJR02] that consisted in learning
a positive semi-definite (PSD) matrix defining a Ma-
halanobis distance, and then plugging this distance to
a k-means clustering algorithm with side information
on different pairs. We refer to [BHS13] and [Kul13] for
recent surveys on metric learning.

From the theoretical point of view, similarity learn-
ing was extensively analyzed in two seminal papers of
[BBS08b, BBS08a] based on the (ε, γ, τ)−good simi-
larity framework for binary classification task. This
framework formalizes an intuitive definition of a good
similarity function: given a set of landmarks or rea-
sonable points of probability mass at least τ , most of
data points (a 1 − ε probability mass) should be on
average more similar to reasonable points of their own
class than to points of the opposite class. Based on the
proposed formalization, the authors provided perfor-
mance guarantees for a resulting linear classifier after
mapping data into a new feature space defined via the
good similarity function. We refer the interested reader
to [BHS12] and [GY14] for other theoretical studies on
(ε, γ)− framework in the supervised, and to [NGHS15]
and [ISH+15]) in the semi-supervised learning cases.

While most of the work based on the (ε, γ, τ) frame-
work has been done in the classical context where train-
ing and testing data have the same distribution, in sev-
eral practical scenarios, one may want to transfer the
learned similarity function from one domain, usually
called source domain, to another, related yet different
domain, called target domain. This framework, known
as transfer learning, is a notorious research topic in
machine learning nowadays [PY10, Mar11, PGLC15,
WKW16] often used in situations where the target do-
main contains few or no labeled instances in order to
reduce the time and effort needed for manual labeling
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or even collecting new data. As many domain adapta-
tion algorithms proposed in the literature are based on
metric learning [GTX11, KSD11, CNS+11], a question
about the theoretical guarantees of the general similar-
ity framework naturally arises.

In this paper, we present a theoretical study of the
(ε, γ, τ)− framework in the domain adaptation context
where only the marginal distributions across the source
and the target domains are assumed to change while
the class labels set remains the same. To the best of our
knowledge, the only other related work on the domain
adaptation problem for (ε, γ, τ)-good similarities was
presented in [MHA12] in which the authors proposed a
theoretical analysis of an algorithm that selects land-
marks defining a projection space in which the source
and target distribution are close. In this paper, we
aim to consider a more general setting without being
attached to a particular algorithm in order to inves-
tigate to which extent a similarity that is good for a
source domain remains good for the target domain.

The rest of the paper is organized as follows. Sec-
tion 2 presents the learning setting that we consider
with some necessary definitions and notations. Section
3 introduces a generalization of the (ε, γ)-goodness def-
inition used to provide a theoretical result bounding a
divergence term between the source and target good-
nesses. The bound contains a term reflecting the dis-
tance between the distributions of two domains and a
worst margin term measuring the worst error obtain-
able by the similarity function for some instance from
the learning sample. Depending on the assumptions
made about the source and target domains distribu-
tions, we further provide two variations of the obtained
bound with two types of probability metrics. We ana-
lyze the obtained worst margin term in Section 4 and
measure the confidence of its empirical estimation. Fi-
nally, Section 5 is dedicated to the comparison of our
results with other papers. We conclude our paper in
Section 6 and give several possible future perspectives
of this work.

2 Preliminaries
In order to proceed, we now introduce the basic ele-
ments related to the (ε, γ, τ)−good similarity frame-
work. In what follows, we denote by X ⊂ Rd and
Y ⊂ {−1, 1} the features and labels spaces, respec-
tively. For any real t, t+ denotes its positive part, i.e
max(t, 0). As in [BBS08a], we define a similarity func-
tion as a pairwise function K : X × X → [−1, 1]. We
now recall the definition of the (ε, γ, τ)-goodness with

hinge loss.
Definition 1 (Balcan et. al. 2008). A similarity func-
tion K is (ε, γ, τ)-good in hinge loss for problem (dis-
tribution) P if there exists a (probabilistic) indicator
function R of a set of “reasonable points” such that:

E
(x,y)∼P

[(
1− y.g(x)

γ

)
+

]
≤ ε, (1)

P
x′∼P

[R(x′)] ≥ τ, (2)

where g(x) = E
(x′,y′)∼P

[y′K(x, x′)|R(x′)].

In this definition, ε is an upper bound for the ex-
pected hinge loss over all the margins g(x), every mar-
gin being the average signed similarity of an instance
to reasonable points defined by R. In order to control
the loss sensitivity to the margin, a division by γ is
applied. We assume that 0 < γ ≤ 1.

Following this definition, the authors of [BBS08a]
prove a theorem that guarantees the existence of a
linear separator in a new feature space defined via
an (ε, γ, τ)−good similarity function, a result that is
stated by the following theorem.
Theorem 1 (Balcan et. al. 2008). Let K be an
(ε, γ, τ)−good similarity function in hinge loss for a
learning problem P. For any ε1 > 0 and 0 < δ < γε1

4 ,
let S = {x′1, ..., x′n} be a (potentially unlabeled) sample
of size

n = 2
τ

log
(

2
δ

)(
1 + 16

(ε1γ)2

)
of landmarks drawn from P. Consider the mapping:

φS : X → Rn

x 7→ (K(x, x′1), ...,K(x, x′n)).

Then with a probability at least 1− δ over the draw of
S, there exists β ∈ Rn such that:

E
(x,y)∼P

[(
1−

〈
β, φS(x)

〉
γ

)
+

]
≤ ε+ ε1. (3)

In other words, the induced distribution φS(P ) in Rn
has a linear separator achieving hinge loss at most ε+ε1
at margin γ.

One can see this theorem as a variation of the ker-
nel trick used in the SVM algorithm. Indeed, if K is
a kernel function and if τ = 1, the expected loss in
Equation (3) becomes the non-regularized loss of an
SVM defined via kernel K. The authors furthermore
derive an algorithm from this theorem that minimizes
the empirical version of (3), which boils down to a lin-
ear programming problem that is solved efficiently.
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3 (ε, γ)−good similarity learning
for domain adaptation

In this section, we introduce the main contributions of
our paper. We start by giving a definition of (ε, γ)-
goodness with an arbitrary distribution of landmarks,
and then propose a generalization bound that relates
the goodness of the same similarity function learned on
the source and target domains.

3.1 Problem setup

As mentioned earlier, the main goal of this paper is
to address the domain adaptation problem in the con-
text of (ε, γ)− similarity learning. For this case, we
assume to have access to samples S and T drawn from
source and target probability distributions S and T ,
respectively. In the context of domain adaptation,
S ⊂ (X ×Y)m is labeled whereas T can be partially or
totally unlabeled. In the rest of the paper, we suppose
that the labeling is deterministic, meaning that there
exists a labeling function fS (resp. fT ) such that for
every (x, y) in the source domain (resp. in the target
domain), y = fS(x) (resp. y = fT (x)). Hence, we re-
place every (x, y) ∼ P by writing simply x ∼ P for all
probability distributions considered below.

As hinted in [BBS08a, Note 2, Theorem 14], the in-
stances and landmarks can be potentially drawn from
different distributions. Hence, we propose a slight
modification of Definition 1 that we use from now on.

Definition 2. A similarity function K is (ε, γ)-good
in hinge loss for problem (P,R) (where P is the data
distribution whereas R is the landmarks distribution)
if:

E
x∼P

[(
1− y.gR(x)

γ

)
+

]
≤ ε,

where gR(x) = E
x′∼R

[y′K(x, x′)].

This is a generalization of Definition 1, and the two
coincide when we consider the distribution R defined
by P

x∼R
[x ∈ A] = P

x∼P
[x ∈ A|R(x) = 1] for all measur-

able sets A. As for parameter τ , we do not explic-
itly mention it in the definition, but it is an upper
bound for P

x∼P
[x ∈ suppR] since in this case, we have

suppR ⊂ {R(x) = 1}.
In the rest of the paper, we use the following nota-

tions for any data distribution P and landmark distri-
bution Q. We denote the goodness of K for problem

(P,Q) by

EP,Q(K) := E
(x,y)∼P

[(
1− y.gQ(x)

γ

)
+

]
.

For simplicity, we further denote by lγ the γ-scaled
hinge loss function defined by:

lγ : x 7→
(

1− x

γ

)
+
.

We let µ be a dominating probability distribution,
i.e suppµ contains the support of all other probabil-
ity measures used afterwards. In addition, MP,Q(K)
stands for the worst margin achieved by an element of
x ∈ suppP associated with landmark distribution Q,
i.e:

Mµ,Q(K) := sup
x∈suppP

lγ(ygQ(x)).

Note that since K has values in [−1, 1], ygQ (x) is
also bounded in the same interval and consequently
lγ(ygQ (x)) is bounded thanks to its continuity. This
ensures that MP,Q(K) is finite. Finally, if B is a
boolean expression, then [B] := 1B is an indicator of
the set on which B holds (Iverson bracket notation).

3.2 Relating the source and target
goodnesses

Given a similarity function that is (ε, γ)-good in hinge
loss for problem (S, R1), our goal is to bound its good-
ness on the target set for problem (T ,R2), where R1
and R2 are not supposed to be equal. Based on the
last assumption, we further consider two cases: for the
first case, we assume that the landmark distribution
R1 = R2 = R is common for both domains; for the
second, we derive bounds for the general case of differ-
ent landmark distributions using the results obtained
for the first case.

3.2.1 Shared landmarks distribution

The following lemma allows to bound the difference be-
tween the goodness of a given similarity function w.r.t.
the source and target domains when the landmark dis-
tribution does not change across two domains.

Lemma 1. Let K be an (ε, γ)-good similarity for prob-
lem (S,R). Then K is (ε + ε′, γ)-good for problem
(T ,R), with:

ε′ = E
x∼µ

[(
dT
dµ −

dS
dµ

)
+
lγ(ygR (x))[ygR (x) < γ]

]
.
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Proof. We have

ET ,R(K) = ES,R(K) + ET ,R(K)− ES,R(K)
≤ ε+ ET ,R(K)− ES,R(K) (4)

following from the (ε, γ)−goodness of K for (P,R).
Now we focus on the difference between the two last
terms in (4). We get the following:

ET ,R(K)− ES,R(K) (5)
= E
x∼S

[lγ(y.gR(x))]− E
x∼T

[lγ(y.gR(x))]

= E
x∼µ

[
dT
dµ lγ(y.gR (x))

]
− E
x∼µ

[
dS
dµ lγ(y.gR (x))

]
≤ E
x∼µ

[(
dT
dµ −

dS
dµ

)
+
lγ(ygR (x))[ygR (x) < γ]

]
, (6)

where (6) is obtained by noticing that t ≤ t+ ∀t ∈ R,
and due to the positivity of lγ and to its nullity when
calculated at a point t ≥ γ.

In general, we note that the difference in (5) can
be bounded by an integral probability metric ([Zol84,
M9̈7, ZZY13]) by taking the supremum over all similar-
ity functions K belonging to a certain hypothesis space
K. Given a fixed landmark distribution R, K induces
a space of hypotheses

GR = {x 7→ gR (x) = E
x′∼R

[y′K(x, x′)] ;K ∈ K}

taking one argument (similar to the traditional super-
vised learning framework). The integral probability
metric is then given by

dK(S, T ) = sup
K∈K
|ET ,R(K)− ES,R(K)|

= sup
gR∈GR

∣∣∣ E
x∼S

[lγ(y.gR(x))]− E
x∼T

[lγ(y.gR(x))]
∣∣∣ .

In Lemma 1, we chose to bound this difference in an-
other manner by providing a first upper bound given
in (6). In this bound, the expectation is taken only on
the support of the hinge loss, i.e for instances having
a signed margin smaller than γ, making it problem de-
pendent. Its aim is to prepare for proving two upper
bounds for ε′, in terms of the L1 distance and then χ2

divergence in order to quantify the behavior of the tar-
get error as a function of the divergence between the
two domains.

Lemma 2 (L1 bound, shared landmarks). Let K be
an (ε, γ)-good similarity for problem (S,R). Then K
is (ε+ ε′, γ)-good for problem (T ,R), where:

ε′ = d1+,γ(T ,S)Mµ,R(K)

with

d1+,γ(T ,S) = E
x∼µ

[(
dT
dµ −

dS
dµ

)
+

[ygR (x) < γ]
]
.

Proof.

E
x∼µ

[(
dT
dµ −

dS
dµ

)
+
lγ(ygR (x))[ygR (x) < γ]

]

≤ E
x∼µ

[(
dT
dµ −

dS
dµ

)
+

[ygR (x) < γ]
]
Mµ,R(K) (7)

= d1+,γ(T ,S)Mµ,R(K)

where we use Hölder’s inequality with `1 and `∞ norms
to obtain (7).

We note the presence of the term Mµ,R(K) here
which stands for the worst margin achieved by K on
some instance of suppµ. In the case of the SVM, this
term is analogous to the largest slack variable associ-
ated to an instance drawn from the dominating mea-
sure µ. However, depending on the choice of µ, it can
be difficult to control, as we can estimate it only by
observing data drawn from S.

In order to tackle this limitation and to obtain a
tighter bound, we further assume that S dominates T
implying supp T ⊂ suppS. For this particular case,
the following lemma can be proved.

Lemma 3 (χ2-bound, same landmarks). Let K be an
(ε, γ)-good similarity for problem (S,R). Assume that
supp T ⊂ suppS. Then K is (ε+ ε′, γ)-good for prob-
lem (T ,R), where:

ε′ =
√
dχ2

+,γ
(T ,S)MS,R(K)

√
ε

with

dχ2
+,γ

(T ,S) = E
x∼S

((dT
dS − 1

)
+

)2

[ygR (x) < γ]

 .
Proof. We bound the same quantity as in the proof of
lemma 2. Since S dominates T , we take µ = S and we
have:

E
x∼µ

[(
dT
dµ −

dS
dµ

)
+
lγ(ygR (x))[ygR (x) < γ]

]2

= E
x∼S

[(dT
dS − 1

)
+
lγ(ygR (x))[ygR (x) < γ]

]2

≤ E
x∼S

[((dT
dS − 1

)
+

)2

[ygR (x) < γ]

]
E
x∼S

[
lγ(ygR (x))2]

(8)

4



= dχ2
+,γ

(T ,S) E
x∼S

[
lγ(ygR (x))2]

≤ dχ2
+,γ

(T ,S)MS,R(K) E
x∼S

[lγ(ygR (x))] (9)

≤ dχ2
+,γ

(T ,S)MS,R(K)ε.

To obtain (8), we applied the Cauchy-Schwartz in-
equality. Inequality 9 is obtained thanks to the bound-
edness and positivity of lγ via a Hölder inequality
for norms `1 and `∞. The last line follows from the
(ε, γ)−goodness of K for problem (S,R).

This last result clearly shows the benefit of assum-
ing supp T ⊂ suppS: the distance term in the bound
is multiplied by

√
ε meaning that having a similarity

function achieving a low error on the source domain can
leverage the difference between the domains’ distribu-
tions. Note that this assumption is quite common in
the domain adaptation literature and has already been
used in [ZSMW13]. As mentioned in this latter paper,
it roughly means that the source domain is richer than
the target one, an assumption that is quite reasonable
to make in practice.

3.2.2 Different landmarks case

We now turn our attention to a more general case
where the landmarks distributions vary across two do-
mains. To this end, we assume that a similarity func-
tion K is (ε, γ)-good for (S,R1). Given these assump-
tions, our goal now is to provide a learning guaranty
for the goodness of K for the (T ,R2) learning problem
using the results established for the previous case.

To proceed, we first note that the difference between
ET ,R2(K) and ES,R1(K) can be equivalently written
as:

ET ,R2(K)− ES,R1(K)
= ET ,R1(K)− ES,R1(K) + ET ,R2(K)− ET ,R1(K).

By analyzing the obtained expression, we note that the
difference between the first two terms can be bounded
directly using Lemma 2 or 3 after taking into account
the necessary hypotheses. Consequently, in what fol-
lows we focus solely on the last two terms and, similar
to the previous case, provide a result based on both
the L1 and χ2 distances.

For this case, we obtain the following proposition.

Proposition 1. Let K be an (ε, γ)-good similarity for
problem (S,R1). Then K is (ε + ε′ + ε′′, γ)-good for
problem (T ,R2), with:

ε′′ = 1
γ
d1(R1,R2)

and
ε′ = d1+,γ(T ,S)Mµ,R1(K),

where d1(R1,R2) = E
x′∼µ

[∣∣∣dR1
dµ −

dR2
dµ

∣∣∣] . Moreover, if
supp T ⊂ suppS, then the obtained result holds with

ε′ =
√
dχ2

+,γ
(T ,S)MS,R1(K)

√
ε.

Proof.
ET ,R2 (K)− ET ,R1 (K)
= E
x∼T

[lγ(ygR2 (x))− lγ(ygR1 (x))]

≤ 1
γ

E
x∼T

[|ygR1 (x)− ygR2 (x) |] (10)

= 1
γ

E
x∼T

[∣∣∣∣ E
x′∼µ

[(
dR1

dµ −
dR2

dµ

)
yy′K(x, x′)

]∣∣∣∣]
≤ 1
γ

E
x∼T

[
E

x′∼µ

[∣∣∣∣(dR1

dµ −
dR2

dµ

)
yy′K(x, x′)

∣∣∣∣]] (11)

≤ 1
γ

E
x′∼µ

[∣∣∣∣dR1

dµ −
dR2

dµ

∣∣∣∣] . (12)

where (10) holds because lγ is 1
γ−lipschitz. (11) is

obtained by the Jensen inequality with the convex-
ity of the |.| function. Line (12) comes from the fact
that yy′K(x, x′) ≤ 1. As for ε′, it is directly obtained
by Lemma 2 or 3 depending on the assumption made
about the support of the target distribution.

This result shows the effect of different landmark
distributions on the adaptation capacity of a given
similarity function. It proves to which extent differ-
ent landmark distributions can be penalizing as the
L1 distance cannot be estimated from finite samples
([KBDG04, BFR+00]) making the bound potentially
vacuous for an arbitrary pair of distributions R1 and
R2. For this reason, we focus on the case of a shared
landmark distribution in the rest of the paper.

4 Analysis of the worst margin
term

As the worst margin termMµ,R(K) is present in both
bounds obtained in the previous section (Lemmas 2
and 3), we now proceed to its analysis below. It tells
us that if there is at least one instance from the source
distribution (or from a distribution dominating it) that
has a high loss, then the deviation between the target
error and the source error is expected to be large. In
what follows, we provide an analysis of this term show-
ing first that it can be bounded in terms of γ and then
presenting a guarantee for its deviation from its empir-
ical counterpart.

5



4.1 A simple bound for the worst mar-
gin

The first bound for the worst margin term can be ob-
tained as follows:

Mµ,R(K) = sup
x∈suppµ

lγ(ygR(x))

=
(

1− 1
γ

inf
x∈suppµ

y.gR(x)
)

+

=
(

1− 1
γ

inf
x∈suppµ

E
x′∼R

[yy′K(x, x′)]
)

+

≤ 1 + 1
γ
≤ 2
γ
.

The last inequality comes from the fact that K : X ×
X → [−1, 1] and that 0 < γ ≤ 1.

Based on the obtained expression, we note that the
bounds given in Lemma 2 and Lemma 3 become pro-
portional to 1

γ and
√

ε
γ , respectively. The second

bound especially suggests that if K is good on the first
domain (small ε), and if the source support contains
the target’s, then K performs moderately on the tar-
get domain, as the

√
ε term reduces the effect of the

divergence between the two domains.
The worst margin term multiplies a divergence term

between S and T in both Lemmas 2 and 3. If it has a
high value then focusing on minimizing the divergence
between the two domains becomes crucial for the po-
tential success of adaptation. Thus, it can be useful
to estimate this term empirically from the observed
data sample by taking the empirical maximum for the
source instances and the empirical mean for the land-
marks. For the sake of simplicity, we only consider the
case where S dominates T .

4.2 An empirical estimation of the
worst margin

We intend to measure our confidence in the empiri-
cal estimation of the worst margin term by bound-
ing the deviation between the real worst margin term
and its empirical counterpart. To this end, we sup-
pose having access to a labeled data sample S =
{(x1, y1), ..., (xm, ym)} ⊂ (X × Y)m drawn from S, in-
ducing an empirical distribution Ŝ. Similarly, we define
a sample SR = {(x′1, y′1), . . . , (x′r, y′r)} and the corre-
sponding empirical distribution R̂. As the main result
of this section relies on the notion of the Rademacher
complexity, we give its definition below.

Definition 3. Let G be a family of mappings from X
to R and P be a probability distribution on X . The

Rademacher complexity of G w.r.t. P and to a sample
size n is defined as

Radn (G) = E
S∼Pn

[
Eσ

[
sup
g∈G

1
n

n∑
i=1

σig(si)
]]

where σi are independent uniform random variables
in {−1,+1} called Rademacher random variables and
S = {s1, ..., sn}.

Intuitively, the Rademacher complexity is large if we
can find a function g ∈ G that looks like random noise,
i.e. highly correlated with the Rademacher random
variables.

Under these notations, the following result can be
proved.

Proposition 2. Let K be a similarity function defined
on a feature space X . Let MS,R(K) denote its worst
performance associated to loss function lγ and achieved
by an example drawn from S, where R is the landmarks
distribution. Assume the cumulative distribution func-
tion Flγ of the loss function associated with S and R̂
is k times differentiable at MS,R̂(K), and that k > 0
is the minimum integer such that F (k)

lγ
6= 0. Then for

all α > 1, r ≥ 1, there exists m0 ≥ 1 such that for all
m ≥ m0, we have with probability at least 1− δ:

MS,R(K) ≤MŜ,R̂(K) + 2
γ

Radr (H1(K))

+ 1
γ2

√
2

log
( 2
δ

)
r

+

 (−1)k+1 log
( 2α
δ

)
k!

F
(k)
lγ

(MS,R̂(K))m

 1
k

,

where H1(K) is the hypothesis class defined by

H1(K) = {x′ 7→ K(x, x′), x ∈ suppS}.

Proof. To proceed, we first rewrite the quantity of in-
terest as

MS,R(K) =MS,R(K)−MŜ,R̂(K) +MŜ,R̂(K)

and further focus on bounding the difference between
the first two terms which can be separated into two
quantities as follows:

M1 =MS,R(K)−MS,R̂(K),
M2 =MS,R̂(K)−MŜ,R̂(K).

We begin by bounding M1:

M1 = sup
x∈suppS

lγ(ygR(x))− sup
x∈suppS

lγ(ygR̂(x)) (13)
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≤ sup
x∈suppS

{lγ(ygR(x))− lγ(ygR̂(x))} (14)

≤ 1
γ

sup
x∈suppS

|gR(x)− gR̂(x)| (15)

= 1
γ

sup
x∈suppS

∣∣∣∣∣ E
x′∼R

[
y′K(x, x′)

]
− 1
r

r∑
i=1

y′iK(x, x′i)

∣∣∣∣∣ . (16)

where (15) holds by the 1
γ -lipschitzness of lγ . The

quantity in (16) is known as the representativeness (see,
for example, [SSBD14]) of sample SR drawn from R
associated with the hypothesis set Y.H1(K). In what
follows, we denote it by RepR(Y.H1(K), SR) and no-

tice that its value changes at most by
2
γr

if an instance

of SR is replaced since K takes values in [−1, 1]. By ap-
plying Mc-Diarmid’s inequality, we have with a prob-
ability at least 1− δ

2 for 0 < δ ≤ 1

RepR(Y.H1(K), SR)

≤ E
SR∼Rm

[RepR(Y.H1(K), SR)] + 1
γ

√
2

log
( 2
δ

)
r

.

(17)

The expectation term in (17) can be bounded
by twice the Rademacher complexity of hypotheses
class Y.H1(K) (see, for example, [SSBD14, Lemma
26.2]), denoted by Radr (Y.H1(K)), which also equals
Radr (H1(K)). Hence, with a probability at least 1− δ

2 ,
we have:

M1 ≤
2
γ

Radr (H1(K)) + 1
γ2

√
2

log
( 2
δ

)
r

. (18)

Now, we focus on M2 and examine the probability
over the draw of S that it exceeds a certain threshold.
For a given t > 0, we have:

P
S∼Sm

[M2 ≥ t]

= P
S∼Sm

[
MS,R̂(K)−MŜ,R̂(K) ≥ t

]
= P
S∼Sm

[
MŜ,R̂(K) ≤MS,R̂(K)− t

]
= P
S∼Sm

[
max

1≤i≤m
lγ(yigR̂(xi)) ≤MS,R̂(K)− t

]
= P
x∼S

[
lγ(ygR̂(x)) ≤MS,R̂(K)− t

]m
= Flγ

(
MS,R̂(K)− t

)m
.

By the assumptions made on the regularity of Flγ , set-

ting t to
t

m
1
k

yields:

P
S∼Sm

[
M2 ≥

t

m
1
k

]
=
(

1 + F
(k)
lγ

(MS,R̂(K)) (−t)k

mk! + o

(
tk

m

))m
(19)

−→
m→∞

exp
(
F

(k)
lγ

(MS,R̂(K)) (−t)k

k!

)
. (20)

where (19) is obtained from a Taylor expansion. This
implies for any α > 1 that there exists m0 ∈ N∗ such
that for all m ≥ m0,

P
S∼Sm

[
M2 ≥

t

m
1
k

]
≤ α exp

(
F

(k)
lγ

(MS,R̂(K)) (−t)k

k!

)
.

Setting this bound to δ
2 and solving for t yields that

with a probability at least 1− 1
δ

M2 ≤

 (−1)k+1 log
( 2α
δ

)
k!

F
(k)
lγ

(MS,R̂(K))m

 1
k

. (21)

Finally we use a union bound to bound the probability
that the two inequalities (18) and (21) occur simulta-
neously in order to obtain the theorem’s result.

This theorem shows that under certain conditions,
the empirical maximum is guaranteed to converge in
probability to the real supremum of the distribution’s
support. The convergence rate depends heavily on the
complexity of the similarity function search space rep-
resented by the Rademacher complexity term and on
the regularity of the loss distribution function reflected
by the m− 1

k term. This last term dominates the con-
vergence rate when k > 2, and we have in general a
convergence rate that is O(m−

1
max{2,k} ).

5 Discussion
In this section, we briefly compare the obtained re-
sults with some previous works that prove generaliza-
tion bounds for domain adaptation. We choose these
particular works based on the similarity of their results
with ours in order to highlight the main differences be-
tween them. In [BDBC+10], the authors provide first
learning guarantees for the general adaptation problem
in the following form:

εT (h, fT ) ≤ εS(h, fS) + 1
2dH∆H(S, T ) + λ, (22)
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where εD(h, fD) := E
x∼D

[|h(x)− fD(x)|] is the error
function defined over some probability distribution D
for a hypothesis and a labeling function h, fD : X → Y
with zero-one loss and λ is the combined error of the
ideal hypothesis h∗ that minimizes εS(h) + εT (h). In
the proposed framework, the main quantity of interest
is the introduced H∆H divergence defined as follows:

dH∆H(S, T ) = 2 sup
h,h′∈H

∣∣∣ P
x∼S

[h(x) 6= h′(x)]− P
x∼T

[h(x) 6= h′(x)]
∣∣∣.

This divergence measure is a slight modification of
the A-divergence introduced in [KBDG04] in order to
deal with drawbacks and limitations of the L1 distance
as it can be estimated from finite samples. The ob-
tained generalization result provided above was further
generalized in [MMR09] for an arbitrary loss function
l : X × X → R+ using the discrepancy distance:

discL(S, T ) = max
h,h′∈H

∣∣∣ E
x∼S

[l(h′(x), h(x))]− E
x∼T

[l(h′(x), h(x))]
∣∣∣

that coincides with dH∆H(S, T ) when l is the zero-one
loss.

The established bound in Lemma 1, and conse-
quently those presented in Lemmas 2 and 3, involve
distances restricted to the [y.gR (x) < γ] set which is
the support of the scaled hinge loss. In this sense,
this distance shares some similarity with the dH∆H dis-
tance or more generally with the discrepancy distance
as both are related to the considered hypothesis class.
The main difference is that we do not take a supremum
over a class of hypotheses (similarity functions in our
case), but rather concentrate on one learned hypothe-
sis that is (ε, γ)−good for the source and the associated
landmark domains.

These bounds also enclose a worst margin term, an-
alyzed in Section 4, that is comparable to the η term
appearing in [CM11, Theorem 2] which represents the
greatest deviation between the source and target la-
belling functions on the source’s support (η is defined
below). More precisely, they define h, h′ ∈ H as two
minimizers of a certain objective function on the source
and target domains respectively, where H is a hypoth-
esis space and prove the following inequality

|l(h′(x), y)− l(h(x), y)| ≤ µR
√

disc(S, T ) + µη

λ

for all x ∈ X , y ∈ Y, where µ is a Lipschitz constant of
the loss function l w.r.t. its first argument, λ is the reg-
ularization coefficient in the considered objective func-
tion, R is a bound on the reproducing kernel Hilbert
space of hypotheses and η = max{l(fS(x), fT (x);x ∈

suppS}. Besides the different definitions of η and our
worst margin term, the latter multiplies the divergence
term while the former is added to it. Furthermore,
their result is proven for pointwise deviation of losses
between the best hypothesis on the source domain and
that on the target one while in our case it is defined
between the expected losses.

Another counterpart of our worst margin term is
found in [GHLM16, Theorem 3] and is given by an
eS(ρ) term. This term is the expected joint error on
the source domain of a pair of classifiers drawn from a
set of voters H according to an arbitrary distribution
ρ. More precisely, they prove that for any distribution
ρ over H

RT (Gρ) ≤
1
2dTx(ρ) + βq(T ‖S)× eS(ρ)1− 1

q , (23)

where βq(T ‖S) is a divergence term between the two
domains and

RT (Gρ) = E
(x,y)∼T

[
E
h∼ρ

[[h(x) 6= y]]
]
,

dTx(ρ) = E
x∼Tx

[
E

h,h′∼ρ
[[h(x) 6= h′(x)]]

]
,

eS(ρ) = E
(x,y)∼T

[
E

h,h′∼ρ
[[h(x) 6= y].[h′(x) 6= y]]

]
.

From (23), we observe a certain similtude with our
MS,R(K) term as eS(ρ) also multiplies the divergence
term βq(T ‖S) even though the bounds are not directly
comparable in general.

Concerning the (ε, γ, τ)−good similarity learning
framework in particular, we mentioned in the intro-
duction that [MHA12] is the only paper dealing with
it in a domain adaptation context. The generalization
guarantee presented in their work first proves that their
algorithm is robust on the source domain in the sense of
the algorithmic robustness presented in [XM10]. The
obtained bound for domain adaptation scenario then
follows directly from this result and the one presented
in Equation (22) leading to:

εT (h, fT ) ≤ ε̂S(h, fS) + 1
2dH∆H(S, T ) + λ

+ Nη
βBR + ν

+

√
4Mη log 2 + 2 log 1

δ

r
,

where Mη is the η-covering number of X , β
and ν are algorithm hyperparameters, BR =
min
x′
j
∈SR
{ max

(xs,xt)∈S×T

∣∣K(x′j , xs) − K(x′j , xt)
∣∣} and Nη =

max
x1,x2∼S

‖tφSR(x1) −t φSR(x2)‖∞ where the maximum
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is taken over points for which the distance between x1
and x2 does not exceed η and tx is a transpose of x.

The main difference between our paper and theirs
is that they focus on the performance of the resulting
classifier, while we address the similarity performance
problem itself. In addition, their paper focuses on an
algorithm selecting landmarks making the two distri-
butions close in the projection space, while in our pa-
per, we do not focus on a particular algorithm, and
we examine the divergence between the two domains
without applying any transformation.

6 Conclusions and future per-
spectives

Through this paper, we proved guarantees of the
(ε, γ)−goodness of a similarity function on a target do-
main if assumed to be good on a source domain. A
divergence term between the two domains naturally ap-
pears when bounding the deviation between the same
similarity’s performance on both of them. When the
source domain’s support contains that of the target, we
showed in Lemma 3 that the bound is improved via a√
ε factor, but a worst margin term remains to be dealt

with, thus leading to a section about its estimation. We
showed that its convergence to its true value depends
on the complexity of the search space of the similarity
function, as well as on the regularity of the hinge loss’s
cumulative distribution function at a neighborhood of
its maximum (worst) value. Since this term multiplies
the divergence term between the two domains, it gives
us a first idea to which extent that divergence must
be minimized. Hence, a generalization guarantee in-
volving the divergence and its empirical counterpart,
as well as an algorithm that tries to reduce it are cru-
cial future perspectives to be explored. This reduction
can be hopefully achieved via a re-weighting procedure
applied to the instances of the source domain in a sim-
ilar approach to that used in [MMR09] to reduce the
discrepancy distance, or potentially via other transfor-
mations of the data.

Moreover, our new definition of an (ε, γ)−good sim-
ilarity uses a landmark domain that is not necessarily
included in the source domain. It can be thought of as a
“universal landmarks domain” which is independent of
the source or target domains. In the case of sentiment
classification for example, it might correspond to nega-
tive or positive vocabulary used to express one’s opin-
ion independently of the type of the concerned prod-
uct. One problem to be handled is to detect the data
points that are close or even included in this landmark

domain, and if it is possible to formalize the intuition
of using it as a medium of knowledge transfer between
the two domains.
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