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Convergence analysis of a hp-finite element approximation
of the time-harmonic Maxwell equations with impedance

boundary conditions in domains with an analytic boundary

Serge Nicaise, Jérôme Tomezyk∗

March 1, 2019

Abstract

We consider a non conforming hp-finite element approximation of a variational formulation
of the time-harmonic Maxwell equations with impedance boundary conditions proposed in [5,
§4.5.d]. The advantages of this formulation is that the variational space is embedded in H1 as
soon as the boundary is smooth enough (in particular it holds for domains with an analytic
boundary) and standard shift theorem from [8] can be applied since the associated boundary
value problem is elliptic. Finally in order to perform a wavenumber explicit error analysis of our
problem, a splitting lemma and an estimation of the adjoint approximation quantity are proved
by adapting to our system the results from [16, 17] obtained for the Helmholtz equation. Some
numerical tests that illustrate our theoretical results are also presented. Analytic regularity
results with bounds explicit in the wavenumber of the solution of a general elliptic system
with lower order terms depending on the wavenumber are need and hence proved.

AMS (MOS) subject classification 35J57, 35B65, 65N12, 65N30
Key Words Maxwell equations, absorbing boundary conditions, smooth domains, finite elements

1 Introduction
In this paper we are interested in the time-harmonic Maxwell equations for electromagnetic waves
in a bounded, simply connected domain Ω of R3 with an analytic boundary filled by an isotropic
homogeneous material and an absorbing boundary condition (also called Leontovich condition).
All together, the boundary value problem takes the form

(1.1)

{
curlE− ikH = 0 and curlH + ikE = J in Ω,

H× n− λimp Et = 0 on ∂Ω.

Here E is the electric part and H is the magnetic part of the electromagnetic field, and the real
number k corresponds to the wave number and is, for the moment, supposed to be non-negative.
The right-hand side J is the current density which – in the absence of free electric charges – is
divergence free, namely

div J = 0 in Ω.
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As usual, n is the unit vector normal to ∂Ω pointing outside Ω and Et = E − (E · n)n is the
tangential component of E. The impedance λimp is a smooth (analytic) function defined on ∂Ω
satisfying

(1.2) λimp : ∂Ω→ R, such that ∀x ∈ ∂Ω, λimp(x) > 0,

see for instance [23, 22]. The case λimp ≡ 1 is also called the Silver-Müller boundary condition [1].
In practice absorbing boundary conditions are used to reduce an unbounded domain of calcu-

lations into a bounded one, see [23, 22].
As variational formulation, a first attempt is to eliminate H by the relation H = 1

ik curlE, that
transforms the impedance condition in the form

(curlE)× n− ikλimp Et = 0 on ∂Ω.

Unfortunately such a boundary condition has no meaning in H(curl,Ω), hence a solution is to
introduce the subspace

Himp(Ω) = {u ∈ H(curl; Ω) : γ0ut ∈ L2(∂Ω)}.

Then eliminating H in the second identity of (1.1), and multiplying by a test function, we arrive
at ∫

Ω

(curlE · curl Ē′ − k2E · Ē′) dx− ik
∫
∂Ω

λimp Et · Ē′t dσ(1.3)

= ik

∫
Ω

J · Ē′ dx, ∀E′ ∈ Himp(Ω).

Error analyses of (1.3) using Nédélec elements are available in [22, 10], but no explicit depen-
dence with respect to k is proved. Moreover there is no hope to get easily regularity results of
the solution by applying the theory of elliptic boundary value problems to the system associated
with (1.3) because it is not elliptic (see [5, §4.5.d]). Let us mention recent results from [21], where
explicit wavenumber error analyses using hp-Nédélec elements are obtained for the Maxwell system
set in a ball with transparent boundary conditions.

A second attempt, proposed in [5, §4.5.d] for smooth boundaries and inspired from [23, §5.4.3],
is to keep the full electromagnetic field and use the variational space

(1.4) V =
{

(E,H) ∈
(
H(curl,Ω) ∩H(div,Ω)

)2
: H× n = λimpEt on ∂Ω

}
,

considering the impedance condition in (1.1) as an essential boundary condition. Hence the pro-
posed variational formulation is: Find (E,H) ∈ V such that

(1.5) ak,s((E,H), (E′,H′)) =

∫
Ω

(
ikJ · Ē′ + J · curl H̄′

)
dx, ∀(E′,H′) ∈ V,

with the choice

ak,s((E,H), (E′,H′)) = ak,s(E,E
′) + ak,s(H,H

′)− ik
∫
∂Ω

(λimp Et · Ē′t +
1

λimp
Ht · H̄′t) dσ,

with a positive real parameter s that may depend on k but is assumed to be in the fixed interval
[1, 2] (see [24] and section 2 below for some details) and

ak,s(u,v) =

∫
Ω

(curlu · curl v̄ + sdivu div v̄ − k2u · v̄) dx.
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The natural norm ‖·‖k of V associated with problem (1.5) is defined by

‖(E,H)‖2k = ‖curlE‖2Ω + ‖divE‖2Ω + k2 ‖E‖2Ω
+ ‖curlH‖2Ω + ‖divH‖2Ω + k2 ‖H‖2Ω .

This new formulation (1.5) has the advantage that its associated boundary value problem is an
elliptic system (see [5, §4.5.d]), hense standard shift regularity results can be used. Nevertheless,
this problem is still difficult to solve numerically as the wave number k is large, because oscillatory
solutions exist and because of the so-called pollution effect [13, 14]: when the number of oscilla-
tions inside the propagation domain is important, the numerical solution is only meaningful under
restrictive conditions on the mesh size. This effect is manifested by a gap between the error of the
best approximation of the finite element scheme and the error of the numerical solution that is
actually produced. This gap becomes more important as the frequency increases, unless additional
discretization points per wavelength or higher order elements are employed. This problem, typical
for wave type equations, is also related to a lack of stability of the finite element scheme, since
the associated sesquilinear forms are not coercive. Consequently the quasi-optimality of the finite
element solution in the energy norm is not guaranteed for arbitrary meshes, but is achieved only
in an asymptotic range, i.e., for small enough mesh sizes, that depends on the frequency and the
discretization order.

The behaviour of the asymptotic range with respect to the frequency, the mesh size, and
the discretization order is the key to understand the efficiency of a finite element method. For the
Helmholtz equation in domain with analytic boundaries, the asymptotic range for hp-finite element
methods has been characterized in a sequence of papers by J.M. Melenk and collaborators [9, 16, 17].
For less regular boundaries, similar asymptotic ranges can be achieved using an expansion of the
solution in powers of k [2].

The goal of the present paper is therefore to perform a similar analysis for the second variational
problem of the time-harmonic Maxwell equations with impedance boundary conditions set on
analytical domains. The advantage of this formulation is that it is well-posed in H1(Ω)6, see [1, 5],
and that the associated system is elliptic [5], therefore analytic regularity results can be reached.
Nevertheless several difficulties appear: the first one is that the impedance boundary condition
cannot be easily imposed in the finite element space, hence we here propose a non conforming
approximation that consists in adding penalisation terms on the boundary. Secondly, following
the approach from [16, 17], we split up the solution of (1.5) into a regular but oscillating part and
a rough component that behaves nicely for large frequencies. This decomposition allows then to
estimate the adjoint approximation quantity, hence to prove well-posedness of the discrete problem
as well as to obtain some error estimates. Note that the estimation of the regular part heavily
depends on analytic regularity of the solution of an elliptic system with lower order terms depending
on the wavenumber k with bounds that explicitly depends on k. These bounds are obtained by
combining analytic estimates of the same problem corresponding to k = 0 with bootstrapping and
induction arguments.

Our paper is organized as follows: The variational formulation of the original problem and
some useful properties are recalled in section 2. In section 3 a (non conforming) hp-finite element
approximation is proposed and the Schatz argument is adapted to bound the error by the best
approximation error. The next section 4 is devoted to the proof of the wavenumber explicit error
analyses, the basis blocks being a splitting lemma and an estimation of the adjoint approximation
quantity. Some numerical tests that confirm our theoretical analysis are presented in section 5.
Analytic regularity results with bounds explicit in the wavenumber are postponed to Appendix A
since we prove such results for general elliptic systems.
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Let us finish this section with some notations used in the remainder of the paper. For a bounded
domain D, the usual norm and semi-norm of Ht(D) (t ≥ 0) are denoted by ‖ · ‖t,D and | · |t,D,
respectively. For t = 0, we will drop the index t. For shortness, we further write Ht(D) = Ht(D)3.
Here and below γ0 is a generic notation for the trace operator from Ht(D) to Ht− 1

2 (∂D), for all
t > 1

2 . The notation (·, ·) corresponds to the L2(Ω)m-inner product, with m = 1, 3 or 6.
Furthermore, the notation A . B (resp. A & B) means the existence of a positive constant1

C1 (resp. C2), which is independent of A, B, the wave number k, the parameter s, any mesh size
h, and any polynomial degree p such that A ≤ C1B (resp. A ≥ C2B). The notation A ∼ B means
that A . B and A & B hold simultaneously.

2 The continuous problem
In this section, we briefly recall some useful results concerning the problem (1.5). First we re-
call that V is continuously embedded into (H1(Ω))2, see for instance [1] or Lemma 4.5.5 of [5].
Consequently, if the impedance function λimp satisfies (1.2) and −k2/s is not an eigenvalue of the
Laplace operator ∆ with Dirichlet boundary conditions in Ω, then for any F ∈ V′, the problem

(2.1) ak,s((E,H); (E′,H′)) = 〈F; (E′,H′)〉, ∀(E′,H′) ∈ V,

has a unique solution (E,H) ∈ V. Furthermore for the particular choice

〈F; (E′,H′)〉 =

∫
Ω

(
iωJ · Ē′ + J · curl H̄′

)
dx,

with J ∈ L2(Ω), problem (2.1) reduces to (1.5). Hence under the previous assumptions and if
J ∈ H(div; Ω), this last problem has a unique solution (E,H) ∈ V, that owing to Lemma 4.5.9 of
[5] is moreover solution of the original problem (1.1).

Now given two functions f1, f2 ∈ L2(Ω), we denote by (E,H) = Sk,s(f1, f2), the unique solution
of

(2.2) ak,s((E,H); (E′,H′)) =

∫
Ω

(
f1 · Ē′ + f2 · H̄′

)
dx, ∀(E′,H′) ∈ V,

which corresponds to (2.1) with F given by

〈F; (E′,H′)〉 = ((f1, f2), (E′,H′)) =

∫
Ω

(
f1 · Ē′ + f2 · H̄′

)
dx, ∀(E′,H′) ∈ V.

Note also that the general considerations from [5, §4.5.d] implies that (E,H) is actually the
solution of the elliptic boundary value system

(2.3)



Lk,s(E) = f1

Lk,s(H) = f2

}
in Ω,

divE = 0

divH = 0

T (E,H) = 0

Bk(E,H) = 0

 on ∂Ω,

1by a constant we mean a real number
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where

Lk,s(u) = curl curlu− s∇ divu− k2u,

T (E,H) = H× n− λimpEt,

Bk(E,H) = (curlH)× n +
1

λimp
(curlE)t −

ik

λimp
Ht + ikE× n.

The basic block for a wavenumber explicit error analysis of problem (2.2) is a so-called stability
estimate at the energy level; for the Helmholtz equation, see [6, 9, 11], while for problem (1.3), see
[12, 24]. Hence we make the following definition.

Definition 2.1 We will say that system (2.3) satisfies the k-stability property with exponent α ≥ 1
(independent of k and s) if there exists k0 > 0 such that for all k ≥ k0 and all f1, f2 ∈ L2(Ω), the
solution (E,H) ∈ V of (2.2) satisfies

(2.4) ‖(E,H)‖k . kα(‖f1‖0,Ω + ‖f2‖0,Ω).

Note that we have shown in [24, Lemma 5.6] that (2.4) always holds with α = 2 for an
appropriate choice of s ∈ [1, 2]. Note further that if Ω is star-shaped with respect to a point and
div f1 = div f2 = 0, then (2.4) holds with α = 1, see [12, Theorem 3.3] or [24, Theorem 5.3].

3 The discrete problem

3.1 The hp-nonconforming finite element method
To approximate problem (2.2) we will use a nonconforming finite element methods, because we
can not impose the impedance boundary condition (the essential boundary condition) in the finite
element space. Futhermore we cannot build an interpolation operator which preserves the essential
condition. So, we have decided to penalize this condition.

Let Th be a partition of Ω into "simplicial" elements which are the image of the reference
tetrahedron, denoted by K̂, via an element map FK : K̂ → K that satisfies (see Assumption 5.1
in [18]) the next assumption:

Hypothesis 3.1 (Quasi-uniform regular triangulation) For each K ∈ Th, there exist mappings
RK and AK which verify FK = RK ◦ AK , K̃ = AK(K) with (recalling that Jf is the Jacobian of
f)

- AK is an affine transformation and RK is a C∞ transformation,

- ‖JAK‖∞,K̂ ≤ Caffineh,
∥∥(JAK )−1

∥∥
∞,K̂ ≤ Caffineh

−1,

-
∥∥(JRK )−1

∥∥
∞,K̃ ≤ Cmetric, ‖∇nRK‖∞,K̃ ≤ Cmetricβ

nn!, ∀n ∈ N,

with Caffine, Cmetric, β > 0 independent of the maximal meshsize h = max
K∈Th

hK , where hK is the

diamenter of the element K.

Let Sh,p be the hp-FEM space (without constraint on the boundary)

(3.1) Sh,p = Sh,p(Ω)6,
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with

(3.2) Sh,p(Ω) =
{
v ∈ H1(Ω)

∣∣ v|K ◦ FK ∈ Pp ,∀K ∈ Th
}
.

As we cannot add the essential boundary condition to our finite element space, we will use a
discrete sesquilinear form, where we penalyse this boundary condition. Therefore we define the
discrete sesquilinear form ak,s,h,p(·, ·) : H1(Ω)6 ×H1(Ω)6 → C as follow

ak,s,h,p(u,v) = ak,s(u,v)−
∫
∂Ω

(curlE× n + ikEt) (E′t −
1

λimp
H′ × n) dσ

−
∫
∂Ω

(Et −
1

λimp
H× n)(curlE′ × n + ikE′t) dσ

+
p2

h

∑
f∈EB

αf

∫
f

(Et −
1

λimp
H× n)(E′t −

1

λimp
H′ × n) dσ,

with u = (E,H) and v = (E′,H′), and where EB is the set of faces of the triangulation included
into ∂Ω. Note that the last term of this right-hand side is a penalization term, while the two
other added ones are introduced to guaranbee the consistency of the approximation scheme. The
parameters αf are positive constants that will be fixed large enough to ensure the coercivity of the
form ak,s,h,p (cf. (3.5) below).

Let us first check the consistency of the formulation, that is

Lemma 3.2 Let f ∈ L2(Ω)6 and u = Sk,s(f) (i.e., solution of (2.2)), then

ak,s,h,p(u,v) = (f ,v), ∀v ∈ H1(Ω)2.

Proof. Indeed, as u = (E,H) satisfies H× n− λimpEt = 0 on ∂Ω, one has

ak,s,h,p(u,v) = ak,s(u,v)−
∫
∂Ω

(curlE× n + ikEt) · (E′t −
1

λimp
H′ × n) dσ.

As f ∈ L2(Ω)6 then (E,H) ∈ H2(Ω)2 (cf. [5]) and by Green’s formula,∫
Ω

(
curlE · curlE′ + sdivE divE′ − k2E ·E′

)
dx =

∫
Ω

Lk,sE ·E′ dx

+

∫
∂Ω

(
curlE× n ·E′t + sdivEE′ · n

)
dσ.

Applying the previous identity to E and H, noticing that divE = divH = 0 on ∂Ω, we obtain

ak,s,h,p(u,v) =

∫
Ω

(
Lk,s(E) ·E′ + Lk,s(H) ·H′

)
dx−

∫
∂Ω

((curlE× n) + ikEt) · (E′t −
1

λimp
H′ × n) dσ

+

∫
∂Ω

(
(curlE× n) ·E′t + sdivEE′ · n

)
dσ +

∫
∂Ω

(
(curlH× n) ·H ′t + sdivHH′ · n

)
dσ

− ik
∫
∂Ω

(
λimpEt ·E′t +

1

λimp
Ht ·H′t

)
dσ

=

∫
Ω

Lk,s(E) ·E′ dx+

∫
Ω

Lk,s(H) ·H′ dx+

∫
∂Ω

Bk(E,H) ·H′t dσ.
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As Bk(E,H) = 0, we conclude the consistency of the problem.
The discrete norm (related to the space Sh,p) associated with the discrete sesquilinear form

ak,s,h,p is

‖u‖2k,h,p = ‖u‖2k +
p2

h

∑
f∈EB

αf

∥∥∥∥Et − 1

λimp
H× n

∥∥∥∥2

f

.

Remark 3.3 We can remark that for all v ∈ V, ‖v‖k,h,p = ‖v‖k.

In order to compensate the negative term in ak,s,h,p(·, ·), we introduce the sesquilinear form
bk,s,h,p(·, ·) = ak,s,h,p(·, ·) + 2k2(·, ·), which turns to be continuous and coercive. Before prov-
ing these properties, we introduce a useful technical lemma.

Lemma 3.4 Let E,E′,H′ ∈ Sh,p(Ω)3, then∣∣∣∣∫
∂Ω

(− curlE× n + ikEt) · (E′t −
1

λimp
H′ × n) dσ

∣∣∣∣ . p√
h

(∫
Ω

(| curlE|2 + k2|E|2) dx

) 1
2

×

∑
f∈EB

∥∥∥∥E′t − 1

λimp
H′ × n

∥∥∥∥2

f

dσ

 1
2

.(3.3)

Proof. First, by Cauchy-Schwarz inequality, we have∣∣∣∣∫
∂Ω

(− curlE× n + ikEt) · (E′t −
1

λimp
H′ × n) dσ

∣∣∣∣ . ∑
f∈EB

[(∫
f

(
| curlE× n|2 + k2|Et|2

)
dσ

) 1
2

×

(∥∥∥∥E′t − 1

λimp
H′ × n

∥∥∥∥2

f

) 1
2

 .
By using a covariant transformation, which preserves the curl, namely

(3.4) curlE(x) =
DFK(x̂)

JFK (x̂)
ˆcurl Ê(x̂), for x = FK(x̂),

with an inverse trace inequality (cf. Lemma 4.3 of [19]), we have∫
f

(
| curlE× n|2 + k2|Et|2

)
dσ .

p2

h

∫
Kf

(
| curlE|2 + k2|E|2

)
dx,

where Kf ∈ Th is the unique tetrahedron such that f ⊂ ∂Kf . The conclusion follows from the two
above inequalities.

Now, we can show the coercivity of bk,s,h,p. Let u = (E,H) ∈ Sh,p be fixed. Then

<(bk,s,h,p(u,u)) = ‖u‖2k − 2<
(∫

∂Ω

(curlE× n− ikEt) · (Et −
1

λimp
H× n) dσ

)

+
p2

h
<

∑
f∈EB

αf

∫
f

∣∣∣∣Et − 1

λimp
H× n

∣∣∣∣2 dσ

 .
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We then need to estimate A = <
(∫

∂Ω
(− curlE× n + ikEt) · (Et − 1

λimp
H× n) dσ

)
. But Lemma

3.4 and Young’s inequality yield

A .
p√
h

(∫
Ω

(| curlE|2 + k2|E|2) dx

) 1
2

∑
f∈EB

∥∥∥∥Et − 1

λimp
H× n

∥∥∥∥2

f

 1
2

.
ε

2

∫
Ω

(
| curlE|2 + k2|E|2 dx

)
+

1

2ε

p2

h

∑
f∈EB

∥∥∥∥Et − 1

λimp
H× n

∥∥∥∥2

f

,

for all ε > 0. Hence there exists a positive constant C such that

<(bk,s,h,p(u,u)) ≥ ‖u‖2k − Cε(‖curlE‖2Ω + k2 ‖E‖Ω) +
p2

h

∑
f∈EB

(αf −
C

ε
)

∥∥∥∥Et − 1

λimp
H× n

∥∥∥∥
f

,

for all ε > 0. We then fix ε = 1
2C and therefore by choosing αf > 0 large enough such that

αf ≥ 2C
ε = 4C2, we deduce that

(3.5) <(bk,s,h,p(u,u)) & ‖u‖2k,h,p .

The continuity of bk,s,h,p, namely

(3.6) |bk,s,h,p(u,v)| . ‖u‖k,h,p ‖v‖k,h,p , ∀u,v ∈ Sh,p,

directly follows from the continuity of ak,s and Lemma 3.4. Note that this argument also allows
to show the continuity of ak,s,h,p.

Let f = (f1, f2) ∈ L2(Ω)6, we define the following approximated problem: Find uh,p ∈ Sh,p such
that

(3.7) ak,s,h,p(uh,p,v) = (f ,v), ∀v ∈ Sh,p.

Such uh,p, if it exists, is called a Galerkin solution.
We will now show that under an appropriate condition, (3.7) has an unique solution uh,p ∈ Sh,p
and give some error estimates.

Lemma 3.5 Let f = (f1, f2) ∈ L2(Ω)6, u = Sk,s(f) and if uh,p ∈ Sh,p is a solution of (3.7), then
we have

(3.8) ‖u− uh,p‖k,h,p . inf
vh,p∈Sh,p

‖u− vh,p‖k,h,p + k sup
wh,p∈Sh,p

|(u− uh,p,wh,p)|
‖wh,p‖Ω

.

Proof. Let vh,p ∈ Sh,p be arbitrary, then by the triangle inequality, we have

‖u− uh,p‖k,h,p ≤ ‖u− vh,p‖k,h,p + ‖vh,p − uh,p‖k,h,p .

Moreover

‖vh,p − uh,p‖2k,h,p . R(bk,s,h,p(vh,p − uh,p,vh,p − uh,p))

. |bk,s,h,p(vh,p − u,vh,p − uh,p)|+ |bk,s,h,p(u− uh,p,vh,p − uh,p)|.

8



By the fact that bk,s,h,p = ak,s,h,p + 2k2(·, ·) and the Galerkin orthogonality, we have

‖vh,p − uh,p‖2k,h,p . |bk,s,h,p(vh,p − u,vh,p − uh,p)|+ 2k2|(u− uh,p,vh,p − uh,p)|

. ‖vh,p − u‖k,h,p ‖vh,p − uh,p‖k,h,p + k2|(u− uh,p,vh,p − uh,p)|.

We then have

‖u− uh,p‖k,h,p . ‖u− vh,p‖k,h,p + k
|(u− uh,p,vh,p − uh,p)|
‖vh,p − uh,p‖Ω

.

We conclude by the bound

|(u− uh,p,vh,p − uh,p)|
‖vh,p − uh,p‖Ω

≤ sup
wh,p∈Sh,p

(u− uh,p,wh,p)|
‖wh,p‖Ω

,

and then by taking the infimum on vh,p ∈ Sh,p.
In order to control the second term of the right-hand side of (3.8), we introduce the quantity

η(Sh,p), called adjoint approximation quantity (cf. [16, 20, 2]):

(3.9) η(Sh,p) = sup
f∈L2(Ω)6

inf
vh,p∈Sh,p

∥∥∥S∗k,s(f)− vh,p

∥∥∥
k,h,p

‖f‖Ω
,

where S∗k,s(f) = Sk,s(f) is the adjoint operator of Sk,s(f).

Now we will use the Schatz argument (Aubin-Nitsche trick for the Helmholtz equation) [25] in
order to bring out η(Sh,p) and ‖u− uh,p‖k,h,p in (3.8) and obtain the following theorem.

Theorem 3.6 There exists a positive constant C such that if η(Sh,p) <
1
kC , then for any f =

(f1, f2) ∈ L2(Ω)6, if u = Sk,s(f) and if uh,p ∈ Sh,p is a solution of (3.7), then

‖u− uh,p‖k,h,p . inf
v∈Sh,p

‖u− v‖k,h,p ,(3.10)

‖u− uh,p‖Ω . η(Sh,p) ‖u− uh,p‖k,h,p .(3.11)

Proof. Let φ = S∗k,s(wh,p), with wh,p ∈ Sh,p, then for any φh,p ∈ Sh,p owing to the continuity of
ak,s,h,p and the Galerkin orthogonality, one has

|(u− uh,p,wh,p)| = |ak,s,h,p(u− uh,p,φ)|
= |ak,s,h,p(u− uh,p,φ− φh,p)|
. ‖u− uh,p‖k,h,p

∥∥φ− φh,p
∥∥
k,h,p

.

By the definition of η(Sh,p) we can conclude that

(3.12) k
|(u− uh,p,wh,p)|
‖wh,p‖Ω

. kη(Sh,p) ‖u− uh,p‖k,h,p .

We obtain by Lemma 3.5 and (3.12) the existence of a constant C > 0 such that
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(1− Ckη(Sh,p)) ‖u− uh,p‖k,h,p . inf
vh,p∈Sh,p

‖u− vh,p‖k,h,p .

This means that (3.10) holds as soon as 1− Ckη(Sh,p) is positive.
It remains to estimate the L2 norm. First by the definition of S∗k,s and the Galerkin orthogo-

nality, one has

‖u− uh,p‖2Ω = ak,s,h,p(u− uh,p,S∗k,s(u− uh,p))

= ak,s,h,p(u− uh,p,S∗k,s(u− uh,p)− vh,p),

for all vh,p ∈ Sh,p. By the continuity of ak,s,h,p and the defintion of η(Sh,p), we conclude that

‖u− uh,p‖2Ω ≤ Cc ‖u− uh,p‖k,h,p
∥∥S∗k,s(u− uh,p)− vh,p

∥∥
k,h,p

≤ Cc ‖u− uh,p‖k,h,p η(Sh,p) ‖u− uh,p‖Ω .

which proves (3.11).

Corollary 3.7 Let f = (f1, f2) ∈ L2(Ω)6 and u = Sk,s(f). If η(Sh,p) <
1
kC , then problem (3.7)

has a unique solution uh,p ∈ Sh,p.

Proof. As Sh,p is finite-dimensional, problem (3.7) is a linear system. So, we just need to prove
uniqueness to have existence. Let uh,p ∈ Sh,p be such that ak,s,h,p(uh,p,v) = 0, ∀v ∈ Sh,p. By
Theorem 3.6 and if η(Sh,p) <

1
kC , we have (since 0 is the unique solution of (2.2) with f = 0)

‖uh,p‖k,h,p . inf
v∈Sh,p

‖v‖k,h,p = 0,

which shows the uniqueness.
We have shown that under the condition η(Sh,p) <

1
kC , there exists a unique (discrete) solution

uh,p to (3.7), this solution may then be called Sk,s,h,p(f). In the next sections, we will give
reasonable conditions between k, h and p such that this condition holds. But before, we recall
some interpolation error estimates.

3.2 Some interpolation error estimates
We will use the same interpolation operators as in the papers [20] and [16]. These operators are
built from the following definition:

Definition 3.8 (element-by-element construction, from [20])
Let K̂ be the reference simplex of R3. A polynomial Π is said to permit an element-by-element

construction of polynomial of degree p for u ∈ Hs(K̂), s > 3
2 , if

(i) Π(V ) = u(V ) for each vertices of K̂,

(ii) for each edge e of K̂, Π|e ∈ Pp is the unique minimizer of

Π→ p
1
2 ‖u−Π‖e + ‖u−Π‖

H
1
2
00(e)

,

where Π verifies (i) and ‖v‖2
H

1
2
00(e)

= ‖v‖21
2 ,e

+

∥∥∥∥ v√
dist(.,∂e)

∥∥∥∥2

e

,
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(iii) for each face f of K̂, Π|f ∈ Pp is the unique minimizer of

Π→ p ‖u−Π‖f + ‖u−Π‖1,f ,

where Π verifies (i) and (ii).

J. M. Melenk and S. Sauter propose in [20] (see [16] for more details) two interpolants satisfying
the conditions (i) to (iii) from Definition 3.8, the first one for general Hs(Ω) functions (s > 3

2 )
and the second one more specific for analytic functions.

Lemma 3.9 Let v ∈ Hm(Ω) with m > 0, and hK the diameter of an element K, then we have

|v|m,K . h
d
2 (1−m)

K |v̂|m,K̂ ,

|v̂|m,K̂ . h
d
2 (m−1)

K |v|m,K ,

and, for û ∈ Ht(K̂)2, with p+ 1 ≥ t > 3
2 , there exists Π̂pû ∈ Sh,p (satisfying the conditions (i) to

(iii) from Definition 3.8), such that∥∥∥û− Π̂pû
∥∥∥
t′,K̂
. p−(t−t′)|û|t,K̂ , ∀t

′ ∈ [0, t],∥∥∥û− Π̂pû
∥∥∥
t′,f̂
. p−(t−1/2−t′)|û|t,K̂ , ∀t

′ ∈ [0, t− 1/2].

Combining the two above results, for all u ∈ Ht(Ω)2, we obtain

‖u−Πpu‖t′,K .
(
h

p

)t−t′
|u|t,K , ∀t′ ∈ [0, t],

‖u−Πpu‖t′,f .
(
h

p

)t−t′−1/2

|u|t,K , ∀t′ ∈ [0, t− 1/2],

as well as

‖u−Πpu‖t′,Ω .
(
h

p

)t−t′
|u|t,Ω, ∀t′ ∈ [0, t].

Proof. The proof of this lemma can be found in [16, Theorem B.4] (applied to each component
of the vector fields).

Lemma 3.10 For β > 0, there exists σ > 0 such that for all analytic function uA satisfying

|uA|n,K ≤ (2βmax(n, k))nCK , ∀n ∈ N : n ≥ 2,

for all K ∈ Th and some CK > 0 (independent of n and k), there exists ΠpuA ∈ Sh,p (which
respect to Definition 3.8) such that for q ∈ {0, 1, 2},

‖uA −ΠpuA‖q,K . h
−qCK

((
h

h+ σ

)p+1

+

(
kh

σp

)p+1
)
.

Proof. With a scaling argument, we can apply Lemma C.3 of [16] to each component.
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4 Wavenumber explicit error analyses
Here, following the approach from [16, 17], we will split up the solution of the adjoint problem
(appearing in the definition of η(Sh,p)) in a H2-part and an analytical part. This decomposition
allows to give an estimate of kη(Sh,p), which depends on k, h and p and obtain some error estimates.

4.1 A splitting lemma
The aim of this part is to split the solution u = (E,H) of problem (2.3) in two parts: an analytical
part but strongly oscillating and a part only in H2(Ω)2 but weakly oscillating.

We start by introducing some technical tools:

• First, a frequency splitting, based on Fourier transform, which will be applied to the right-
hand side fi (i ∈ {1, 2}). More precisely, we will split up fi in two parts, one part just in L2

and the other one being analytic.

• Second, we will introduce two auxiliary problems and give a stability result for these problems.

4.1.1 Frequency splitting

The frequency splitting is done with the help of the Fourier transform and an extension operator.
We recall that for a compactly supported function u ∈ L2(R3), its Fourier transform is

û(ξ) = F(u)(ξ) = (2π)−
3
2

∫
Rd
e−iξ·xu(x) dx,

and this mapping can be extended into an isometry from L2(R3) into itself. Hence we denote by
F−1 its inverse transformation.

Let η > 0, we denote by χηk the indicator function of the ball Bηk(0). Then, we define the
low-pass frequency projection

(4.1) LRd(f) = F−1 (χηkF(f)) ,

and the high-pass frequency projection

(4.2) HRd(f) = F−1 ((1− χηk)F(f)) ,∀f ∈ L2(Rd).

For f ∈ L2(Ω), we set

EΩ(f) =

{
f in Ω,

0 outside Ω.

as well as

LΩ(f) = LRd(EΩ(f))|Ω,
HΩ(f) = HRd(EΩ(f))|Ω.

Theorem 4.1 Let η > 0 be the parameter which is in the definition of HRd and LRd , then for all
0 ≤ t′ ≤ t, p ∈ N∗, and for each f ∈ Ht(R3), we have

‖HR3(f)‖t′,R3 . (ηk)t
′−t ‖f‖t,R3 ,

|LR3(f)|p,R3 ≤ (ηk)p ‖f‖R3 ,
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while for all f ∈ L2(Ω), we have

‖HΩ(f)‖Ω . ‖f‖Ω ,
|LΩ(f)|p,Ω . (ηk)p ‖f‖Ω ,

with a constant independent of p.

Proof. Cf. Lemmas 4.2 and 4.3 of [20].

4.1.2 Auxiliary problems

We will introduce two well-known problems which are useful for our splitting of u.
The first problem is to consider E = Nk(f) solution of

(4.3) curl curlE− s∇divE− k2E = f in R3.

As usual, Nk(f) is obtained with the help of the Green function G (here, it is a matrix) of this
problem, namely the distribution that satifies

curl curlG(x)− s∇divG(x)− k2G(x) = δxId3.

Applying the Fourier transfom to this identity, direct calculations show that Ĝ satisfies

M(ξ)Ĝ(ξ) = Id3,

with

M(ξ) =

|ξ|2 − k2 − (1− s)ξ2
1 −(1− s)ξ1ξ2 −(1− s)ξ1ξ3

−(1− s)ξ1ξ2 |ξ|2 − k2 − (1− s)ξ2
2 −(1− s)ξ2ξ3

−(1− s)ξ1ξ3 −(1− s)ξ2ξ3 |ξ|2 − k2 − (1− s)ξ2
3

 .

Therefore

Ĝ(ξ) = M(ξ)−1Id3.

By direct calculations, we check that the eigenvalues of M(ξ)−1 are 1
s|ξ|2−k2 and 1

|ξ|2−k2 . Recalling
that s ∈ [1, 2], we get

(4.4) ‖M(ξ)−1‖ =
1

|ξ|2 − k2
if |ξ| > k.

For f ∈ L2(R3), we define Nk(f) as the convolution product of G with f , namely

Nk(f)(x) = (G ∗ f)(x) =

∫
R3

G(x− y)f(y)dy,

which verifies (4.3).
Now we want to estimate the norm of Nk(HΩf).

Lemma 4.2 Let f ∈ L2(Ω)3, if E = Nk(HΩf) then for all q ∈ (0, 1), there exists η > 0 (appearing
in the definition of LΩ) such that

(4.5) ‖E‖k ≤ qk
−1 ‖f‖Ω , ‖E‖2,Ω . ‖f‖Ω .

13



Proof. We recall that E = G ∗ (HΩf) and fix η > 1. We start by estimating the L2 norm of E:

‖E‖R3 = ‖F (G ∗HΩf)‖R3

=
∥∥∥Ĝ(1− χηk)f̂

∥∥∥
R3

=

(∫
R3

∣∣∣M(ξ)−1(1− χηk(ξ))f̂(ξ)
∣∣∣2 dξ) 1

2

≤

(∫
R3\B(ηk)

∣∣∣∣ 1

|ξ|2 − k2

∣∣∣∣2 ∣∣∣f̂(ξ)∣∣∣2 dξ
) 1

2

,

this last estimate following from (4.4). As |ξ| ≥ ηk on R3\B(ηk), we deduce that

‖E‖R3 ≤
1

η2 − 1
k−2 ‖f‖Ω .

Now, we estimate the H1 norm of E:

|E|1,R3 =

(
3∑
i=1

∫
R3

∣∣∣ξiM(ξ)−1(1− χηk(ξ))f̂(ξ)
∣∣∣2 dξ)

1
2

≤

(
3∑
i=1

∫
R3\B(ηk)

∣∣∣∣ ξi
|ξ|2 − k2

∣∣∣∣2 ∣∣∣f̂(ξ)∣∣∣2 dξ
) 1

2

.

As before we deduce that
|E|1,R3 ≤ 1

η − 1
η

k−1 ‖f‖Ω .

We end up with the H2 norm of E:

|E|2,R3 =

 3∑
i,j=1

∫
R3

∣∣∣ξiξjM(ξ)−1(1− χηk(ξ))f̂(ξ)
∣∣∣2 dξ

 1
2

≤

 3∑
i,j=1

∫
R3\B(ηk)

∣∣∣∣ ξiξj
|ξ|2 − k2

∣∣∣∣2 ∣∣∣f̂(ξ)∣∣∣2 dξ
 1

2

.

And again we obtain

|E|2,R3 ≤ 1

1− 1
η2

‖f‖Ω .

Hence, we have proved (4.5), for η large enough.
Now, we will study the second problem, namely: For f = (f1, f2) ∈ L2(Ω)6, we consider

14



(V1,V2) = S+
k,s(f) solution of

(4.6)



L+
k,s(V1) = L+

k,s(Nk(HΩf1))

L+
k,s(V2) = L+

k,s(Nk(HΩf2))

}
in Ω,

divV1 = 0

divV2 = 0

T (V1,V2) = 0

Bk(V1,V2) = 0

 on ∂Ω.

where L+
k,s(E) = −∆E + (1 − s)∇ divE + k2E. The existence of this solution as well as norm

estimates are the goal of the next lemma.

Lemma 4.3 Let f = (f1, f2) ∈ L2(Ω)6, then problem (4.6) has a unique solution and for all
q ∈]0, 1[, there exists η > 0 such that∥∥∥S+

k,s(f)
∥∥∥
k
. q

1
2 k−1 ‖f‖Ω ,(4.7) ∥∥∥S+

k,s(f)
∥∥∥

2,Ω
. ‖f‖Ω .(4.8)

Proof. We first notice that the variational formulation of problem (4.6) is

bk,s(S+
k,s(f),v

′) = (
(
L+
k (Nk(HΩf1), L+

k (Nk(HΩf2))
)
,v′), ∀v′ = (E′,H′) ∈ V,

with

bk,s(v,v
′) =

∫
Ω

(
curlV1 · curlE′ + sdivV1 divE′ + k2V1 ·E′

)
dx

+

∫
Ω

(
curlV2 · curlH′ + sdivV2 div(H′) + k2V2 ·H′

)
dx

+ ik

∫
∂Ω

(
λimp(V1)t ·E′t +

1

λimp
(V2)t ·H′t

)
dσ,

for all v = (V1,V2),v′ = (E′,H′) ∈ V.
The existence and uniqueness of a solution follows from Lax-Milgram lemma since the sesquilin-

ear form bk,s is coercive and continuous on V.
Now by taking v′ = S+

k,s(f) = (V1,V2) and the real part, we have:∥∥∥S+
k,s(f)

∥∥∥2

k
= <(bk,s(S+

k,s(f),S
+
k,s(f)))

= <
(∫

Ω

(
L+
k,s(Nk(HΩf1)) ·V1 + L+

k,s(Nk(HΩf2)) ·V2

)
dx

)
.
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But by Green’s formula, for i = 1 or 2, we notice that∣∣∣∣∫
Ω

L+
k,s(Nk(HΩfi)) ·Vi dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(
curlNk(HΩfi) · curlVi + sdivNk(HΩfi) divVi

)
dx

+

∫
Ω

k2Nk(HΩfi) ·Vi dx+

∫
∂Ω

curl(Nk(HΩfi))× n ·Vi dσ

+

∫
∂Ω

divNk(HΩfi)Vi.n dσ

∣∣∣∣
. ‖Nk(HΩfi)‖k

∥∥∥S+
k,s(f)

∥∥∥
k

+

∣∣∣∣∫
∂Ω

divNk(HΩfi)Vi.n dσ

∣∣∣∣+

∣∣∣∣∫
∂Ω

curlNk(HΩfi)× n ·Vi dσ

∣∣∣∣ .
Now, we must estimate the boundary term. First Cauchy-Schwarz’s inequality yields∣∣∣∣∫

∂Ω

divNk(HΩfi)Vi.n dσ

∣∣∣∣ . ‖divNk(HΩfi)‖∂Ω ‖Vi‖∂Ω ,∣∣∣∣∫
∂Ω

curlNk(HΩfi)× n ·Vi dσ

∣∣∣∣ . ‖curlNk(HΩfi)‖∂Ω ‖Vi‖∂Ω .

Second by a trace estimate and Young’s inequality, we have

‖Vi‖∂Ω . ‖Vi‖
1
2

Ω ‖Vi‖
1
2

1,Ω

. k−
1
2

(
k ‖Vi‖Ω + ‖Vi‖1,Ω

)
. k−

1
2

∥∥∥S+
k,s(f)

∥∥∥
k
.

Thirdly by Lemma 4.2, we also get

‖curlNk(HΩfi)‖∂Ω . ‖curlNk(HΩfi)‖
1
2

Ω ‖curlNk(HΩfi)‖
1
2

1,Ω

. ‖Nk(HΩfi)‖
1
2

k ‖Nk(HΩfi)‖
1
2

2,Ω

. q
1
2 k−

1
2 ‖fi‖Ω .

In the same way, we obtain

‖divNk(HΩfi)‖∂Ω . q
1
2 k−

1
2 ‖fi‖Ω .

These estimates lead to∣∣∣∣∫
∂Ω

divNk(HΩfi)Vi.n dσ

∣∣∣∣ . q 1
2 k−1 ‖fi‖Ω

∥∥∥S+
k,s(f)

∥∥∥
k
,∣∣∣∣∫

∂Ω

curlNk(HΩfi)× n ·Vi dσ

∣∣∣∣ . q 1
2 k−1 ‖fi‖Ω

∥∥∥S+
k,s(f)

∥∥∥
k
.

Hence, by the previous estimates and Lemma 4.2, we have∥∥∥S+
k,s(f)

∥∥∥2

k
. q

1
2 k−1 ‖f‖Ω

∥∥∥S+
k,s(f)

∥∥∥
k
,
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which proves (4.7).
To estimate the H2 norm of S+

k,s(f), we apply Theorem 2.D of [5] (the constant being indepen-
dent of s since the ellipticity of L+

k,s is continuous in s ∈ [1, 2]) to get∥∥∥S+
k,s(f)

∥∥∥
2,Ω
. k2

∥∥∥S+
k,s(f)

∥∥∥
Ω
. k

∥∥∥S+
k,s(f)

∥∥∥
k
,

which proves (4.8) owing to (4.7).

4.1.3 The splitting result

Now, we can state the main result of this part, namely the following decomposition theorem:

Theorem 4.4 Assume that the k-stability property (2.4) holds with α ≥ 1. Let u = (E,H) =
Sk,s(f), where f = (f1, f2) ∈ L2(Ω)6, then there exist uA an analytical function and uH2 a H2

function such that:
u = uA + uH2 ,

with

‖uA‖k . k
α ‖f‖Ω ,(4.9)

|uA|p,Ω . Kp max(p, k)pkα−1 ‖f‖Ω , ∀p ∈ N, p ≥ 2,(4.10)

‖uH2‖k . k
−1 ‖f‖Ω ,(4.11)

‖uH2‖2,Ω . ‖f‖Ω ,(4.12)

for some constant K ≥ 1.

To prove this theorem, we will need the following lemma:

Lemma 4.5 Under the assumption of Theorem 4.4, let f = (f1, f2) ∈ L2(Ω)6. Then u = Sk,s(f)
admits the splitting

u = uH2 + uA + ũ,

where ũ = Sk,s(f̃) for some f̃ ∈ L2(Ω)6 with∥∥∥f̃∥∥∥
Ω
≤ q′ ‖f‖Ω ,

for some q′ ∈ (0, 1) and the following estimates hold

‖uA‖k . k
α ‖f‖Ω ,

|uA|p,Ω . Kp max(p, k)pkα−1 ‖f‖Ω , ∀p ∈ N : p ≥ 2,

‖uH2‖k . k
−1 ‖f‖Ω ,

‖uH2‖2,Ω . ‖f‖Ω .

Proof. We set
uA = Sk,s(LΩ(f)) and uH2 = S+

k,s(f).

Then, we see that
ũ = u− uA − uH2
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verifies

(4.13)



Lk,s(Ẽ) = f̃1,

Lk,s(H̃) = f̃2,

}
in Ω,

div Ẽ = 0

div H̃ = 0

T (Ẽ, H̃) = 0

B(Ẽ, H̃) = 0

 on ∂Ω.

where f̃ = 2k2(S+
k,s(f)−Nk(HΩ(f)).

Now, we will estimate the different norms. First the estimate on the norms of uH2 directly
follows from Lemma 4.3. Secondly by Lemmas 4.3 and 4.2, we have∥∥∥f̃∥∥∥

Ω
= 2k2

(∥∥∥S+
k,s(f)

∥∥∥
Ω

+ ‖Nk(HΩ(f)‖Ω
)
≤ Cq 1

2 ‖f‖Ω ≤ q
′ ‖f‖Ω ,

where q′ = Cq
1
2 that belongs to ]0, 1[ for q small enough.

To estimate ‖uA‖k, we simply use the k-stability property (2.4) to get

‖uA‖k . k
α ‖LΩ(f)‖Ω . k

α ‖f‖Ω .(4.14)

To estimate |uA|p,Ω with p ≥ 2, we apply Theorem A.1 below and (4.14) to get

|uA|p,Ω . Kp max(p, k)p
(
‖f‖Ω + k−1 ‖uA‖k

)
. Kp max(p, k)pkα−1 ‖f‖Ω .

Lemma 4.3 directly furnishes the estimate of the norms of uH2 .
Now, we can prove Theorem 4.4.

Proof of Theorem 4.4. Let u = Sk,s(f), we apply the previous lemma, and obtain that there
exists q′ ∈ (0, 1) such that

u = u1
A + u1

H2 + ũ1,

where ũ1 = Sk,s(f̃1) with
∥∥∥f̃1
∥∥∥

Ω
≤ q′ ‖f‖Ω.

We iterate this procedure to get

u =

∞∑
i=1

uiA +

∞∑
i=1

uiH2

= uA + uH2 .

We then have the right estimates by the previous lemma and the fact that q′ < 1 (so that the
associated geometric series converge). �

4.2 Estimation of kη(Sh,p)
The approximation quatity η(Sh,p) will be estimated by using the decomposition theorem applied
to the adjoint problem.
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Theorem 4.6 Assume that the k-stability property (2.4) holds with α ≥ 1 and that kh
p . 1. Let

Sh,p be previously defined, then we have

(4.15) kη(Sh,p) .

(
kh
√
p

+ kα
(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p))
.

Proof. For any f ∈ L2(Ω)6, we apply the decomposition theorem 4.4 to u = S∗k,s(f) and obtain

u = uH2 + uA.

The analytical part highly dependent on k, while the H2 part is less dependent on k, so we will
estimate separately the two parts.
For uH2 , we use the same construction as in Theorem B.4 of [16] (Lemma 3.9), hence there exists
wH2(= ΠpuH2) ∈ Sh,p such that

‖uH2 −wH2‖t,Ω .
(
h

p

)2−t

‖uH2‖2,Ω ,

for all 0 ≤ t < 2. Hence

k ‖uH2 −wH2‖k .

(
hk

p
+

(
hk

p

)2
)
‖f‖Ω .

We now have to estimate the boundary term in ‖uH2 −wH2‖k,h,p. This essentially follows from
Lemma 3.9 and the estimate (4.12).

p2

h

∑
f∈EB

αf

∥∥∥∥(E−w1
H2)t −

1

λimp
(H−w2

H2)× n

∥∥∥∥2

f

.
p2

h

∑
f∈EB

αf ‖uH2 −wH2‖2f(4.16)

.
p2

h

(
h

p

)3 ∑
f∈EB

αf |uH2 |2Kf

.

(
h2

p

) ∑
f∈EB

αf |uH2 |22,Kf

.

((
h
√
p

)
‖f‖Ω

)2

.

We hence obtain

(4.17) k ‖uH2 −wH2‖k,h,p .
(
kh
√
p

)
‖f‖Ω .

We now estimate the analytical part. The estimate (4.10) gives us

|uA|n,Ω ≤ C(γmax(n, k))nkα−1 ‖f‖Ω , ∀n ∈ N, n ≥ 2.

We then define CK by

C2
K =

∑
n∈N:n≥2

‖∇nuA‖2K
(2γmax{n, k})2n

,
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to have
|uA|n,K ≤ (2γmax{n, k})nCK , ∀n ∈ N : n ≥ 2,

but also

(4.18)
∑
K∈T

C2
K ≤ Ck2(α−1) ‖f‖2Ω .

We use Lemma 3.10 (cf. Lemma C.3 of [16]), to get, for σ > 0, the following estimate, for q = 0, 1, 2,
with wA = ΠAuA:

(4.19) ‖uA −wA‖q,K ≤ Ch
−qCK

((
h

h+ σ

)p+1

+

(
kh

σp

)p+1
)
.

This estimate for q = 0 and 1 leads to

k2 ‖uA −wA‖2k = k2
∑
K∈T

(|uA −wA|21,K + k2 ‖uA −wA‖2K)

. k2
(
h−1 + k

)2(( h

h+ σ

)p+1

+

(
kh

σp

)p+1
)2(∑

K∈T
C2
K

)
.

Simple calculations yield

(
h−1 + k

)(( h

h+ σ

)p+1

+

(
kh

σp

)p+1
)
. (1 + kh)

(
h

h+ σ

)p
+

(
k

p
+
k2h

p

)(
kh

σp

)p
.

(
1

p
+
kh

p

)(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p)
. p

(
h

h+ σ

)p
+ k

(
kh

σp

)p
,

recalling that kh
p . 1. These two estimates and (4.18) give

(4.20) k ‖uA −wA‖k .
(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p)
kα ‖f‖Ω .

As before we need to estimate the boundary term in ‖uA −wA‖k,h,p:

B =
p2

h

∑
f∈EB

αf

∥∥∥∥(uA −wA)t −
1

λimp
(uA −wA)× n

∥∥∥∥2

f

.

By using the trace estimate

‖v‖2∂K ≤ C
(
‖v‖K |v|1,K + h−1 ‖v‖2K

)
,

we get

B .
p2

h

∑
f∈EB

αf ‖uA −wA‖2∂Kf

.
p2

h

∑
f∈EB

αf

(
‖uA −wA‖Kf |uA −wA|1,Kf + h−1 ‖uA −wA‖2Kf

)
.
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By (4.19) with q = 0 or 1, we obtain

B .
p2

h2

((
h

h+ σ

)p+1

+

(
kh

σp

)p+1
)2
∑
f∈EB

C2
Kf

 .

Again simple calculations yield

p

h

((
h

h+ σ

)p+1

+

(
kh

σp

)p+1
)
. p

(
h

h+ σ

)p
+ k

(
kh

σp

)p
.

These two estimates and (4.18) give

B .

(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p)2

k2(α−1) ‖f‖2Ω .

Combining this estimate with (4.20), we get

k ‖uA −wA‖k,h,p .
(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p)
kα ‖f‖Ω .(4.21)

We can now estimate kη(Sh,p), indeed the triangle inequality yields

k ‖u−wH2 −wA‖k,h,p ≤ k ‖uH2 −wH2‖k,h,p + k ‖uA −wA‖k,h,p .

By (4.17) and (4.21), we deduce that

k ‖u−wH2 −wA‖k,h,p .
(
kh
√
p

+ kα
(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p))
‖f‖Ω ,

which proves (4.15) because wH2 + wA belongs to Sh,p.

Remark 4.7 In the previous proof, we can see that the term kh√
p in the right-hand side of (4.15)

appears because of the penalisation term (see (4.16)). Since this term is, up to the factor h√
p ,

bounded by the H2-norm of uH2 in a neighborhood of the boundary, we beleave that this penali-
sation term is neglectable and that the term kh√

p can be replaced by kh
p . This fact is confirmed by

our numerical experiments.

In the same manner, we obtain the following convergence result:

Theorem 4.8 Assume that kη(Sh,p) ≤ 1
C . Let u be the solution of (2.3) and uh,p the solution of

(3.7). Then, we have

‖u− uh,p‖k,h,p .
h
√
p

+ kα−1p

(
h

h+ σ

)p
+ kα

(
kh

σp

)p
,

‖u− uh,p‖0,Ω .
(
h
√
p

+ kα−1p

(
h

h+ σ

)p
+ kα

(
kh

σp

)p)2

.
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Proof. We use Theorem 3.6 and the same decomposition technique as for the estimate of η(Sh,p).

For practical purposes, we formulate explicit conditions that guarantee kη(Sh,p) ≤ 1
C (compare

with [16, Corollary 5.6]).

Theorem 4.9 There exist three positive constants C1, C2 and k0, such that if k > k0 and

(4.22)
kh
√
p
≤ C1 and ln k ≤ C2p,

then kη(Sh,p) ≤ 1
C .

Proof. We just need to find some positive constants C1 and C2, such that

(4.23)

{
kh√
p ≤ C1

ln k ≤ C2p
⇒ kη(Sh,p) ≤

1

C
.

By (4.15), it is sufficient to control its right-hand side, namely to show that

(4.24)
kh
√
p

+ kα
(
p

(
h

h+ σ

)p
+ k

(
kh

σp

)p)
≤ 1

C
= C ′.

We will first show that for all C > 0, γ ∈ (0, 1) and δ ≥ 0, there exist β > 0 and k0 > 0 such that
if

(4.25) β ln k ≤ p

2
and k > k0,

then we have

(4.26) kαpδγp ≤ C.

First we want to find β > 0 such that

(4.27)
α

| ln γ|
ln k − lnC

| ln γ|
≤ β ln k,

or equivalently

− lnC

| ln γ|
≤
(
β − α

| ln γ|

)
ln k.

Consequently for β > α
| ln γ| + 1 and k0 ≥ e−

lnC
| ln γ| , (4.27) is valid.

Second, there exists p0 ≥ 0 such that for p ≥ p0 we have

(4.28)
p

2
≤ p− δ ln p

| ln γ|
.

By (4.25), (4.27) and (4.28), we obtain

α

| ln γ|
ln k − lnC

| ln γ|
≤ p− δ ln p

| ln γ|
.

And, since ln γ < 0,
α ln k + (ln γ)p+ δ ln p ≤ lnC.

By taking the exponential, we get (4.26) with β > max
(

α
| ln γ| + 1, p0

2 ln k0

)
.

Now, we can control each term of the left hand-side of (4.24):
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1. kh√
p ≤

C′

3 .

2. there exist C3 > 0 and k0,1 ≥ e−
ln C
′

3
| ln γ| with γ = diam(Ω)

diam(Ω)+σ and δ = 1 such that if C3 ln k ≤ p

and k > k0,1, then we have

kαp

(
h

h+ σ

)p
≤ kαp( diam(Ω)

diam(Ω) + σ
)p ≤ C ′

3
.

3. there exist C4 > 0 and k0,2 ≥ e−
ln C
′

3
| ln γ| with γ = 1

2 and δ = 0, such that if C4 ln k ≤ p and
k > k0,2, then we have

kα+1

(
1

2

)p
≤ C ′

3
.

Hence if khσp ≤
kh
σ
√
p ≤

1
2 , then

kα+1

(
kh

σp

)p
≤ C ′

3
.

Hence, (4.23) holds with C1 = min
(
C′

3 ,
σ
2

)
, 1
C2

= max (C3, C4) and k0 ≥ max(k0,1, k0,2).

Remark 4.10 From the above proof, we see that C1 and k0 depend on 1
C (in such a way that if

C is large, then C1 is small and k0 is large), while C2 depends only on α, diam(Ω) and σ.

5 Some numerical tests
For the sake of simplicity, we restrict ourselves to the TE/TH polarization of the problem (2.3).
In other words, we take

Ω = D × R,

where D is a two-dimensional disk and assume that the solution of our problem is independent of
the third variable. In such a case, the original problem splits up into a TE polarization problem in
(E1, E2, H3) in D, and a TH polarization one in (H1, H2, E3) in D, whose variational formulations
are fully similar to (2.1). Namely, the TE problem reads (with λimp = 1): Find (E, q) ∈ V such
that

(5.1) ak,s((E, q), (U, v)) = (f , (U, v)), ∀(U, v) ∈ V,

with

ak,s((E, q), (U, v)) =

∫
D

(curlE · curl Ū + sdivEdiv Ū− k2E · Ū) dx

+

∫
D

(∇q · ∇v̄ − k2qv̄) dx+ ik

∫
∂D

(EtŪt + qv̄) dσ,

and
V =

{
(U, v) |U ∈ H(curl, D) ∩H(div, D), v ∈ H1(D) and Ut + v = 0 on ∂D

}
.
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In our tests (with the discrete space Sh,p(D)3 and the sesquilinear form ak,s,h,p corresponding
to the TE-formulation), we take D = B(0, 1) and use meshes built with the help of quadrangles of
order 2. To illustrate our results, we consider two exact solutions, the first one is given by

Eex(x, y) =

(
y
−x

)
qex(x, y) and qex(x, y) = eik(x2+y2)

1.1
2 ,

that belongs to H2(D) but is not in H3(D), while as second example we consider

Eex(x, y) =

(
y
−x

)
qex(x, y) and qex(x, y) = eikx,

that, in this case, is analytical. In both cases, we compute the right-hand side of (2.2) accordingly.
In our numerical experiments, we have chosen s = 14.3 and αf = 10, because they yield satisfactory
numerical results. Figure 1 corresponds to the tests for the first solution, while Figure 2 corresponds
to the tests for the one.

First to validate our method, we have computed the error in the norm ‖ · ‖k,h,p and compare it
with the projection error ‖u− Ph,pu‖k,h,p, where Ph,p is the orthogonal projection on Sh,p for the
inner product associated with the norm ‖ · ‖k,h,p, namely for (U, v) ∈ V, Ph,p(U, v) ∈ Sh,p is the
unique solution of

(Ph(U, v), (U′h, v
′
h))k,h,p = ((U, v), (U′h, v

′
h))k,h,p, ∀(U′h, v′h) ∈ Sh,p,

where

((U, v), (U′, v′))k,h,p =

∫
D

(curlU · curl Ū′ + sdivU div Ū′ + k2U · Ū′) dx

+

∫
D

(∇v · ∇v̄′ + k2v · v̄′) dx

+
10p2

h

∫
∂D

(Ut + q)(Ū′t + v̄) dσ.

In Figures 1(a) and 1(b), we have depicted the two errors for the non smooth solution with
k = 30 or 60, h = π

10 or h = π
20 and various values of p, there we see that for p large enough we

enter in the asymptotic regime (since both errors are almost equal) and the convergence rate is
around 1.1 as theoretocally expected. Similarly for the analytical solution, we can see in Figures
2(a) and 2(b), the convergence rate seems to be exponential. Let us notice that in the asymptotic
regime, the error seems to reach a lower bound for the largest degrees of freedom. This can be
explained by the fact that the error due to the variational crime (caused by the nonconformity of
our meshes) becomes predominant with respect to the approximation error.

The second main result from section 4 states that if (4.22) holds, then

(5.2) ‖Sk,s(f1, f2)− Sk,s,h,p(f1, f2)‖k,h,p . ‖Sk,s(f1, f2)− Ph,pSk,s(f1, f2)‖k,h,p.

In order to see if this bound is sharp or not, we compute Sk,s,h,p(f1, f2) and Ph,pSk,s(f1, f2) for
different values of h, p, and k. For different values of k, h, and p, we denote by p? the smallest
value p0 such that

(5.3) ‖Sk,s(f1, f2)− Sk,s,p,h(f1, f2)‖k,h,p ≤ 2‖Sk,s(f1, f2)− Ph,pSk,s(f1, f2)‖k,h,p, ∀p ≤ p0.
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The value of p? for a given pair (k, h) is obtained by inspecting the ratio

‖Sk,s(f1, f2)− Sk,s,p,h(f1, f2)‖k,h,p
‖Sk,s(f1, f2)− Ph,pSk,s(f1, f2)‖k,h,p,

.

Condition (5.3) state that the finite element solution must be quasi optimal in the ‖ · ‖k,h,p norm,
uniformly in k (with the arbitrary constant 2).
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Figure 1: First experiment with Eex(x, y) = (y,−x)qex(x, y) and qex(x, y) = eikr
1.1

We have compute p∗(k) in two different ways: First, we have chosen the mesh size h indepen-
dent of k. So, three values of the meshsize h = π

10 ,
π
20 and π

40 have been fixed and we have computed
the value of p? for k varying from 5 to 80. The graph of p?(k) is represented in Figures 1(c) and
2(c). There we observe that in both cases p?(k) ∼ k, which is better than conditions (4.22) since
for h bounded from below, these conditions are equivalent to p ≥ Ck2 for C large enough (but in
accordance with our conjecture from Remark 4.7). Moreover, the slope seems to depend linearly
on h, in other words, the condition on p∗(k) seems to be p∗(k) = Chk. Secondly, we fix the product
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Figure 2: Second experiment with Eex = (y,−x)qex(x, y) and qex(x, y) = eikx

kh to be constant (equal to 5π) with k varying from 20 to 320 for the non smooth solution (and
160 for the smooth solution) and again compute p? as before. In that case, the conditions (4.22)
are satisfied if p ≥ C ln k for C large enough. This is confirmed experimentally since Figures 1(d)
and 2(d) show a behavior of p? of the order of ln k.

Note finally that the numerical tests presented in this section are performed with the help
of XLife++, a FEM library developed in C++ by P.O.E.M.S. (Ensta) and I.R.M.A.R. (Rennes)
laboratories.
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A Analytic regularity with bounds explicit in the wavenum-
ber

In this section, we will prove the analytical regularity for the solution of the problem (2.3) with
estimates explicit in the wavenumber k. For that purpose, the right-hand side f is supposed to be
an analytic function such that

(A.1) |f |p,Ω ≤ Cfλ
p
f max(p, k)p, ∀p ∈ N.

Theorem A.1 Let Ω ⊂ Rn, n ≤ 3, be a bounded domain with an analytical boundary, and
(L,D,B) an elliptic system in the sense of Definition 2.2.27 of [5] with L (resp. D and B) a
N ×N (resp. N0×N and N0×N with N0, N1 ∈ N∗ such that N0 +N1 = N) system of differential
operators of order 2 (resp. 0 and 1) with N ∈ N∗ and k > 1. Let f be an analytical function which
verifies hypothesis (A.1) and G a matrix with analytical coefficients. If u is a solution of

(A.2)

 L(u) = f + k2u in Ω,
D(u) = 0 on ∂Ω,
B(u) = kGu on ∂Ω,

then we have
|u|p,Ω ≤ CuK

p max(p, k)p, ∀p ∈ N, p ≥ 2,

with Cu = C(Cf + ‖u‖Ω + k−1 ‖u‖1,Ω).

Corollary A.2 When Ω ⊂ R3 is a bounded domain with an analytical boundary and if we take

L = (L0,s, L0,s), D = T , B = (div,div, B0) and Gu =

 0
0

−iE× n− i
λimp

Ht

, then if u is a

solution of (2.3) with f verifying the same hypothesis as in Theorem A.1. Then we have

|u|p,Ω ≤ CuK
p max(p, k)p, ∀p ∈ N, p ≥ 2,

with Cu = C(Cf + ‖u‖Ω + k−1 ‖u‖1,Ω).

Proof. The proof is the same as the previous Theorem, but in this case, L depends on s, which
in pratice depends on k. As s is supposed to be in the compact set [1, 2], the ellipticity constant
can be bounded independently from s. Hence, the estimates (A.14) and (A.21) below (standard
elliptic regularity results in balls or half balls) remain valid with some constants independent of k.

Remark A.3 Theorem A.1 is applicable for the Helmholtz equation with the standard absorbing
boundary conditions (of Robin type), see [17, p. 1225]. But it is also applicable for the time-
harmonic elastodynamic system in an isotropic medium with the so-called Lysmer-Kuhlemeyer
absorbing boundary conditions [15, 4, 7].

In order to prove this theorem, we will first introduce two auxiliary lemmas which give us
regularity results in half balls with a boundary condition on the flat part (Lemma A.8) and balls
without boundary condition (Lemma A.10).

By a covering of Ω by some well chosen balls, we can apply these two auxiliary lemmas to
obtain Theorem A.1.
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A.1 Analytic regularity near the boundary

Let B+
R = B(0, R) ∩ {x|xn > 0} and ΓR = {x ∈ B+

R |xn = 0}, with R ∈ (0, 1].
Let f be an analytical function and G a matrix with analytical coefficients defined in B+

R such that

‖∂αf‖
B+
R

≤ Cfλ
|α|
f max(|α|, k)|α|, ∀α ∈ Nn,(A.3)

‖∂αG‖
∞,B+

R

≤ CGλ
|α|
G |α|!, ∀α ∈ Nn,(A.4)

for some k ≥ 1 for some positive constants Cf , λf , CG and λG independent of k.
Let u ∈ H2(B+

R) be a solution of

(A.5)

 L(u) = f + k2u in B+
R ,

D(u) = 0 on ΓR,
B(u) = kGu on ΓR,

where (L,D,B) is an elliptic system with analytical coefficients (in the above sense), with T (resp.
B) an operator of order 0 (resp. 1).

For further purposes, we define a few norms

|u|p,q,B+
R

:= max
|α|=p
αn≤q

‖∂αu‖B+
R
,

[[u]]p,q,B+
R

:= max
0≤ρ≤ R

2p

ρp|u|p,q,B+
R−pρ

, for all p > 0,

[[u]]0,0,B+
R

:= ‖u‖B+
R
,

ρ2
∗[[u]]p,q,B+

R
:= max

0≤ρ≤ R
2(p+1)

ρp+2|u|p,q,B+
R−(p+1)ρ

,

|u|p, 12 ,ΓR := max
α′∈Nn−1:|α′|=p

‖∂α
′
u‖ 1

2 ,ΓR
,

ρ
3
2
∗ [[u]]p, 12 ,ΓR := max

0≤ρ≤ R
2(p+1)

ρp+
3
2 |u|p, 12 ,ΓR−(p+1)ρ

,

for all p, q ∈ N, q ≤ p.
We will first estimate the norm of the tangential derivatives (and the normal derivative up to

2) by using standard analytic regularity of elliptic systems. Then, we will be able to estimate
the complete norm [[u]]p,q,B+

R
. So we start with an estimation of the norm of tangental derivatives

[[u]]p,2,B+
R
. Before let us prove the next technical results that allow to pass from a sum on the

multi-indices into a sum on their lengths.

Lemma A.4 Let h be a mapping from N into [0,∞) and a multi-index α′ ∈ Nn−1, for n = 2 or
3. Then we have

(A.6)
∑

β′∈Nn−1:β′≤α′
h(|β′|) ≤ 2

|α′|∑
p=0

h(p)e|α
′|−p.

Proof. The extimate (A.6) being trivial for n = 2, we only need to consider the case n = 3. In
this case, without loss of generality, we can assume that α′ = (α1, α2) is such that α2 ≤ α1. Now
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since in the left-hand side of (A.6) the summand depends only on the length of β′, we may write

(A.7)
∑

β′∈N2:β′≤α′
h(|β′|) =

|α′|∑
p=0

h(p)Np,

where Np is the number of pairs β′ = (β1, β2) ≤ α′ of length p that can be explicitly computed:

Np =

 p+ 1 if 0 ≤ p ≤ α2,
α2 + 1 if α2 ≤ p ≤ α1,
|α′| − p+ 1 if α1 ≤ p ≤ |α′|.

Since
x ≤ ex, ∀x ∈ [0,∞),

we easily see that
Np ≤ 2e|α

′|−p, ∀p ∈ {0, · · · , |α′|}.

This estimate and (A.7) yield (A.6).

Corollary A.5 Let h be a mapping from N into [0,∞) and a multi-index α ∈ Nn with αn ≤ 1.
Then we have

(A.8)
∑

β∈Nn:β≤α

h(|β|) ≤ 2(1 +
1

e
)

|α|∑
p=0

h(p)e|α|−p.

Proof. If n = 1, (A.8) is direct, so we assume that n = 2 or 3. If αn = 0, the assertion is a direct
consequence of (A.6), while if αn = 1, we write∑

β∈Nn:β≤α

h(|β|) =
∑

β=(β′,0)∈Nn:β′≤α′
h(|β′|) +

∑
β=(β′,1)∈Nn:β′≤α′

h(|β′|+ 1).

Then we apply the estimate (A.6) to each term of this right-hand side to get

∑
β∈Nn:β≤α

h(|β|) = 2

|α′|∑
p=0

h(p)e|α
′|−p + 2

|α′|∑
p=0

h(p+ 1)e|α
′|−p.

We conclude by performing a simple change of unknowns in the second sum of this right-hand side
and adding some non negative terms.

Lemma A.6 There exist a positive constant C (depending on n), a positive constant Ctr,R (de-
pending only on R ≤ 1), and a positive constant λ′G ≥ λG such that for all l ∈ N and any
u ∈ Hl+1(B+

R), we have

(A.9) ρ
3
2
∗ [[Gu]]l, 12 ,ΓR ≤ CCtr,RCG

l+1∑
p=0

(λ′G)l+1−p max(l + 1, k)l+1−p[[u]]p,2,B+
R
.
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Proof. G being a matrix with analytical coefficients defined in B+
R , by a standard trace theorem,

there exists a positive constant Ctr,R depending only on R ≤ 1 such that

(A.10) ρ
3
2
∗ [[Gu]]l, 12 ,ΓR ≤ Ctr,R

(
[[Gu]]l,0,B+

R
+ [[Gu]]l+1,1,B+

R

)
.

We now estimate each term of this right-hand side. First for any |α| ≤ l + 1, Leibniz’s rule and
the assumption (A.4) yields

‖∂αGu‖B+
R
≤ n

∑
β≤α

(
α
β

)∥∥∂α−βG∥∥∞B+
R

∥∥∂βu∥∥
B+
R

≤ nCG

∑
β≤α

(
α
β

)
λ
|α|−|β|
G (|α| − |β|)!

∥∥∂βu∥∥
B+
R

.

As one easily checks that

(A.11)
p!

q!
≤ pp−q, ∀p, q ∈ N : q ≤ p,

together with the combinatorial inequality (that can be shown using the combinatorial interpreta-
tion of binomial coefficients, see [3, p. 328] or [5, p. 48])

β!

γ!(β − γ)!
≤ |β|!
|γ|! (|β| − |γ|)!

,

we deduce that

(A.12) ‖∂αGu‖B+
R
≤ nCG

∑
β≤α

λ
|α|−|β|
G max(|α|, k)|α|−|β|

∥∥∂βu∥∥
B+
R

.

Therefore, we may write

[[Gu]]l,0,B+
R

= max
0≤ρ≤R2l

ρl max
αn=0
|α|=l

‖∂αGu‖B+
R−lρ

≤ nCG max
0≤ρ≤R2l

ρl max
αn=0
|α|=l

∑
β≤α

λ
l−|β|
G max(l, k)l−|β|

∥∥∂βu∥∥
B+
R−lρ

.

As R ≤ 1 and as |β| ≤ l, we have ρl ≤ ρ|β|, and then

[[Gu]]l,0,B+
R
≤ nCG max

αn=0
|α|=l

∑
β≤α

λ
l−|β|
G max(l, k)l−|β| max

0≤ρ≤ R
2|β|

ρ|β|
∥∥∂βu∥∥

B+
R−|β|ρ

.

In the above estimate as β ≤ α and αn = 0, βn is trivially equal to zero, and we deduce that

[[Gu]]l,0,B+
R
≤ nCG max

αn=0
|α|=l

∑
β≤α

λ
l−|β|
G max(l, k)l−|β|[[u]]|β|,0,B+

R
.

Applying Lemma A.4 to the sum on β (recalling that αn = 0), we deduce that

(A.13) [[Gu]]l,0,B+
R
≤ 2nCG

l∑
p=0

(eλG)l−p max(l, k)l−p[[u]]p,0,B+
R
.
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Similarly, using (A.12) we have

[[Gu]]l+1,1,B+
R
≤ max

0≤ρ≤ R
2(l+1)

ρl+1 max
αn≤1
|α|=l+1

‖∂αGu‖B+
R−(l+1)ρ

≤ nCG max
0≤ρ≤ R

2(l+1)

ρl+1 max
αn≤1
|α|=l+1

∑
β≤α

λ
|α|−|β|
G K |α|−|β|max(|α|, k)|α|−|β|

∥∥∂βu∥∥
B+
R−(l+1)ρ

.

Since |α| = l + 1, we get as before

[[Gu]]l+1,1,B+
R
≤ nCG max

0≤ρ≤ R
2(l+1)

ρl+1 max
αn≤1
|α|=l+1

∑
β≤α

λ
l+1−|β|
G max(l + 1, k)l+1−|β| ∥∥∂βu∥∥

B+
R−(l+1)ρ

≤ nCG max
αn≤1
|α|=l+1

∑
β≤α

λ
l+1−|β|
G max(l + 1, k)l+1−|β|[[u]]|β|,1,B+

R
.

Applying Corollary A.5 to the summation on β, we conclude that

[[Gu]]l+1,1,B+
R
≤ 2(1 +

1

e
)nCG

l+1∑
p=0

(eλG)l+1−p max(l + 1, k)l+1−p[[u]]p,1,B+
R
.

This estimate and (A.13) in the estimate (A.10) lead to (A.9) with λ′G = eλG (as [[u]]|β|,j,B+
R
≤

[[u]]|β|,2,B+
R
, for j = 0 or 1).

Now we can estimate the different derivatives.

Lemma A.7 Let u ∈ H2(B+
R) be a solution of (A.5) with f and G analytic and satisfying (A.3)-

(A.4). Then there exist K > 1 and CR > 1 such that for all p ≥ 2,

[[u]]p,2,B+
R
≤ Cu(B+

R)Kp max(p, k)p,

with Cu(B+
R) = CR(Cf + ‖u‖B+

R
+ k−1 ‖u‖1,B+

R
).

Proof. We will prove this result by induction, by applying a standard analytic regularity result
(i.e. Proposition 2.6.6 of [5]), which gives us a real number A ≥ 1 such that for all p ≥ 2

[[u]]p,2,B+
R
≤

p−2∑
l=0

Ap−1−l
(
ρ2
∗[[L(u)]]l,0,B+

R
+ ρ

3
2
∗ [[B(u)]]l, 12 ,ΓR

)
+Ap−1

1∑
l=0

[[u]]l,l,B+
R
.(A.14)

Initialization: For p = 2, by (A.14), we have

[[u]]2,2,B+
R
≤ A

(
ρ2
∗[[L(u)]]0,0,B+

R
+ ρ

3
2
∗ [[B(u)]]0, 12 ,ΓR

)
+A

1∑
l=0

[[u]]l,l,B+
R

≤ A
(
ρ2
∗[[f + k2u]]0,0,B+

R
+ ρ

3
2
∗ [[kGu]]0, 12 ,ΓR

)
+A

1∑
l=0

[[u]]l,l,B+
R

≤ A
(
‖f‖B+

R
+ k2 ‖u‖B+

R
+ k ‖Gu‖ 1

2 ,ΓR

)
+A

1∑
l=0

‖u‖l,B+
R

≤ A
(
‖f‖B+

R
+ (k2 + 1) ‖u‖B+

R
+ kCtr,R ‖Gu‖1,B+

R
+ ‖u‖1,B+

R

)
,
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with the positive constant Ctr,R introduced before. By noticing that

kCtr,R ‖Gu‖1,B+
R
≤ CkCtr,RkCG(‖u‖1,B+

R
+ λG ‖u‖B+

R
),

we then have

[[u]]2,2,B+
R
≤ A

(
‖f‖B+

R
+ (k2 + 1 + CCtr,RCGλGk) ‖u‖B+

R
+ (CCtr,RCGk + 1) ‖u‖1,B+

R

)
≤ Ak2

(
Cf + (2 + CCtr,RCGλG) ‖u‖B+

R
+ (CCtr,RCG + 1)k−1 ‖u‖1,B+

R

)
≤ Ak2 max(2 + CCtr,RCGλG, CCtr,RCG + 1)(Cf + ‖u‖B+

R
+ k−1 ‖u‖1,B+

R
)

≤ Cu(B+
R) max(2, k)2 ≤ Cu(B+

R)K2 max(2, k)2,

with CR ≥ Amax(2 + CCtr,RCGλG, CCtr,RCG + 1) ≥ 1 and since K ≥ 1.
Induction hypothesis: For all 2 ≤ p′ ≤ p, we have

(A.15) [[u]]p′,2,B+
R
≤ Cu(B+

R)Kp′ max(p′, k)p
′
.

We will show this estimate for p+ 1: Using (A.14), we may write

(A.16) [[u]]p+1,2,B+
R
≤

p−1∑
l=0

Ap−l
(
ρ2
∗[[L(u)]]l,0,B+

R
+ ρ

3
2
∗ [[B(u)]]l, 12 ,ΓR

)
+Ap

1∑
l=0

[[u]]l,l,B+
R
.

Now we need to estimate each term of this right-hand side. We start by estimating ρ2
∗[[L(u)]]l,0,B+

R

for l ≤ p− 1: First we notice that

ρ2
∗[[L(u)]]l,0,B+

R
≤ [[f + k2u]]l,0,B+

R
≤ [[f ]]l,0,B+

R
+ k2[[u]]l,2,B+

R
.

By the induction hypothesis (A.15), we then have

ρ2
∗[[L(u)]]l,0,B+

R
≤ Cfλ

l
f max(l, k)l + k2Cu(B+

R)Kl max(l, k)l

≤ k2 max(l, k)lCu(B+
R)Kl

(
λlf
k2Kl

+ 1

)
.

As l + 2 ≤ p+ 1, this estimate directly implies that

ρ2
∗[[L(u)]]l,0,B+

R
≤ max(p+ 1, k)p+1Cu(B+

R)Kl

((
λf
K

)l
+ 1

)
≤ 2 max(p+ 1, k)p+1Cu(B+

R)Kl,

for K > λf . Multiplying this estimate by Ap−l and summing on l, one gets

p−1∑
l=0

Ap−lρ2
∗[[L(u)]]l,0,B+

R
≤ Cu(B+

R)Kp+1 max(p+ 1, k)p+1 2

K

p−1∑
l=0

Ap−lKl−p

≤ Cu(B+
R)Kp+1 max(p+ 1, k)p+1 2

K

p−1∑
l=0

(
A

K

)p−l
.
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If K ≥ 2A, then
p−1∑
l=0

(
A
K

)p−l ≤ ∞∑
l=1

(
A
K

)l ≤ 1, which yields

(A.17)
p−1∑
l=0

Ap−lρ2
∗[[L(u)]]l,0,B+

R
≤ Cu(B+

R)Kp+1 max(p+ 1, k)p+1 2

K
.

Estimation of ρ
3
2
∗ [[B(u)]]l, 12 ,ΓR : By the boundary condition on u, we have

ρ
3
2
∗ [[B(u)]]l, 12 ,ΓR = kρ

3
2
∗ [[Gu]]l, 12 ,ΓR ,

and by the estimate (A.9), we get

(A.18) ρ
3
2
∗ [[B(u)]]l, 12 ,ΓR ≤ kCCtr,RCG

l+1∑
p′=0

(λ′G)l+1−p′ max(l + 1, k)l+1−p′ [[u]]p′,2,B+
R
.

The induction hypothesis (A.15) then leads to

ρ
3
2
∗ [[B(u)]]l, 12 ,ΓR ≤ kCCtr,RCGCu(B+

R)

l+1∑
p′=0

(λ′G)l+1−p′Kp′ max(l + 1, k)l+1−p′ max(p′, k)p
′

≤ kCCtr,RCGCu(B+
R) max(l + 1, k)l+1Kl+1

l+1∑
p′=0

(
λ′G
K

)l+1−p′

.

Hence for K ≥ 2λ′G (recalling that l + 2 ≤ p+ 1 and that
l+1∑
p′=0

(
λ′G
K

)l+1−p′

≤ 2), we deduce

ρ
3
2
∗ [[B(u)]]l, 12 ,ΓR ≤ 2CCtr,RCGCu(B+

R)Kl+1 max(p+ 1, k)p+1.

Multiplying this estimate by Ap−l and summing on l, we get

p−1∑
l=0

Ap−lρ
3
2
∗ [[B(u)]]l, 12 ,ΓR ≤ Cu(B+

R)Kp+1 max(p+ 1, k)p+12CCtr,RCG

p−1∑
l=0

Ap−lKl−p

≤ Cu(B+
R)Kp+1 max(p+ 1, k)p+1 2CCtr,RCGA

K

p−1∑
l=0

(
A

K

)l
.

Again, for K ≥ 2A, we arrive at

p−1∑
l=0

Ap−lρ
3
2
∗ [[B(u)]]l, 12 ,ΓR ≤ Cu(B+

R)Kp+1 max(p+ 1, k)p+1 4CCtr,RCGA

K
.(A.19)

Finally using the definition of Cu(B+
R), we directly check that

(A.20)
1∑
l=0

[[u]]l,l,B+
R
≤ k

CR
Cu(B+

R),
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and therefore (since we assume that K ≥ 2A)

Ap
1∑
l=0

[[u]]l,l,B+
R
≤ 1

CR
Cu(B+

R)Kp max(p+ 1, k)p+1.

In summary, using this estimate, (A.17), and (A.19) in (A.16), we have obtained that

[[u]]p+1,2,B+
R
≤ Cu(B+

R)Kp+1 max(p+ 1, k)p+1

(
2 + 4CCtr,RCGA+ 1

CR

)
K

.

This yields (A.15) for p+ 1 if

K ≥ max

(
λf , 2A, 2λ

′
G, 2 + 4CCtr,RCGA+

1

CR

)
.

Now, we will show an equivalent lemma but which also estimates the norm of the normal
derivatives of higher order.

Lemma A.8 Let u ∈ H2(B+
R) be a solution of (A.5) with f and G analytic and satisfying (A.3)-

(A.4). Then there exist K1,K2 ≥ 1 such that for all p, q ≥ 2 with q ≤ p, we have

[[u]]p,q,B+
R
≤ Cu(B+

R)Kp
1K

q
2 max(p, k)p,

with Cu(B+
R) = CR(Cf + ‖u‖B+

R
+ k−1 ‖u‖1,B+

R
).

Proof. Again, we will show this lemma by induction and by using a standard analytical regularity
result for elliptic problem (i.e. proposition 2.6.7 of [5]), which gives us

[[u]]p,q,B+
R
≤

p−2∑
l=0

Ap−1−l


min(l,q−2)∑

ν=0

Bq−1−νρ2
∗[[L(u)]]l,ν,B+

R
+Bq−1ρ

3
2
∗ [[B(u)]]l, 12 ,ΓR

(A.21)

+Ap−1Bq−1
1∑
l=0

[[u]]l,l,B+
R
,

for some positive constants A and B ≥ 1. The induction is done on q, the initialization step q = 2
is obtained from Lemma A.7, by taking K1 ≥ K and K2 ≥ 1.
The induction hypothesis is: For all p ≥ 3, 2 ≤ q′ ≤ q ≤ p− 1, it holds

(A.22) [[u]]p,q′,B+
R
≤ Cu(B+

R)Kp
1K

q′

2 max(p, k)p.

We use the estimate (A.21) to get

[[u]]p,q+1,B+
R
≤

p−2∑
l=0

Ap−1−l


min(l,q−1)∑

ν=0

Bq−νρ2
∗[[L(u)]]l,ν,B+

R
+Bqρ

3
2
∗ [[B(u)]]l, 12 ,ΓR

(A.23)

+Ap−1Bq
1∑
l=0

[[u]]l,l,B+
R
.
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We start with the estimate of ρ2
∗[[L(u)]]l,ν,B+

R
. By the induction hypothesis (A.22), we may write

ρ2
∗[[L(u)]]l,ν,B+

R
≤ [[f ]]l,ν,B+

R
+ k2[[u]]l,ν,B+

R

≤ Cfλ
l
f max(l, k)l + k2Cu(B+

R)Kl
1K

ν
2 max(l, k)l

≤ Cu(B+
R)Kl

1K
ν
2 k

2 max(l, k)l

((
λf
K1

)l
1

k2Kν
2

+ 1

)

≤ Cu(B+
R)Kp

1K
q+1
2 max(p, k)p

2

K1K2
Kl−p+1

1 Kν−q
2 ,

if K1 ≥ λf . Multiplying this estimate by Ap−1−lBq−ν and summing on ν and l, one gets

p−2∑
l=0

Ap−1−l
min(l,q−1)∑

ν=0

Bq−νρ2
∗[[L(u)]]l,ν,B+

R

≤ Cu(B+
R)Kp

1K
q+1
2 max(p, k)p

2

K1K2

p−2∑
l=0

Ap−1−l
min(l,q−1)∑

ν=0

Bq−νKl−p+1
1 Kν−q

2

≤ Cu(B+
R)Kp

1K
q+1
2 max(p, k)p

2

K1K2

p−2∑
l=0

(
A

K1

)p−1−l min(l,q−1)∑
ν=0

(
B

K2

)q−ν
.

Choosing K1 ≥ 2A and K2 ≥ 2B, we conclude that

(A.24)
p−2∑
l=0

Ap−1−l
min(l,q−1)∑

ν=0

Bq−νρ2
∗[[L(u)]]l,ν,B+

R
≤ Cu(B+

R)Kp
1K

q+1
2 max(p, k)p

8

K1K2
.

Estimation of ρ
3
2
∗ [[B(u)]]l, 12 ,ΓR for l ≤ p−2: We use the estimate (A.9) and the induction hypothesis

(A.22) to get

ρ
3
2
∗ [[B(u)]]l, 12 ,ΓR ≤ kCCtr,RCGCu(B+

R)K2
2

l+1∑
p′=0

(λ′G)l+1−p′Kp′

1 max(l + 1, k)l+1−p′ max(p′, k)p
′
.

In the above right-hand side as l + 2 ≤ p and p′ ≤ p− 1, we obtain

ρ
3
2
∗ [[B(u)]]l, 12 ,ΓR ≤ CCtr,RCGCu(B+

R)K2
2 max(p, k)pKl+1

1

l+1∑
p′=0

(
λ′G
K1

)l+1−p′

.

For K1 ≥ 2λ′G, we deduce that

(A.25) ρ
3
2
∗ [[B(u)]]l, 12 ,ΓR ≤ 2CCtr,RCGCu(B+

R)K2
2 max(p, k)pKl+1

1 .

Multiplying this estimate by Ap−1−lBq and summing on l, as before one gets (since K1 ≥ 2A and
K2 ≥ 2B)

p−2∑
l=0

Ap−1−lBqρ
3
2 ∗ [[B(u)]]l, 12 ,ΓR ≤ Cu(B+

R)Kp
1K

q+1
2 max(p, k)p

(
4CCtr,RCGAK2

K1

)
,
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Finally using (A.20), one has

Ap−1Bq
1∑
l=0

[[u]]l,l,B+
R
≤ Cu(B+

R)Kp
1K

q+1
2 max(p, k)p

1

CRK1K2
.

Using this estimate and the estimates (A.24)-(A.25) into (A.16), we can conclude that

[[u]]p,q+1,B+
R
≤ Cu(B+

R)Kp
1K

q+1
2

(
8

K1K2
+

4CCtr,RCGK2

K1
+

1

CRK1K2

)
≤ Cu(B+

R)Kp
1K

q+1
2 max(p, k)p,

for K1 and K2 large enough.

Remark A.9 In Lemma A.8, if we take p = q, we obtain

[[u]]p,p,B+
R
≤ Cu(B+

R)Kp max(p, k)p,

with K = K1K2.

A.2 Interior analytic regularity
Let BR = B(0, R), L an elliptic system of order 2 defined in BR, and k > 1. Here we consider a
solution u of

(A.26) L(u) = f + k2u in BR.

We now define the following semi-norms

[[u]]p,BR := max
0<ρ< R

2p

max
|α|=p

ρp ‖∂αu‖BR−pρ ,

ρ2
∗[[u]]p,BR := max

0<ρ< R
2p

max
|α|=p

ρp+2 ‖∂αu‖BR−pρ .

We suppose that f is analytic with

(A.27) ‖∂αf‖BR ≤ Cfλ
p
f max(|α|, k)|α|, ∀α ∈ Nn,

for some positive constants Cf and λf independent of k.

Lemma A.10 Let u ∈ H2(BR) be a solution of (A.26) with f satisfying (A.27). Then there exists
K ≥ 1 such that

[[u]]p,BR ≤ Cu(BR)Kp max(p, k)p,

with Cu(BR) = CR(Cf + ‖u‖BR + k−1 ‖u‖1,BR), for CR ≥ 1.

Proof. The proof is exactly the same as the one of Lemma A.7 when we use Proposition 1.6.3 of
[5] (a standard interior regularity result) instead of Proposition 2.6.6 of [5].
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A.3 Proof of Theorem A.1
The first step of the proof is to consider a covering of Ω by some balls, which verifies

Ω ⊂ ∪Nj=1B̂j ⊂ ∪Nj=1Bj ,

where Bj = B(xj , ξj) and B̂j = B(xj ,
ξj
2 ), with ξj > 0 small enough such that B(xj , ξj) ⊂ Ω if

xj ∈ Ω. This yields

|u|p,Ω .
N∑
i=1

|u|p,B̂i∩Ω

.
∑

1≤i≤N :xi∈Ω

|u|p,B̂i +
∑

1≤i≤N :xi∈∂Ω

|u|p,B̂i∩Ω.

In the case of an interior ball, namely for i such that xi ∈ Ω, we simply perform a translation
to apply Lemma A.10. Hence, the operator L does not change and we directly have

|u|p,B̂i . p
n[[u]]p,Bi . p

nCu(Bi)K
p max(p, k)p.

By the definition of Cu(Bi), we then arrive at

(A.28) |u|p,B̂i .
(
Cf + ‖u‖Bi + k−1 ‖u‖1,Bi

)
(eK)p max(p, k)p.

In the case when a ball intersects the boundary of Ω, namely for each i such that xi ∈ ∂Ω, we
apply a change of variables which allow to pass from Bi∩Ω to B+

ξi
. First thanks to a Faà-di-Bruno

formula, we obtain (see [5, (1.b)])

|u|p,B̂i∩Ω . c
p+1
i

p∑
l=0

k!

l!
|û|l,B+

ξi/2
,

with a positive constant ci which depends only on the transformation that allows to pass from
Bi ∩ Ω to B+

ξi
. Then we can can apply Lemma A.8 (see Remark A.9) and get

|u|p,B̂i∩Ω . e
pcp+1
i Cû(B+

ξi
)

p∑
l=0

k!

l!
Kl max(l, k)l.

Using (A.11), and a change of variables (in Cû(B+
ξi

) and again Faà-di-Bruno formula) we obtain

|u|p,B̂i∩Ω . e
pcp+1
i

(
Cf + ‖u‖Bi∩Ω + k−1 ‖u‖1,Bi∩Ω

)
max(p, k)p

p∑
l=0

Kl.

This yields

|u|p,B̂i∩Ω .
ciK

K − 1

(
Cf + ‖u‖Bi∩Ω + k−1 ‖u‖1,Bi∩Ω

)
(cieK)p max(p, k)p.

The combination of this estimate with (A.28) yield the result.
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