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The worldwide shared definition of “optimal design” refers to the cheapest and simplest design able to

perform the required job; most of the time this definition is strictly related to given operating conditions,

i.e. the input variables are seldom subjected to considerable variations. However, in process engineering,

plenty of cases don’t fit this definition due to the uncertain nature of the feedstock needed to be pro- 

cessed. Therefore, if a system is likely to undergo several and substantial perturbations, an a priori flexi- 

bility assessment can be crucial for the good performance of the operation. In chemical engineering the

leading separation process is distillation. Hence the first purpose of this paper is to define a procedure

and compare the different flexibility indexes found in literature in order to perform a simple distillation

column flexibility assessment. The second goal of this paper is to couple the flexibility and economic

aspects related to the distillation column investment costs and again to compare the different indexes

economic behaviours.
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. Introduction: A measure of flexibility

Flexibility analysis is a step of process design procedure that is

ften skipped. Sometimes a sensitivity analysis is performed with

eatures similar to the flexibility one but in general they don’t

verlap. 

The standard procedure for chemical plants design consists

f the assessment of the optimal design according to the eco-

omic and operational aspects. Nevertheless this optimal design

s strictly related to the operating conditions, i.e. perturbations,

hen present, can seriously turn the tables. In these cases an a

riori flexibility analysis could be of critical importance to assess

n which range of operating conditions a system design is effec-

ively better performant than another one. 

The word flexibility commonly refers to the ability to change in

rder to cope with variable circumstances both in a passive and an

ctive sense; to be more detailed, in process engineering, flexibility

an be defined as the ability of a process to accommodate a set of

ncertain parameters ( Hoch and Eliceche, 1996 ). This concept looks

asily understandable but actually the definition standalone says

othing about how we can deal with it. Thus we need an opera-
∗ Corresponding author.

E-mail address: ludovic.montastruc@ensiacet.fr (L. Montastruc).
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ional definition and to know what flexibility means through the

ay it could be measured. 

The very first publication about the definition of a flexibility in-

ex is provided by Swaney and Grossmann (1985a) and soon af-

er Saboo et al. (1985) proposed another possible index to quantify

he flexibility of a process design (called in this case “resiliency”).

oreover there exists an additional paper by both Grossmann and

orari (1983) where the flexibility related problems and solution

re thoroughly analyzed with a pioneering methodology. 

The Swaney and Grossmann flexibility index ( F SG ) mathemati-

ally states as follow: 

Given that: 

• θN : nominal values of uncertain parameters (base point);
• �θ+ , �θ−: expected deviations for each parameter;
• d : design variables associated to the equipment capacities;
• z : control variables.

The flexibility index, for a given design d, is the solution of the

roblem: 

 SG = max δ (1.1) 

.t. max 
θεT (δ)

min 

z
max 

jεJ
f j (d, z, θ ) ≤ 0 (1.2)

If F = 1, the deviations �θ+ and �θ− can be accommodated. In

rder to have a clearer idea of what these statement means we can

elp ourselves with the plot in Fig. 1 . 



Fig. 1. Feasibility domain - F SG ( Swaney and Grossmann, 1985a ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Feasibility domain - F SG vs RI ( Saboo et al., 1985 ).
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The curve �( d, θ ) is the so called feasibility domain defined

by the constraints. Constraints can be physical, legal, operational,

economic etc. and in general a deeper study about the way this

region is outlined and the conditions to be satisfied, as well as the

degrees of freedom analysis, is needed. This step precedes the flex-

ibility analysis since the domain shape is strictly related to the na-

ture of the case study. 

As shown by the optimization problem, the flexibility index de-

fined as above ( 1.1, 1.2 ), is the maximum fraction of the expected

deviation δ that can be accommodated by the system; it graph-

ically represents the minimum among the maximum fractions of

the hyperrectangle sides’ lengths that is bounded by the feasible

zone. 

Moreover, for constraints jointly quasi convex in z and 1 D quasi

convex in θ the problem can be decomposed into two level opti-

mization problem: 

F SG = min 

k
δk (1.3)

δk = max 
z

δ (1.4)

f j (d, z, θ k ) ≤ 0 jεJ (1.5)

θ k = θN + δ · �θ k (1.6)

and the solution lies at a vertex of the hyperrectangle allowing us

to solve the optimization problem by evaluating the feasibility of

the design at each vertex. In this way, it can be noted that the

explicit solution of the min-max problem can be circumvented; on

the other hand certain types of non-convex domains may lead to

nonvertex solutions ( Grossmann and Floudas, 1987 ). 

Before the introduction of the flexibility study, to move from

feasibility study towards the design phase, we just need to know

whether the project is feasible under the nominal operating con-

ditions or not, but once we deal with flexibility the qualitative an-

swer yes/no is not sufficient anymore. We need to quantify “how

much” the project is feasible and the independent variables ranges

enclosing the possible operating conditions. 

As anticipated at the beginning, the same year Morari et al. pro-

posed a “resiliency index” defined as the capability to easily re-

cover or adjust to misfortune or change, that is more or less the

passive alter ego of the capability to adapt to new, different or

changing requirements, i.e. flexibility. 
This index is based on the same premises of the F SG , i.e. even

n this case the very first step to perform is the definition of the

easibility domain. Then the resiliency index RI is defined as the

argest total disturbance load, independent of the direction of the

isturbance, a system is able to withstand without becoming in-

easible. 

It mathematically stands as: 

I = min 

i

{| l max 
i | } (1.7)

.t. { max 
j

f j (θ ) ≤ 0 , ∀ l :
∑ | l i | 

i

≤ RI} (1.8)

his corresponds to inscribing the largest possible polytope inside

he feasible region defined by the inequalities here above. The RI

s then equal to the distance between a vertex V of the polytope

nd the nominal operating point 0 as shown in Fig. 2 . 

The main advantage of the RI compared to the F SG is that it re-

uires a lower computational effort; this can be easily figured out

n the case of an n-dimensional problem where a vertex analysis

as to be performed: in the hyperrectangle case we have 2 n ver-

ices to calculate while in the polytope case we have just 2 n of

hem. 

Moreover, the disturbance region measured in the first case

ight be practically more interesting because it expresses directly

he disturbance load allowed in the direction of each parameter

ndependently on the others. 

For the same reason, since the hyperrectangles sides have to be

arallel to the axes even if this configuration doesn’ t allow the

iggest possible rectangle, the F SG index results to be very conser-

ative and significantly underestimate the actual flexibility of the

ystem. 

This representation of the feasible and expected possible zones

oes not reflect thoroughly the real world since not all the possible

perating conditions are equally probable; hence this kind of anal-

sis results in rather conservative estimates. In many real world

pplications, however, data are usually available that allow a bet-

er definition of uncertainty in a statistical sense. 

For this reason a novel flexibility analysis approach for pro-

esses with stochastic parameters was then proposed in 1990 by

istikopoulos and Mazzuchi (1990) . It’ s shown that the flexibil-

ty index can correspond to a multivariate cumulative distribution

unction transforming the original constraint space to the space of

tochastically dependent flexibility function by mean of the analyt-

cal properties of the flexibility problem. 



Fig. 3. Feasibility domain - F SG vs SF ( Pistikopoulos and Mazzuchi, 1990 ).
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f (θ ) ≤ 0 and 0 ≤ x , y , z ≤ 1 (1.21) 
Given the feasibility region constraints inequalities as: 

(d, θ ) ≤ 0 (1.9) 

he equality defines the boundary of the feasible zone. 

The stochastic flexibility index SF can be defined as: 

F = P r{ �(d, θ ) ≤ 0 } =
∫ 

{ θ :�(d,θ ) ≤0 } 
. . .

∫ 
P D (θ ) dθ (1.10)

here P D is the joint distribution function of the uncertain param-

ters θ . 

The comparison between the stochastic flexibility index SF and

he Swaney and Grossmann is better shown in Fig. 3 . 

With this methodology we can calculate a weighted estimation

f flexibility. Thus, if something is unlikely to happen and our sys-

em cannot withstand this operating conditions, it only slightly af-

ects the final value of the flexibility index providing a measure-

ent less conservative and more adherent to reality. 

Obviously, the other side of the coin is the strict dependency of

his index on the availability of probability distribution data, that

s if no data are available this methodology is clearly unusable. 

An additional problem to be solved was pointed out in 1995 by

imitriadis and Pistikopoulos (1995) and it consists in the evalu-

tion of flexibility taking into account the dynamics of the stud-

ed system. This topic was already pointed out by Grossmann and

orari (1983) few years before but Pistikopoulos is the very first

ne to define a specific index namely Dynamic Flexibility (DF) that

akes into account the evolution of the system. Actually the defi-

ition itself of DF is not so different since it is a modification of

he previous index F SG . However, its introduction allows the study

f a system taking into account its control loops and their tuning,

herefore from an operational point of view its introduction is of

ritical importance. 

The Dynamic Flexibility problem is introduced here below for

iterature coverage reasons. Nevertheless this index will not be

aken into account in the flexibility analysis proposed in the next

ection both because no other dynamic flexibility indexes to com-

are it with have been found in literature and because the analysis

efers to steady state conditions. 

The definition of the Dynamic Flexibility follows the path of

he F SG considering the uncertain and control parameters namely

and z as a function of time, therefore the dynamic flexibility in-

ex evaluation problem becomes: 

F (d) = max δ (1.11) 
.t. χ(d) = max 
θ (t) εT (δ,t) 

min 

z(t) εZ(t)
max 

jεJ,tε[0 ,H]
f j (d, x (t) , z(t) , θ (t ) , t ) ≤ 0 

(1.12) 

.t. h (d, x (t) , z(t) , θ (t) , t) = 0 (1.13)

 (0) = x 0 (1.14) 

≥ 0 (1.15) 

 (δ, t) = { θ (t) | θN (t) − δ · �θ−(t) ≤ θ (t) ≤ θN (t) + δ · �θ+ (t) }
(1.16) 

(t) = { z(t) | z L (t) ≤ z(t) ≤ z U (t) } (1.17)

Qualitatively, the dynamic flexibility index, DF, represents the

argest scaled deviation of the uncertain parameter profile that the

esign can tolerate while remaining feasible within the horizon

onsidered. 

The dynamic flexibility index problem is a two-stage, semi-

nfinite, dynamic optimization problem with an infinite number

f decision variables. Therefore, in order to solve it, an ad hoc

ethodology to reduce the dimension of the problem has to be

mplemented. 

Finally, the most recent flexibility index found in literature is

rovided by Lai and Hui (20 07, 20 08) . It has the aim to over-

ome the problems related to previous indexes, i.e. the require-

ent of nominal point and the consideration of the critical uncer-

ainty only (causing an underestimation) for F SG and RI, as well as

he availability of the probability distribution of all uncertain pa-

ameters at the design stage for the SF. This new flexibility metric

s much easier to use and does not need a lot of computational

ffort or available data and it is defined as follow. 

Let V 0 be the volume defined by the uncertain parameters: 

 0 = 

N ∏ 

i =1

( θiU − θiL ) (1.18) 

nd V f the feasible volume defined as the intersection of the con-

trained volume and V 0 . 

Then the flexibility index F V is defined as the ratio between the

easible space and the uncertain space: 

 V = 

V f 

V 0 

(1.19) 

However, S f is usually irregular in shape and its volume ( V f ) de-

ermination is not straightforward. To estimate V f , a constructed

pace ( S e , the region outlined by the thick solid line), whose vol-

me determination is less difficult, can be inscribed inside S f . With

 careful selection of the shape of S e , its volume ( V e ) can be used

s a close estimate of V f . 

As illustrated in Fig. 4 , S e can be constructed by first picking

 reference point ( P R ), which is not necessarily the nominal point,

ithin S f . Auxiliary vectors v j with selected directions can be ra-

iated from P R . The interception points ( P j ) of v j and the feasible

pace boundary are obtained. The S e can then be constructed by

oining these P j points according to their positions in space. Since

ifferent S e can be generated by different auxiliary vector direction

election schemes, estimation accuracy of V f and F V will depend

n the selection scheme employed. The general formulation for the

uxiliary vectors’ positions in a 3 D space is as follows: 

max 
 j ,y j ,z j

V e (x j , y j , z j ) (1.20)
k i j j j j 



Fig. 4. Feasibility domain - F V ( Lai and Hui, 2008 ).
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p  
s.t. θi, j = v i j i j �i j + θR 
i , �i j =

{
�+ · θi (v i j ≥ 0) 
| �− · θi | (v i j < 0) 

i = x, y, z

(1.22)

However, whether the feasibility domain is well defined and

the constraints equations are know, there’s no need to approxi-

mate anymore since we can get the exact value of the S f volume

through a multiple integral at the cost of a higher computational

effort. 

An additional remark is worth to be done: the volumetric flex-

ibility index takes into account no perturbation outside the un-

certain space and treat every point as equally possible. Therefore,

given its definition, we can write it as: 

F v = 

V f 

V 0 

= 

1

V 0 

∫ 
V f

d θ = 

∫ 
V f

1 

V 0 

d θ (1.23)

that is the same definition as the stochastic flexibility index for

a probability step function. A practical application of this analogy

between SF and F V will be shown in the following chapters. 

Finally, on one hand we can say that several flexibility in-

dexes have been found in literature but, on the other hand,

except the steady state debutanizer case study proposed by

Hoch et al. (1995) ( F SG ), no case studies about distillation have

been provided (cf. Table 1 ). Most of the systems found in literature

subjected to flexibility analysis have linear constraints or at least a

quasi convex feasibility domain; whether a higher complexity can

be detected, the flexibility analysis has been conducted with the

simple F SG that, due to its straightforward application, results to be

the index used in the vast majority cases. However, the behaviour

of less used and more complex indexes is worth to be studied

in deeper and for a wider range of systems as well; therefore,

a complete flexibility analysis of a distillation column, inspired

by the aforementioned debutanizer example ( Hoch et al., 1995 ),

is proposed here below with all the four steady state indexes.

An accurate results comparison and economic assessment will

follow. 
. The debutanizer case study

In order to better understand the distillation related application

f these indexes, the simple debutanizer case study proposed by

och et al. (1995) , with few modifications, has been analyzed in

etail. 

In short, the system is made up of a standard distillation col-

mn, i.e. total condenser, no intermediate feeds/withdrawals and

artial reboiler ( Fig. 5 ). 

The feed stream is defined by the composition and conditions

hown in Table 2 while the given design parameters are listed in

able 3 . 

Finally the uncertain parameters are reported in Table 4 , their

xpected variation ranges �θ k ± are the same in either positive or

egative direction and equal to 10% of their nominal value as sug-

ested in the paper. The feed variations are related to the nature

f the upstream process, the performances of the heat exchangers

o the tubes fouling, the water temperature to the seasonality and

nally the flooding and weeping velocity are function of the trays

echnology and status. 

The specifications are given by the paper as three inequality

onstraints, namely: 

• Maximum molar fraction of butane in the bottom product =
0.01786;

• Maximum molar fraction of pentane in the distillate = 0.025;
• Minimum pentane recovery in the bottom = 0.97.

In this paper the two most restrictive equality relationships

ave been selected to fulfill the two remaining degrees of freedom:

• Molar fraction of butane in the bottom product = 0.01786;
• Pentane recovery in the bottom = 0.97.

The controlled variables are respectively the reflux and distillate

flowrates. 

. Flexibility analysis

Flexibility analysis can be performed either during the design

hase or for an already existing equipment (or plant). In the next



Table 1

Flexibility studies in literature.

Case study Authors Index

Pump and pipe Grossmann and Morari (1983) F SG

Swaney and Grossmann (1985a) F SG

Floudas et al. (2001) F SG

Lai and Hui (2008) F V
Refrigeration cycle Swaney and Grossmann (1985b) F SG

Reactor-recycle Swaney and Grossmann (1985b) F SG

Heat exchanger network Grossmann and Morari (1983) F SG

Swaney and Grossmann (1985b) F SG

Saboo et al. (1985) RI

Pistikopoulos and Mazzuchi (1990) SF

Dimitriadis and Pistikopoulos (1995) DF

Floudas et al. (2001) F SG

Lai and Hui (2008) F V
Storage tank dynamic system Dimitriadis and Pistikopoulos (1995) DF

Wu and Chang (2017) DF

Debutanizer Hoch et al. (1995) F SG

Hoch and Eliceche (1996) F SG

Reactor + cooler Floudas et al. (2001) F SG

Chemical process with recycle Floudas et al. (2001) F SG

Solar-driven membrane distillation desalination (SMDD) process Wu and Chang (2017) DF

Benzene chlorination reaction system Huang (2017) DF

Batch reactor system Huang (2017) DF

Fig. 5. Debutanizer column layout.

Table 2

Feed conditions and composition.

Partial molar flowrates Value Unit

Propylene 0.055 mol/s

Propane 0.053 mol/s

Butane (lk) 6.863 mol/s

Pentane (hk) 2.743 mol/s

Temperature Bubble K

Pressure 15 · 10 5 Pa

Table 3

Design parameters.

Desing variables

d Symbol Value Unit

Rectification stages N r 9 1

Stripping stages N s 10 1

Column diameter D col 0.634 m

Condenser area A cond 40.00 m 

2

Reboiler area A reb 26.83 m 

2

Top pressure P top 4 · 10 5 Pa

c  

u  

u

 

t  

a

3

i

 

fl  

Table 4

Uncertain parameters θ k .

Parameter θ Symbol Valu

Butane flowrate F 4 6.86

Pentane flowrate F 5 2.74

Condenser heat transfer coefficient U cond 473

Inlet cooling water temperature T w 20

Reboiler heat transfer coefficient U reb 552

Max vapor velocity G f 0.38

Min vapor velocity G w 0.13
hapters flexibility will be both assessed for the debutanizer col-

mn as shown in the previous paragraph and for a distillation col-

mn to be designed; the results will be then compared. 

Moreover, the analysis will be conducted separately for the de-

erministic and stochastic indexes in order to highlight analogies

nd differences. 

.1. Deterministic indexes: Swaney Grossmann F SG and resilience 

ndex RI 

First of all, in order to evaluate the Swaney and Grossmann

exibility index F SG , we need to estimate the variation ranges of
e θN Expected deviation �θ k ± Unit

3 ± 10% ± 0.686 mol/s

3 ± 10% ± 0.274 mol/s

.77 ± 10% ± 47.377 W/m 

2 
/ K 

± 10% ± 2 ◦C

.90 ± 10% ± 55.29 W/m 

2 
/ K 

± 10% ± 0.038 m/s

± 10% ± 0.013 m/s



Table 5

Flexibility analysis results: F SG .

Deviation [%] Condenser area [ m 

2 ] Reboiler area [ m 

2 ] Minimum diameter max [ m ] Maximum diameter min [ m ]

0.00 32.91 22.26 0.603 0.782

5.00 38.08 24.59 0.634 0.744

6.66 40.00 25.43 0.644 0.732

9.35 43.35 26.83 0.662 0.712

15.00 51.53 30.09 0.701 0.673

21.00 62.30 34.05 0.746 0.632

Fig. 6. Heat transfer areas ( F SG ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Column max & min diameters ( F SG ).
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the uncertain variables as shown in Table 4 , called from here on

out “expected deviations”. 

Since the system is rather simple (i.e. convex feasibility do-

main), for the moment there’s no need of outlining the whole fea-

sible space as discussed in the first section; the vertex analysis,

by increasing the parameters variation percentages until the ex-

pected values and keeping constant the ratios between them, can

be then easily and effectively performed. Since there are 7 chang-

ing parameters, the hyperrectangles has 7 dimensions that means

2 7 = 128 vertices should be theoretically calculated for each simu-

lation but, thanks to the possibility to decouple some independent

parameters, the computational effort can be substantially reduced. 

The complete flexibility analysis results and the corresponding

plots are shown respectively in Table 5 and Figs. 6 and 7 , the debu-

tanizer related values are indicated. 

The resulting Swaney and Grossmann flexibility index for this

case study is then given by: 

F SG = 

al l owed de v iation 

expected de v iation 

= 5% 

10% 

= 0 . 5 (3.1)

The bottleneck of flexibility is given by the column minimum di-

ameter equal to 0.634 m, i.e. by the flooding conditions. However,

the analysis has been carried out for all the other design param-

eters standalone as well. The condenser results to be the second

most constraining variable, while the reboiler the third one; for a

value between 12 and 15% of the allowed deviation we can no-

tice that the maximum diameter becomes lower than the mini-

mum one causing the column design to be impossible with a single

diameter column. This last phenomenon occurs because flexibility

indexes refer both to positive and negative perturbations causing

the range of diameter values able to ensure operable conditions to

become smaller for higher flexibility requirements. 
The conditions that cause the hyperrectangle to exceed the fea-

ibility domain boundaries, i.e. which vertex is tangent one, for

ach design variable are reported in Table 6 ; “+” and “-” indicate

espectively a positive or negative deviation of the uncertain pa-

ameter while “/” indicates that the parameter does not affect the

onstraining design variable. 

For the “Condenser area”, “Reboiler area” and “Minimum col-

mn diameter” critical conditions are achieved because of overfed

olumn and underperforming equipment while for the maximum

iameter, i.e. weeping conditions, criticalities are present in case of

nderfeeding as expected according to the physics of the problem.

Beside the design and sizing, an economic assessment has been

erformed as well. The purpose is to couple flexibility and invest-

ent costs in order to make the best decision during the design

hase and avoid the plant underperform; operational costs have

ot been taken into account since they’re univoquely determined

ue to the fact that we’re not changing the number of trays. For

ore detail about equipment costs correlations cf. Appendix B 

The capital costs trends (normalized to the lowest value) as

unction of F SG flexibility are plotted for each equipment in

igure 8 . All of them increase as flexibility increases (according

ith their size). The most expensive equipment is the Kettle re-

oiler that has a much more accurate technology than the other

eat exchangers and that works under pressure, while the column

s relatively cheap because of its small diameter. 

In Fig. 9 three series of percentage data as function of flexibility

ave been plotted; they refer namely to: 

• dC 
C 0

: the additional investment referred to a column designed in

nominal operating conditions, i.e. 0% flexibility (Blue trend); 
• dC 

C e f f
: the cost differences with respect to the case study column

design (Red trend); 



Table 6

Critical vertices.

Parameter vs design Condenser area Reboiler area Minimum diameter Maximum diameter

Butane flowrate + + + –

Pentane flowrate + + + –

U Cond – / / /

T w + / / /

U Reb / – / /

G f / / – /

G w / / / + 

Fig. 8. Equipments bare module cost ( F SG ).

Fig. 9. Capital costs comparison ( F SG ).
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• dC 
C real

: the effective cost differences if the case study column is

already available (Yellow trend). 

We can notice first that the trends are more or less linear;

oreover, we can also point out that part of the investment (about

%) could have been saved if the reboiler was properly designed,

rom a flexibility point of view, since its overdesign is practically

seless considering the bottleneck of 5.00% given by the column

iameter. 
Differently from the F SG index, the resilience index defines the

argest total disturbance load a system is able to withstand inde-

endently of the direction of the disturbance. 

It was originally defined for heat exchangers networks, there-

ore some modifications are needed in order to adapt it to every

ype of system. First of all the Resilience Index has a dimension

hat usually is an “heat” related value (kW, K etc.); in this case, in

rder to make the comparison with the other indexes possible and

ecause of the several perturbations we have to cope with, each

ne with its different dimension, the percentage deviation value

ill be used. Then, since we’re dealing with a simple system (i.e.

uasi-convex domain), we’re sure we’re going to solve a so called

Class 1 problem”, i.e. the standard vertex analysis procedure can

e performed successfully. 

The complete Resilience analysis results are shown in Tables 7

nd 8 and Figs. 10 and 11 . 

The resulting Resilience Index (RI) for this case study is then

iven by: 

I = min 

i

{| l max 
i | } = 9 . 64 (3.2)

irst of all we can notice that there are no problems even if the

ntervals are only half-bounded because we’re looking for the min-

mum of the maximum withstood perturbations. The ∞ values

on’t mean that we really calculated results for infinite percent-

ge values of parameter deviation, but it means that the withstood

ercentage perturbation is large enough not to affect the flexibil-

ty analysis or enough to fulfill all the physically possible (not only

xpected) deviation range in that direction. 

Then we can focus our attention on the limiting design factor

hat is, as for F SG index, the column diameter whose corresponding

arameter is the flooding velocity. The Resilience Index calculated

his way has an higher value than the F SG since we perturbate only

ne parameter at time leaving unchanged the others. Vice versa, in

rder to attain a given flexibility value, a smaller oversizing than

 SG case is needed. 

Even the crossover of the minimum and maximum diameter

alues, i.e. the completely infeasible conditions with a single di-

meter column, was more conservative in the F SG analysis where it

as about 13% (cf. Fig. 7 ), while in the RI this condition is attained

or a 24% (cf. Fig. 11 ) flexibility more or less. 

Moreover, it is worth noticing that, beside the column diameter,

he second most constraining variable is the reboiler while for the

 SG analysis was the condenser. This is the most representative dif-

erence between the two indexes because the variables acting on

he condenser are U cond and T w 

in both cases but, while in the RI

nalysis they are perturbated one at a time, in Swaney and Gross-

ann analysis they change all at once causing the equipment af-

ected by an higher number of uncertain parameters (in this case

he condenser) to be more critical. 

As well as the Swaney and Grossmann index costs analysis,

he capital costs trends (normalized to the lowest value) as func-

ion of RI flexibility are plotted for each equipment in Fig. 12 .

ll of them increase as flexibility increases (according with their

ize). The most expensive equipment is the Kettle reboiler that has



Table 7

Allowed disturbances loads.

Parameter Maximum deviation [%] l max + 
i 

Minimum deviation [%] l max −
i 

Limiting constraint

Butane flowrate 11.80 ∞ D min

Pentane flowrate 81.00 ∞ D min

Inlet cooling water temperature 18.28 ∞ A cond

Condenser heat transfer coefficient ∞ 17.74 A cond

Reboiler heat transfer coefficient ∞ 17.02 A reb

Max vapor velocity ∞ 9.64 D min

Min vapor velocity 52.18 ∞ D max

Table 8

Flexibility analysis results: RI .

Deviation [%] Condenser area [ m 

2 ] Reboiler area [ m 

2 ] Minimum diameter max [ m ] Maximum diameter min [ m ]

0.00 32.91 22.26 0.603 0.782

9.64 36.42 24.64 0.634 0.745

17.02 39.65 26.82 0.662 0,715

17.74 40.00 27.06 0.665 0.712

24.00 43.30 29.29 0.691 0.686

Fig. 10. Heat transfer areas ( RI ).

Fig. 11. Column max & min diameters ( RI ).

Fig. 12. Equipments bare module cost ( RI ).
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l  
 much more accurate technology than the other heat exchang-

rs and that works under pressure, while the column is relatively

heap because of its small diameter. 

In Fig. 13 the three series of percentage data as function of Re-

ilience Index analogous to those in Fig. 9 are reported. 

Even in this case the trends are more linear, the differences be-

ween F SG and RI indexes economical analysis reflects the differ-

nces highlighted in the equipment design analysis as well as the

nalogies, i.e. for a given flexibility value the capital cost is lower

f we consider the Resilience Index flexibility. Obviously it doesn’t

ean that we can save money just by changing the index we use,

t only means that by selecting a different index we are measuring

ifferent performances; so for each process the more suitable the

ndex is the more accurate the economical analysis will be, where

ith the word “suitable” refers to the performances demanded to

ope with the possible disturbances. 

The Swaney and Grossmann flexibility measures the ability

f the system to withstand an overall parameters deviation of

 SG ·�θ k ± %, the Resilience Index measures the case of a sin-

le variable, it doesn’t mind which one, deviation of RI %, there-

ore, in order to find the most suitable index, we need to eval-

ate which of the two kinds of deviation our system is more

ikely to undergo to. This idea of “disturbance likelihood” leads



Fig. 13. Capital costs comparison ( RI ).
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s then to the stochastic characterization of the flexibility indexes

iscussed in the following section for the same debutanizer case

tudy. 

.2. Stochastic indexes: Pistikopoulos and Mazzuchi SF and Lai and 

ui F V 

When we move from a deterministic point of view to a stochas-

ic one we have to transform the idea of perturbation expected or

ot, defined by a well bounded deviation range, into a continuous

unction describing how much expected the deviation is. To do this

e need to use a probability distribution function relating a prob-

bility value to each condition “x”, i.e. the independent variable(s)

cf. Appendix C for more details). 

The probability density function are usually parametric func-

ions, the probability of the independent variable falling within a

articular range of values is given by the integral of this variable’

 PDF over that range. The probability density function is nonneg-

tive everywhere and its integral over the entire space is equal to

ne. 

Before going any further with the application of these principles

o our debutanizer case study, a few observations about the chosen

DF and its properties will be remarked here below. 

First of all, in order to univocally define the PDFs we need to

et the parameters; the selected values are: 

• μ= operating conditions for each variable;
• σ or b = 20% of μ for each variable.

For this case study a 20% variance has been selected since it

s about the maximum allowed individual deviation for the vari-

bles taken into account in the stochastic flexibility analysis. This

hoice makes the analysis sensible enough to appreciate the fea-

ures of the coupling of flexibility and economics, that is the main

oal of the paper. A very small σ value would result in a useless

exibility analysis since almost all possible perturbations would be

ithstood; on the other hand a higher σ value has poor reliability

ince variables uncertainty range would be too wide and a signifi-

ant stochastic flexibility value would be never attained. Therefore

0% results a good compromise allowing an analysis more sensible

nd unbiased by excessive optimism, keeping us as conservative as

eeded. 

We have then to choose which type of PDFs would better de-

cribe the system under analysis. Probability reflects the state of

he information therefore, since we actually have no data about the
robability functions of our parameters deviations, the most gen-

ral PDF possible should be used in order to have the more unbi-

sed possible results. The condition of “general validity” is satisfied

y the Gaussian or normal probability distribution. It is symmetri-

al with respect to its mean and the 99.73% of cumulative proba-

ility falls in the range [ −3 σ, +3 σ ]. 

For the sake of completeness, in order to prove that the results

f the stochastic flexibility analysis are not qualitatively PDF de-

endent, it will be conducted with a different probability distribu-

ion function as well, i.e. the Laplace one. This distribution satisfies,

n a sense, the same requirements needed by the system descrip-

ion, that is: 

• The maximum probability is attained at the operating condi-

tions;
• the probability value is not dependent on the deviation direc-

tion.

For further details about Normal and Laplace probability distri-

ution functions cf. Appendix C . 

In order to have a visual approach with the stochastic flexibil-

ty index meaning, a 2D analysis for the condenser perturbation

as been performed first ( Figs. 14 and 15 ). Then, once dealt with

t, the analysis is shifted to higher dimensions; it is nonetheless

orth remarking that the analysis methodology is independent on

he dimension of the problem. As we can notice, the two selected

arameters, i.e. heat transfer coefficient and cooling water temper-

ture, act on the same design variable, i.e. heat exchanger transfer

rea. Therefore a single constraint representing the heat balance is

resent. 

However, since we don’t want to perform the flexibility analysis

f a heat exchanger, on one hand we need to increase the dimen-

ion of our problem on the other hand we don’t want the com-

utational effort to be too high. To match these two purposes we

ould, for instance, add the most constraining parameter (accord-

ng to the previous flexibility analysis), i.e. the flooding velocity.

his way we have a 3D domain with a variable ( G f ) related to the

olumn design ( D min ) and the other two ( T w 

and U cond ) acting on

he same design variable ( A cond ) ( Fig. 16 ); the independence of the

hird parameter on the other two can be immediately noticed since

he yellow plane, i.e. flooding constraint, is parallel to the T w 

x U cond 

lane. 

An additional difference between this index and the previous

nes we’ve got to deal with is that, even if a given design defines

nivocally a stochastic flexibility value, a given stochastic flexibility

alue does not define univocally a system design. The two con-

traints can be shifted in several configuration keeping constant

he value of the integral function indeed. Therefore we’ll refer as

he “x” stochastic flexibility value design to the optimal configura-

ion that attains that value, where optimal simply means cheaper.

his need of economical optimization directly links flexibility with

esign and economic aspects whose trends will be anticipated

ith respect to the sizing ones. 

The results of the stochastic flexibility analysis for each 1% cost

ncrease are reported in Figs. 17 and 18 , the optimal design vari-

bles in Figs. 19 and 20 . 

First of all it’s worth highlighting that, differently from previ-

us flexibility indexes, the stochastic one has a non-zero value at

perating conditions design. 

Moreover the optimal design according to flexibility could be

ifferent from the operating conditions design or the economical

ptimal design. 

An additional difference between SF and F SG or RI is that its

rend is highly non-linear if expressed as function of the equip-

ents’ size, that means that for big oversized equipment the flexi-

ility increase due to a further oversizing is only slightly apprecia-

le. The relative optimal oversizing trend between the condenser



Fig. 14. Condenser SF : Normal PDF.

Fig. 15. Condenser SF : Laplace PDF.

Fig. 16. 3D SF analysis domain.

 

 

 

 

 

 

 

Fig. 17. SF results normal PDF.
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and the column keeps being nonetheless almost linear and further-

more it follows the same line independently on the starting design

condition as expected. 

Finally if we compare the two different distributions results we

can immediately notice that they reflect the nature of the distribu-

tions themselves. Laplace distribution converges more slowly than

the Normal one, therefore the related SF approaches the value 1

only for a bigger oversizing. Nonetheless their trends are qualita-

tively as similar as the PDF are. 
The same sizing related remarks are valid if we talk about costs

ince they’re directly related. 

For two different equipment design the starting points of the
dC 
C v s. SF lines are different but, after a while, the ending branches

f the two curves overlap each other approaching the asymptote. 

Additional costs are higher for the Laplace distribution case

han Normal distribution, as expected, because the deviation like-

ood is slightly higher even far from the operating conditions. 



Fig. 18. SF results Laplace PDF.

Fig. 19. SF optimal sizing NDF.

Fig. 20. SF optimal sizing LDF.

Fig. 21. dC 
C 

v s. SF derivatives ratio. 
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Differently from F SG and RI , costs increase as function of

tochastic flexibility index shows a non-linear trend, this means

hat once a certain point of the curve has been passed the ratio

etween the increase in flexibility and costs starts declining fast. 

The main purpose of Process System Engineering is to enhance

he decision making capability of the chemical engineer, therefore

e’d like to identify the “certain point” after whom it’s not worth

eeping spending money in overdesign. The range of convenient

versizing is visible to the unaided eye: the first part of the curve

ives a high flexibility increase with a small additional costs but

he unwithstood deviation probability is still relevant; on the other

and the last part, even withstanding almost the whole possible

eviations, needs a consistent oversizing (i.e. additional costs) to

e achieved. Finally we can then conclude that the middle range

f the curve is a good compromise between high flexibility and

ffordable additional cost. 

The thorough procedure we propose to assess the optimal range

s based on the curve properties: tangent lines have almost the

ame slope (i.e. derivative) at the beginning and at the end of the

urve while it considerably changes within the interval we’re in-

erested in. 

The procedure then consists in plotting the ratio between the

erivative calculated at each point and the derivative calculated at

he previous one as illustrated in Fig. 21 for the case of NDF and

perating conditions. 

This way, given the dC 
C v s. SF plot only, we can obtain a new plot

hose trend shows a maximum corresponding to the value SF =
 . 9409 , i.e. 10% of additional cost. 

However even the other values near there can be considered

ood conditions for a flexibility based design, more important than

he optimal value itself is to avoid the conditions corresponding to

ery first and very last part of the plot. The chronologically last

exibility index proposed in scientific literature is the volumetric

exibility index F V . It is defined as the feasible fraction of the un-

ertain space, that is a line for 1D case, a surface for 2D case, a

olume for 3D case and a hypervolume for higher dimensions. 

The reason why the volumetric flexibility index is included

mong the stochastic indexes is that it can be also thought as a SF

ndex particular case whose deviation probability function is de-

cribed by a step function ( Fig. 22 ) defined as: 
1 ∏ N 

i =1 ( θiU − θiL )
if | x i | < �θ±

i 

0 if | x i | > �θ±
i 

(3.3) 

herefore the same SF analysis rules and remarks can be applied. 



Fig. 22. F V probability distribution function.

Fig. 23. 2D F V analysis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. 3D F V analysis domain - operating conditions.
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able flexibility.
Thus, in order to perform this kind of analysis, two parameters

have to be set: the nominal point to the operating conditions and

the expected deviation value to 20%. 

For this index as well a 2D analysis for the condenser perturba-

tion has been performed first ( Fig. 23 ) and then, once dealt with it,

the analysis is shifted to higher dimensions. The same SF analysis

remarks apply, i.e. the analysis methodology is independent on the

dimension of the problem, the two selected parameters act on the

same design variable, i.e. heat exchanger transfer area, therefore a

single constraint representing the heat balance is present. 

The results of this 2D case study are F V = 0 . 4714 for operating

conditions and F V = 0 . 8584 for real conditions. 

For the F V index the analysis has been shifted in the same SF

3D domain ( Fig. 24 ). The flooding velocity has then been included

in the analysis; since it is the most constraining parameter, it re-

duces significantly the feasibility of the system. The triple integral

required by the SF index actually becomes a volume integral since

the probability distribution is constant on each interval where it is

defined; due to the complexity of PDF to be integrated in stochas-

tic flexibility analysis, the computational effort for the F V analysis

prove much lower (seconds vs. minutes). 

Even in this case a given volumetric flexibility value does not

define univocally a system design, therefore the “x” volumetric

flexibility value design refers to the optimal, i.e. cheapest, configu-

ration that attains that value. 
The results of the volumetric flexibility analysis for each 0.5%

ost increase are shown in Figs. 25 and 26 . 

On one hand we have the analogies with the SF that are

on-zero values at operating conditions, optimal sizing inde-

endent on the starting conditions and asymptotes at F V = 1 .

n the other hand we’ve got to notice that the trends of the

 V analysis results are rather peculiar and very distinctive of

his kind of index. In Fig. 26 we can mainly distinguish three

ones: 

1. Linear trend: In the very first overdesign part both the column

diameter and condenser area affect the flexibility of the system,

therefore the optimal design strategy is to split the investment

according to the proportion expressed by the slope of the line.

2. Horizontal (or vertical) trend: After a while the flooding con-

straint is almost outside the uncertain parallelepiped. The only

thing to do is then to shift the condenser constraint until it ex-

its the parallelepiped as well. In the end a little adjustment of

both the design variables is observed and the value F V = 1 is

finally attained.

3. Overpayment zone: After the F V = 1 value has been achieved

the whole uncertain domain is contained within the feasible

boundaries therefore any additional oversizing is, considering

flexibility, practically useless. The A cond = 50 . 90 m 

2 and D col =
0 . 686 m condition corresponds definitely the maximum achiev-



Fig. 25. F V analysis economic results.

Fig. 26. F V analysis optimal sizing.
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In the end it is worth remarking that the shape of the over-

izing curve is strictly related to the system features and to the

xpected deviations, the flexibility analysis procedure has nonethe-

ess general validity. 

The cost related remarks are the direct consequence of the

ombination of sizes related ones. The increase in investment costs

s function of volumetric flexibility shows an almost linear trend.

ince the equivalent probability distribution has a constant value,

he F V index tendency results more similar to the F SG and RI in-

exes one, even if the domain considerations, the way we com-

ute its value and the properties of the oversizing curves practi-

ally make it analogous to the SF index. 

In the end we can conclude that a 5.5% additional cost (w.r.t.

perating conditions) is definitely the maximum investment worth

o be done according to a flexibility improvement purpose. 

. Conclusion

After these four flexibility analysis an indexes comparison is

ecessary to summarize and comment the relationships between

ll the results. 
First of all we can mainly distinguish two typologies of indexes

ccording to their approach towards the feasible domain: the in-

exes assessing the minimum of the maximum performance and

he ones giving a global assessment within the uncertain or feasi-

le domain. 

The F SG and RI indexes are generally more conservative, they’re

ased on n-D hyperpoligons that can be inscribed within the fea-

ible domain, where n is the dimension of the uncertain zone (i.e.

he number of possibly perturbated parameters). The first one is

ore suitable if the expected perturbation involves several vari-

bles at the same time, the second one for bigger variations re-

erred to single variables. However, they’re both very conserva-

ive (specially F SG ) since the described geometrical objects can only

cale up or down but their structure is not flexible at all, it doesn’t

oast the domain, it just stops whether one point is tangent. This

ay two completely different systems could have the same flexi-

ility index value just because they allow the same perturbation

ntensity for the most constraining parameter only; on the other

and given a certain starting design, a flexibility index defines uni-

ocally the system configuration. 

On the other hand we have more optimistic indexes with non-

ull value at operating conditions that require integration to be

alculated: SF and F V . Even in this case one of them refers to an

xpected deviation while the other one needs an a priori knowl-

dge or estimation of perturbation likelihood. F V results are simi-

ar to the linear ones until the index achieves its maximum value

f 1 after whom every kind of oversizing is useless; on the other

and the SF index is very sensitive and smart, it takes into ac-

ount all the possible deviations proportionally to their likeli-

ood, showing an hyperbolic trend in oversizing/cost vs. flexibility

lots that reflects well the real capability of the system to bet-

er withstand small and likely deviations than big and unlikely

nes. Several configurations may have the same SF or F V index

alue since they assess a global system property, not the most con-

training one; therefore during the flexibility assessment we could

eed to solve an optimization problem according to the analysis

urpose. 

In the end it’s worth remarking that the value of F SG and F V 
trictly depends on the expected deviations, nevertheless F SG can

e generalized and compared to the whole feasible domain as

hown while F V cannot. 

Then, from a design point of view we can definitely conclude

hat the most suitable flexibility index for the particular analyzed

ystem is a function of the expected deviation nature. 

An advice of general validity is to perform the flexibility anal-

sis using more than one index, combining this way their advan-

ages; for instance the first two indexes are quite easy to compute

hile the ones requiring an integral calculation have a higher com-

utational effort demand. Thus we can perform the flexibility anal-

sis with F SG or RI first in order to identify the most constraining

ariables in order to be able to reduce the dimension of the prob-

em and perform the SF or F V analysis on a smaller domain. Ob-

iously this is a good procedure if some parameters perturbations

ffect variables whose constraints are very loose; if the order of

agnitude of all the F SGi or RI i is almost the same, this preliminary

nalysis is of little help since we cannot be sure that the most con-

training variable for one index will be the most constraining for

he other indexes as well unless much less relevant deviations are

llowed with respect to the others. 

In order to compare the four indexes more immediately, the

able 9 resuming all their main features has been outlined. 

On the other hand, from an economic perspective, the intro-

uction of the Capital costs vs. Flexibility relationship and its rela-

ive plots let the decision maker, i.e. the engineering, take a more

nformed decision whatever the adopted flexibility index. More-

ver, it clearly shows how an a priori flexibility analysis during the



Table 9

Steady state flexibility indexes comparison.

Pros/Cons F SG RI SF F V

Need for data Expected deviation − + + −
Feasibility region outline −/+ −/+ − −
Probability distribution −
Bounded domain −/+ −/+ + + 

Computational effort Vertex analysis + + − −
Computational effort + + + 4 + + +

Results accuracy Conservative − −/+ + + 

Accuracy − −/+ + −/+
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design phase could have allowed to save part of the investment

keeping unchanged the flexibility performance of the system. 

Appendix A. List of acronyms and symbols 

Symbol Definition Unit

A Characteristic dimension m 

n

A cond Condenser heat transfer area m 

2

C BM Equipment bare module cost $

C 0p Purchase equipment cost in base conditions $

CDF Cumulative distribution function Function

d Design variables /

D col Column diameter m

D min Minimum column diameter m

DF Dynamic flexibility index 1

f j Inequality constraint Function

F 4 Butane partial flowrate mol/s

F 5 Pentane partial flowrate mol/s

F BM Bare module factor 1

F M Material factor 1

F P Pressure factor 1

F q Column trays factor 1

F SG Swaney and Grossmann flexibility index 1

F V Lai & Hui flexibility index 1

G f Flooding velocity m/s

G w Weeping velocity m/s

h Equality constraint Function

lmax ±
i

, l ±
i 

(Maximum) i-th direction disturbance load 1

LDF Laplace distribution function Function

M& S Marshall & Swift cost index 1

N, N r , N s Overall, rectifying and stripping stages 1

NDF Normal distribution function Function

P Pressure Pa

Pr Probability 1

PDF Probability distribution function Function

RI Resilience index 1

S e Polygonal feasible space approximation /

S f Feasible space /

SF Stochastic flexibility index 1

T F SG n-D hyperrectangle /

T w Inlet cooling water temperature ◦, C
U cond Condenser heat transfer coefficient W/m 

2 
/ K 

U reb Reboiler heat transfer coefficient W/m 

2 
/ K 

V 0 F V uncertain volume /

V e Polygonal feasible volume approximation /

V f Feasible volume /

z Control variables /

Z Control variables space /

z U , z L Control variables upper and lower limits /

Greek letters Definition Unit

δ hyperrectangle vs. expected deviation ratio 1

δk k-th rectangle ratio 1

θ k Uncertain parameters values /

θN Nominal conditions /

�θ k ± Expected deviation 1

θiU , θiL F V upper and lower expected deviation 1

μ PDF mean value 1

σ PDF variance 1

χ Most restrictive dynamic constraint Function

� Feasible space /

w

ppendix B. Capital costs estimations 

In order to evaluate the investment cost required for the whole

ystem or make any kind of economic consideration and compari-

on, we need to estimate the costs of every single equipment. 

For this purpose the Guthrie–Ulrich–Navarrete correlations de-

cribed in the next paragraphs will be used ( Guthrie, 1969; 1974;

avarrete and Cole, 2001; Ulrich, 1984 ). 

.1. Purchase equipment cost in base conditions 

The purchase equipment cost in base conditions is obtained by

ean of the following equation: 

og 10 (C 
0 
P [$]) = K 1 + K 2 · log 10 (A ) + K 3 · [ log 10 (A )] 2 (B.1)

here A is the characteristic dimension ad the K i coefficients are

elative to the equipment typology (cf. Table 10 ). 

The provided coefficients refers to the year 2001 and to a M&S

ndex equal to 1110. In order to update the costs value to the year

016 we’ll refer to a M&S index equal to 1245.2 by mean of the

orrelation: 

 

0 
P, 2 = 

M& S 2
M& S 1 

· C 0P, 1 (B.2)

.2. Bare module cost

The equipment bare module cost can be calculated according to

he following correlation: 

 BM 

= C 0 P · F BM (B.3)

here the bare module factor is given by: 

 BM 

= B 1 + B 2 · F M 

· F P (B.4)

he F M 

and F P factors refers to the actual constructions materials

nd operating pressure while the B i coefficients refers to the equip-

ent typology (cf. Table 11 ). 

The F P,Kettle value is given by: 

og 10 (F P ) = 0 . 03881 − 0 . 11272 · log 10 (P ) + 0 . 08183 · [ log 10 (P )] 2 

(B.5)

here P is the relative pressure in 10 5 Pascal. 

For column trays bare module cost a slightly different correla-

ion should be used: 

 BM 

= N · C 0 P · F ′BM · F q (B.6)

here N is the real trays number, F BM 

= 1 e F q is given by the cor-

elation: 

log 10 (F q ) = 0 . 4771 + 0 . 08561 · log 10 (N) − 0 . 3473 · [ log 10 (N)] 2 

i f N < 20 (B.7)

 q = 1 i f N ≥ 20 (B.8)

ppendix C. Probability distributions 

.1. Normal probability distribution function 

As already mentioned, the condition of “general validity” is rep-

esented by the gaussian or normal probability distribution. It is

ymmetrical with respect to its mean and the 99.73% of cumula-

ive probability falls in the range [ −3 σ, +3 σ ]. 

The single variable Normal PDF ( Fig. 27 ) states as: 

 (x ) = 

1 

σ
√ 

2 π
e −

(x −μ) 2

2 σ2 (C.1)

here μ is the mean and σ is the variance. 



Table 10

Equipment cost in base conditions parameters.

Equipment Typology K 1 K 2 K 3 A

Heat exchanger Fixed tubes 4.3247 −0.3030 0.1634 Heat tranfer area [ m 

2 ]

Kettle 4.4646 −0.5277 0.3955 Heat transfer area [ m 

2 ]

Columns (vessel) Packed/tray 3.4974 0.4485 0.1074 Volume [ m 

3 ]

Trays Sieved 2.9949 0.4465 0.3961 Cross sectional area [ m 

2 ]

Table 11

Bare module parameters.

Equipment Typology B 1 B 2 F M F P

Heat exchanger Fixed tubes 1.63 1.66 1 1

Kettle 1.63 1.66 1 F P,Kettle

Columns/vessel / 2.25 1.82 1 1

Pumps Centrifugal 1.89 1.35 1.5 1

Fig. 27. 1 D NDF and its CDF.

Fig. 28. 2 D NDF.
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The bivariate Normal PDF ( Fig. 28 ), for a correlation between

he variables ρ = 0 , states as: 

 (x ) = 

1 

2 πσ σ
e− y

2 (C.2)

1 2 |
here y is given by: 

 = 

(x 1 − μ1 ) 
2

σ 2 
1 

+ (x 2 − μ2 ) 
2

σ 2 
2 

(C.3) 

Finally the most general n-variables normal PDF with can be

efined as: 

 (x ) = ( 
1 

2 π
) n/ 2 · | ∑ | − 1 

2 · e −
1 
2 ·(x −μ) ′ 

∑ −1 (x −μ) (C.4)

here � is the variance-covariance matrix, 
∑ −1 its inverse and

 �| its determinant. 

Moreover we can standardize, i.e. reconduct to a 0 mean value

nd variance equal to 1 (variance-covariance matrix equal to the

dentity matrix), the normal distribution by mean of the indepen-

ent variable substitution: 

 = 

x − μ

σ
(C.5) 

btaining: 

 (z) = ( 
1 

2 π
) n/ 2 · | I| − 1 

2 · e −
1 
2 ·z ′ ·I·z (C.6)

or a general n variables standard normal probability distribution

 Severini, 2011 ). 

This transformation besides making the calculations easier al-

ows to compare variables with different dimensions, e.g. tempera-

ure vs. flowrate vs. velocity etc. 

The boundaries of the feasibility domain, if analytically avail-

ble, have then to be rewritten as functions of the new variable z

y inverting the Eq. (C.5) . 

.2. Laplace distribution function

The second distribution function used for the stochastic flexibil-

ty analysis is the so called Laplace PDF. 

This distribution satisfies, in a sense, the same requirements

eeded by the system description, that is: 

• The maximum probability is attained at the operating condi-

tions;
• the probability value is not dependent on the deviation direc-

tion.

The analytical expression of the single variable Laplace PDF

 Figure 29 ) states as: 

 (x ) = 

1

2 · b 
e −

| x −μ|
b (C.7)

here μ is the mean and b is the diversity local parameter. 

Even in this case we can standardize the distribution, i.e. re-

onduct to a 0 mean value and diversity parameter equal to 1 by

ean of the independent variable substitution: 

 = 

x − μ

σ
(C.8) 

btaining: 

 (z) = 

1 

2 

e −| z| (C.9) 

Moreover, keeping in mind that: 

 a | = 

√
a 2 (C.10) 



Fig. 29. 1 D Laplace DF and its CDF.

Fig. 30. 2 D Laplace DF.
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the trivariate Laplace PDF (for the bivariate cf. Fig. 30 ), for a

correlation between the variables ρ = 0 , states as: 

P (x ) = 

1 

8 π
e −

√ 

x 2 
1
+ x 2 

2
+ x 2

3 (C.11)
The Laplace distribution function converges more slowly than

he normal distribution, therefore we expect a lower flexibility in-

rease by increasing the sizing, i.e. the costs. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.compchemeng.2019.

2.004 . 
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