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A High Efficient Post-Processing Method for Computing Magnetic
Flux in Coils Considering Magnetic and Conductive Regions

Limin Huang, Gérard Meunier, Olivier Chadebec, Jean-Michel Guichon, Nicolas Galopin, and Brahim Ramdane
Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 38000 Grenoble, France

A high-efficiency post-processing method for computing the magnetic flux in coils is discussed and applied to magnetodynamic
problem analysis. The method separates the contribution of magnetic flux in a coil into three parts, respectively generated by source
coils, the magnetization of magnetic region and eddy currents in conductive region. The computation of the three components of
magnetic flux in coil can be transformed to coil-region-independent integrals, which can help to reduce the mesh size used around the
coil, thus increasing the computational efficiency. The method is well adapted to any numerical techniques, such as the finite element
and volume integral methods. A typical electromagnetic shielding problem is used to validate the performance of the post-processing
magnetic flux computational method at low frequency application.

Index Terms—Coil, electromagnetic shielding, magnetic flux, magnetodynamic, volume integral method (VIM).

I. INTRODUCTION

MAGNETIC flux in coils is an important quantity in the
analysis, design and optimization of electromagnetic

devices. The magnetic flux in a coil is generally calculated
in a post-processing step of a computational electromagnetic
problem, where the field distribution is firstly obtained by a
given numerical method, such as the finite element method
(FEM) or the volume integral method (VIM).

With integral formulation method, it is unnecessary to
discretize the inactive region. This approach is therefore
more suitable for the study of electromagnetic devices with
a predominant air region. Thanks to the matrix compression
algorithm development, solving electromagnetic problems by
integral equations is becoming more and more efficient, from
magnetostatic applications [1], [2] to magnetodynamic appli-
cations [3], [4] with both magnetic and conductive volume
regions, and also a coupling with external circuits.

After solving the problem and getting all the field quantities
on the mesh, it is necessary to put forward a high efficient
computational method for evaluating magnetic flux in coils in
the analysis of electromagnetic devices. In an electromagnetic
problem, as illustrated in Fig. 1, the magnetic flux flowing in
a coil can be divided into a summation of three terms: 1) one
is generated by the magnetic field of source coils; 2) one by
the magnetization field of magnetic region and 3) one by the
eddy current field of conductive region.

Based on the physical signification of the magnetic flux
in coils, these three terms are traditionally calculated by
integrating respectively the field quantities on the considered
coil region. However, due to the irregular distribution of the
fields around the considered coil, the coil mesh should be
very fine discretized to have a precise result of the flux
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Fig. 1. Illustration of a magnetodynamic problem regions.

computation. The increased element number will also increase
the computational complexity of the problem.

To avoid using too complex coil mesh, a coil-region-
independent method has been presented in [5]. This compu-
tational method allows obtaining the flux component through
a coil by integrating directly on the magnetic region rather
than the coil region. It has shown a good efficiency in the
study of inductive power transmission system for the mutual-
inductance calculation. However, this method can only deal
with the magnetostatic problems and has not been extended
yet to conductive region in magnetodynamic context.

Following the previous research, in this paper we propose
a new general approach to compute the magnetic flux in
coils under magnetodynamic context. The approach begins by
solving a magnetodynamic problem by an integral formulation,
then dividing the magnetic flux flowing in a coil into the
summation of three flux components, which can be calcu-
lated by simplified integrals. Finally, the proposed coil-region-
independent computational method is applied and verified in
an electromagnetic shielding application example.

II. INTEGRAL FORMULATION METHOD

A magnetodynamic problem can be described as a problem
with three typical regions: 1) the source coil region (noted
by Ω0), 2) the magnetic region (noted by Ωm) and 3) the
conductive electrical region (noted by Ωc). Starting from
Maxwell equations, the electric field E and the magnetic field
H can be expressed by the potential formulation, as E = −dA

dt
− gradV

H = T− gradϕ
(1)
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where T and A are the electric and magnetic vector potentials,
V and ϕ are the electric and magnetic scalar potentials.

A. Magnetodynamic Integral Equation

Displacement currents can be neglected when considering
the low frequency magnetodynamic problem and application.
According to the adequate gauges, all the four potentials can
be expressed from the integral formulation that are limited to
the regions Ω0, Ωm and Ωc, as

Ap =
µ0

4π

(∫
Ω0

J0q

r
dΩ +

∫
Ωm

Mq × r

r3
dΩ +

∫
Ωc

Jq

r
dΩ

)
dVp
dt

=
1

4πε0

∫
Ωc

Jq · r
r3

dΩ

Tp =
1

4π

(∫
Ω0

J0q × r

r3
dΩ +

∫
Ωc

Jq × r

r3
dΩ

)
Φp =

1

4π

∫
Ωm

Mq · r
r3

dΩ

(2)
The formulation allows computing exact solution of fields

E and H at any point p from the knowledge of a point q
(current densities J0 in the coil region, the magnetization field
M in magnetic region and J in conductive region). Because
M and J are also variables to be solved, constitutive laws
of materials should be added to obtain a complete solution.
In the magnetodynamic context, two constitutive laws which
link, respectively, the current density J to the electric field E
(in Ωc) and the magnetization M to the magnetic field H (in
Ωm) should be essentially considered as{

J = σE

M = χH = (υ0 − υ)B
(3)

B. Facet Interpolation

The magnetic region and the conductive region can be dis-
cretized with Whitney first-order facet finite element functions.
In this case, the interpolation of current and flux density are

J =
∑
j

wjIj

B =
∑
g

wgψg

(4)

where wj and wg are facet shape functions; Ij and ψg are
the current or flux across the facets. Facet interpolation is well
adapted to unknowns J and B since it imposes the continuity
of the flux into the finite element mesh [4].

Then, two Galerkin procedures can be then associated
respectively in the magnetic region Ωm and the conductive
region Ωc: 

∫
Ωc

wi

(
J

σ
−E

)
dΩ = 0∫

Ωm

wf

(
M

χ
−H

)
dΩ = 0

(5)

where the field distribution E and H are obtained thanks
to (1) and (2). By using facet interpolations, facet shape

functions are chosen for the Galerkin projection of J and B.
Furthermore, such a method can also lead to an equivalent
circuit representation which avoids the convexity problem and
strongly imposes the solenoidality of J and B [3].

C. Matrix System Computation

From relations (2) and the constitutive laws, the relation
between J, A, B and T can be expressed in terms of
currents Ij through the facets of the conductive region and
magnetic flux Ψj across the facets of magnetic region. After
the Galerkin procedures in the magnetic region Ωm and the
conductive region Ωc, a matrix system of equations, which
links the difference of averaged potentials between two adja-
cent elements (V and Φ) with the flux through facets (Ij and
Ψj) is obtained as[

[R] + d
dt [L]

d
dt [C]

[D] [E]

]{
I

Ψ

}
=

{
∆V

∆Φ

}
+

{
U

Q

}
(6)

where the coefficients of the matrix is defined as

Rij =

∫
Ωc

wi ·
wj

σ
dΩ Lij =

µ0

4π

∫
Ωc

wi ·
∫
Ωc

wj

r
dΩdΩ

Cig =
µ0

4π

∫
Ωc

wi ·
∫
Ωm

(ν0 − ν)
wg × r

r3
dΩdΩ

Dfi = − 1

4π

∫
Ωc

wf ·
∫
Ωm

wj × r

r3
dΩdΩ

Efg =

∫
Ωm

νwf ·wg dΩ

Ffg =
1

4π

∫
Γf

1

Sf
·
∫
Ωm

(ν − ν0)
wg · r
r3

dΩdΩ

(7)
and the terms U and Q in the second hand are the source
terms produced by all the active coils in the problem. Such
a matrix system can be easily calculated by magnetic vector
potential formulation that combines equivalent network based
on Whitney facet interpolation and Green’s function volume
integral method proposed in [4].

III. MAGNETIC FLUX COMPUTATION

Formulated by the magnetic vector potential A, the mag-
netic flux Φ through a considered coil k, with a region denoted
by Ω0k , can be expressed by an integral on the coil region:

Φk =

∫
Ω0k

j0k ·A dΩ (8)

where j0k is a vector function describing the normalized
current density of the considered coil region Ω0k . For a
magnetodynamic problem containing three typical domains:
1) source coil region Ω0k ; 2) non-conducting magnetic region
Ωm and 3) electrical conductive regions Ωc, as illustrated in
Fig. 1, the magnetic vector potential A can be separated in
three components, i.e. A = A0 +Am +Ac, where A0, Am

and Ac are generated respectively by the three aforementioned
regions. Therefore, the contribution of total magnetic flux Φk

through a coil k can be expressed by

Φk = Φ0k +Φmk
+Φck (9)
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where Φ0k is the contribution of all source coils in vacuum,
Φmk

is the contribution of the magnetization of magnetic re-
gion and Φck is the contribution of eddy currents in conductive
region.

A. Φ0k Computation

In a magnetodynamic problem with multiple coils, the
magnetic vector potential A0k through the coil k can be
computed by considering all the coils in vacuum, as

A0k =
µ0

4π

∑
l

(∫
Ω0l

j0l
r

dΩ

)
Il (10)

where each coil l is defined with a region Ω0l and carrying
a current Il. Thus, the first part of flux Φ0k , generated by all
coils is the problem, can be calculated by a double integral:

Φ0k =
µ0

4π

∫
Ω0k

j0k ·

(∑
l

Il

∫
Ω0l

j0l
r

dΩ

)
dΩ (11)

The double integration (11) can be computed by a semi-
analytical integration method. An analytical expression pro-
posed in [6] can be used to evaluate the first integral on
the source coil region Ω0l , and the quadratic Gauss points
integration can be used to compute the first integral on the
objective coil region Ω0k .

B. Φmk
Computation

Considering the magnetization effect in the magnetic region
Ωm, the magnetic vector potential Am can be computed as an
integral on Ωm. Similarly, the flux component Φmk

through
the coil k can be computed by a double integral:

Am =
µ0

4π

∫
Ωm

M×∇
(
1

r

)
dΩm

Φmk
=
µ0

4π

∫
Ω0k

j0k

[∫
Ωm

M×∇
(
1

r

)
dΩm

]
dΩ

(12)

Because the computation of the magnetic flux component
Φmk

is related to the considered coil region Ω0k , it should thus
be sufficiently meshed to have a precise result. A great number
of elements will increase dramatically the computation time,
it is relatively inefficient to solve directly the double integral,
especially dealing with the complex geometries.

A method which allows to obtain Φmk
by integrating

directly in the magnetic region Ωm has been presented in
[5]. This method begins with the usage of the partial integral
theorem to the equation (8), as

Φmk
=

∫
Ω0k

j0k ·Am dΩ =

∫
Ω

(∇× h0k) ·Am dΩ

=

∫
Ω

h0k · (∇×Am) dΩ

(13)

where h0k represents the normalized magnetic field generated
by the coil k with 1 A. Considering the relation ∇×Am =
µ0 (−∇φr +M), the equation (13) becomes

Φmk
= µ0

∫
Ω

h0k (−∇φr +M) dΩ (14)

where the integral
∫
Ω
h0k (∇φr) dΩ can be proved to be 0

by applying another time the partial integration theorem and
considering the boundary condition of infinity. Finally, the
magnetic flux component Φmk

generated by the magnetization
effect can be computed as

Φmk
= µ0

∫
Ωm

h0k ·M dΩ (15)

C. Φck Computation

Similarly, by considering the eddy currents effect in the
conductive region Ωc, the magnetic vector potential Ac can
be computed as an integral on Ωc and the flux component Φck

through the coil k can be computed as a double integral:
Ac =

µ0

4π

∫
Ωc

J

r
dΩc

Φck =
µ0

4π

∫
Ω0k

j0k

[∫
Ωc

J

r
dΩc

]
dΩ

(16)

In order to increase the computational efficiency by solving
directly the double integral in (16) for the flux component
Φck , here we propose a coil-region-independent method which
allows to simplify the double integral to a single integration
in the conductive region Ωc. The method begins by applying
the partial integral theorem:

Φck =

∫
Ω0k

j0k ·Ac dΩ =

∫
Ω

(∇× h0k) ·Ac dΩ

=

∫
Ω

∇ · (h0k ×Ac) dΩ−
∫
Ω

h0k · (∇×Ac) dΩ

(17)
where the term ∇ · (h0k ×Ac) = 0. The magnetic flux Φck

generated by eddy currents can be then computed by

Φck =

∫
Ω

h0k · (∇×Ac) dΩ (18)

In the integral (18), the terms h0k and ∇×Ac can be
substituted by: h0k =

1

µ0
(∇× a0k)

∇×Ac = µ0Hc

(19)

where Hc is the field produce by the eddy current. Then (18)
becomes

Φck =

∫
Ω

1

µ0
(∇× a0k) · (µ0Hc) dΩ (20)

By applying another time the partial integration theorem,
the equation (20) becomes

Φck =

∫
Ω

a0k · (∇×Hc) dΩ +

∫
Ω

∇ · (a0k ×Hc) dΩ (21)

According to the divergence theorem, the second term∫
Ω
∇ · (a0k ×Hc) dΩ becomes

∫
Γ
a0k ×Hc dΓ. Because of

the continuity, this term can be expended to the infinity
boundary Γ∞, where the field is null, and so the integral∫
Ω
∇ · (a0k ×Hc) dΩ = 0, thus

Φck =

∫
Ω

a0k · (∇×Hc) dΩ (22)
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Fig. 2. 3-D axisymmetric electromagnetic shielding application example. (a)
Geometry and (b) eddy currents density on the conductive region.

In the conductive region Ωc, the relation between Hc and
Jc can be written as

∇×Hc = Jc (23)

By substituting the relation (23) into (22), the integral of
computing the flux component Φck becomes finally an integral
on the conductive region Ωc:

Φck =

∫
Ω

a0k · (∇×Hc) dΩ =

∫
Ωc

a0k · Jc dΩ (24)

where a0k represents the normalized magnetic vector potential
generated by the coil k with 1 A, and Jc means the eddy
current density. The computation of the magnetic flux Φck ,
which is generated by eddy current is finally changed into
an integral which is related only to the domain of electrical
conductive region Ωc.

IV. APPLICATION EXAMPLE

The proposed coil-region-independent computational
method for magnetic flux is tested by a strong magnetic-
electric coupling problem, as illustrated in Fig. 2. The test
3-D problem is composed of:

1) solenoid coil (radius 6 mm, thickness 0.1 mm, height
10 mm, effective value of current: 1 Ampere, number of turns:
100);

2) linear magnetic core (average radius 4 mm, thickness
2 mm, height 10 mm, relative permeability 100);

3) thin surface copper layer (radius 5.5 mm, thickness
0.1 mm, height 10 mm, conductivity 55× 106 S/m).

After modeling the probem in 3-D context, the problem
is solved by the volume integral method (VIM) to obtain the
fields distribution. The flux is computed by summing the three
components at the post-processing step.

Thanks to the advantage of VIM and the proposed magnetic
flux computation method, only the active regions (magnetic
core structures and the surface copper layer) should be fine
considered and discretized. Only one tenth of the element
number in the active region can thus realize a precision of
0.5% in comparison with the FEM which should take account
of the predominant air region and the traditional magnetic flux
computational method where the coils should be fine meshed.

Figure 3 shows the variation of the flux in the coil versus
the frequency, with an axisymmetric finite element analysis
to the same problem in the software Flux as reference. The
comparison to the results with a finite element method shows
a difference less than 0.4% at any frequency.
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Fig. 3. Comparison between the proposed post-processing method results and
FEM simulation results of magnetic flux in the coil.

In this configuration, the thin surface copper layer is placed
between the coil and the magnetic core, to realize an elec-
tromagnetic shield. The computational results of the flux in
the coil versus the frequency shows that when the system
operation frequency increases, the eddy currents on the thin
surface copper begin to act as a shield and the magnetic flux
in coil decreases.

V. CONCLUSION

A coil-region-independent post-processing computational
method for the magnetic flux in coils under magnetodynamic
context is presented and applied to solve electromagnetic
shielding problem. The computational method begins by solv-
ing the magnetodynamic problem with integral formulation
method, which is unnecessary to consider the massive inactive
region and it can thus ignore the predominant air region.
Then, a high efficient computational method for magnetic flux
has been presented by using coil-region-independent integrals.
The decomposition of the magnetic flux in coils considering
both magnetic and conductive regions is well adapted to
the magnetodynamic problem. The method to compute the
magnetic flux in coil at post-processing step by three simple
integrals is general and it can be applied to any numerical
methods, such as FEM and VIM.
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