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Abstract—In digital age new approaches for effective and efficient governance strategies can be established by exploiting the vast
computing and data resources at our disposal. In several cases, the problem of efficient governance translates to finding a solution to
an optimization problem. A typical example is where several cases are framed in terms of clustering problem - Given a set of data
objects, partition them into clusters such that elements belonging to the same cluster are similar and elements belonging to different
clusters are dissimilar. For example, problems such as zonation, river linking, facility allocation and visualizing spatial data can all be
framed as clustering problems. However, all these problems come with an additional constraint that the clusters must be connected. In
this article, we propose a suitable solution to the clustering problem with a constraint that the clusters must be connected. This is
achieved by suitably modifying K-Means algorithm to include connectivity constraints. The modified algorithm involves repeated
application of watershed transform, and hence is referred to as iterated watersheds. This algorithm is analyzed in detail using toy
examples and the domain of image segmentation due to wide availability of labelled datasets. It has been shown that iterated
watersheds perform better than methods such as spectral clustering, isoperimetric partitioning, and K-Means on various measures. To
illustrate the applicability of iterated watersheds - a simple problem of placing emergency stations and suitable cost function is
considered. Using real world road networks of various cities, iterated watersheds is compared with K-Means and greedy K-center
methods. It has been shown that iterated watersheds result in very good improvements over these methods across various
experiments.

Index Terms—Graph Clustering, K-Means, E-governance, Watersheds,

F

1 INTRODUCTION

THE problem of clustering is - Given a set of objects,
partition the set into clusters, such that objects belong-

ing to each cluster are similar to each other while objects
belonging to different clusters are dissimilar to each other.
There exists several possible solutions to the clustering
problem (See [1], [2] for comprehensive list of methods). The
most commonly used method is that of K-Means [3]. This
operates by minimizing the within sum of dissimilarities.
Assuming that each object to be clustered is denoted by a
data point, let V = {x} denote a set of all data points. Also
assume that the dataset must be clustered into k clusters.
K-Means minimizes the following optimization problem.

minimize
∑
x∈V

d(x,M(x))

subject to |{M(x)|x ∈ V }| = k

(1)

where, M(x) ∈ {c1, c2, · · · , ck} denotes the center of the
cluster to which x belongs, |S| indicates the cardinality of
the set S and d(., .) denotes a dissimilarity measure. An
exact solution to the problem in (1) is NP-Hard, and K-
Means provides an algorithm to approximate the minima.

In several practical applications, a solution to the prob-
lem of clustering is required to have additional properties.
One such property is that of "connectivity". For example,
consider the problem of image segmentation, which is
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equivalent to the clustering problem. It is usually the case
that a cluster (object or a part of it) in an image is expected
to be "spatially connected". In Fig. 1(a), the object is a loop
at the center of the image. K-Means algorithm does not
necessarily preserve connectivity as shown in Fig. 1(b) . A
much better clustering in this case is presented in Fig.1(c).

In this article, we describe an algorithm similar to that of
K-Means, which preserves connectivity. To allow for math-
ematical formalization, a graph structure is assumed. That
is, we assume that apart from the set V , there exists a set
E ⊆ V ×V , which gives the adjacency relation between two
points. The elements of the set E are referred to as edges. A
subset S ⊂ V is said to be connected if, for any two points
x, y ∈ S, one can reach y from x with a series of edges.
The formal definitions are given in Section 2. Adapting the
optimization problem in (1) to include connectivity of the
resultant clusters, we have the optimization problem as in
(2).

minimize
∑
x∈V

d(x,M(x))

subject to |{M(x)|x ∈ V }| = k

{x|M(x) = ci} is connected for all i

(2)

The aim of this article is to propose an efficient algorithm
to approximate the minima of optimization problem (2),
and analyze it on several cases. Such an algorithm could
have several applications. Several problems related to e-
governance and e-administration can be phrased as the
optimization problem in (2). The following describes a few
such problems -
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(a) (b) (c)

Fig. 1. Example Illustrating that K-Means does not preserve connectivity.
(a) Example grey scale image. (b) Clusters obtained using K-Means
on the greyscale values of (a). (c) Clusters obtained using adapted K-
Means algorithm as proposed in this article. This figure is also shown in
[4].

• Zonation Problem: One of the most common prob-
lems faced during governance is that of splitting the
entire set into zones. For instance consider the rail-
way zonation problem, where stations are grouped
under various zones for easy administration. In sev-
eral of these problems, it is also the case that one
requires connectivity of the zones. This can be solved
using the optimization problem in (2). For the rail-
way zonation problem, each railway station can be
thought of a vertex and two adjacent stations are
connected by an edge. Then a solution to the opti-
mization problem in (2) gives a zonation in which
zones are connected.

• River Linking: Another problem of importance is
that of the river linking. Since the cost of linking
rivers is huge, one can use the optimization problem
(2) to identify which rivers to link to obtain the least
cost.

• Facility Allocation: One of the common problems
occurred is that facility allocation - Identify the cities
in which the facilities must be located to minimize
the costs of running the facilities. This problem is
NP-Hard. Optimization problem in (2) can be used
to find an approximate solution to this.

• Analysis of Geo-Spatial data: Apart from the above
problems, a solution to (2) can be used to visualize
geo spatial data as well. For instance, assume n
entities trading among each other. Taking the vertex
set to be the entities and edges among the entities if
the trade is non-negligible, the optimization problem
in (2) can be used to cluster the entities to visualize
closely knit blocs with high trade among themselves.

In this article, we describe an algorithm that imitates the
K-Means algorithm while preserving connectivity. In Sec-
tion 2, we review the relevant literature required for the rest
of the article. In Section 3, the proposed algorithm, which we
call iterated watersheds, is presented. We provide a detailed
analysis of the algorithm using various toy examples as well
as using the problem of image segmentation in Section 4 .
In Section 5, we then apply this algorithm to identify the
‘ideal’ locations for emergency facilities using road network
datasets taken from [5].

A related work to the one presented in this article is
given in [6] where the author used topographical distances
to classify the pixels of an image. The work presented here

can be seen as an generalization of [6] to general edge
weighted graphs with any type of monotonically increasing
distance functions, and with a much wider range of appli-
cations such as road networks.

2 REVIEW OF RELEVANT LITERATURE

The proposed algorithm in next section combines concepts
from K-Means as well as watersheds from Mathematical
Morphology (MM). Accordingly, we review the relevant
concepts in this section.

2.1 K-Means
K-Means is perhaps the most widely known classic algo-
rithm for clustering [3]. See [2] for more details. Firstly, pick
k random points as centers from V , k being the required
number of clusters. The algorithm consists of repeating the
following steps iteratively until convergence.
(a) Assign each of the points in V to one of the k centers

based on the measure d(., .). This gives a partition of V .
(b) For each of the classes in the partition obtained from

previous step, calculate the new center of this class.
Thus, we have k new centers. Go to (a) using the new k
centers.
There exists several explanations to explain why the

above algorithm works. One of the explanations involves
the expectation-maximization (EM) algorithm [7]. Step (a)
can be interpreted as - Given the centers, identify the
labelling which minimizes the cost in problem 1. This is
known as a maximization step. Step (b) involves identifying
the centers given the labelling of the points, also known
as expectation step. Thus, K-Means closely follows the EM
algorithm, and is identical to it if the data follows Gaussian
distribution. In the next section, this similarity is exploited
to propose an algorithm to get approximate optimum of
problem (2).
Remark: K-Means algorithm is also used in other clustering
methods as well. Spectral clustering uses K-Means as the
final step for labelling [8]. Spectral clustering has been
shown to be similar to Kernel K-Means (K-Means which uses
a kernel to calculate the distance) [9]. Thus, in this article
we compare our method with spectral clustering and classic
K-Means.

2.2 Watersheds and IFT
Assume that G = (V,E,W ) denotes an edge-weighted
graph, where V denotes the set of vertices, E ⊆ V × V ,
denotes the set of edges, and W : E → R+ denotes the
edge weight assigned to each edge. These edge weights
can be obtained as a restriction of the measure d(., .). Let
e = (e0, e1) denote an edge. Then,

W (〈e0, e1〉) = d(e0, e1) (3)

A path π = 〈x = x0, x1, x2, · · · , xn = y〉 between two
vertices x and y is a sequence of edges - (x0, x1), (x1, x2) · · · .
Two vertices x and y in V are said to be connected if there
exists a path between them. A subset of vertices, X ⊆ V , is
said to be connected if any two points in X are connected.
If the whole set of vertices, V , is connected, then the graph
is said to be connected.
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Watersheds are morphological transformations which can
be used to segment images [10]. It uses the principle of
steepest descent to assign each of the pixels to a unique
minima. This concept has been adapted to edge weighted
graphs in [11], [12], where quasi-linear algorithm was pro-
posed to calculate the watersheds.

Efficient algorithm for computing watersheds are pro-
posed in [13], called the Image Foresting Transform (IFT). In-
tuitively, the algorithm proceeds by computing the shortest
paths between two points in V . To measure the cost of
a path π, assume that there exists a function f , path-cost
function, which assigns a cost for each path π. Example of
such functions is the additive cost function

fsum(π.〈s, t〉) = fsum(π) +W (〈s, t〉) (4)

or the pass value function given by

fmax(π.〈s, t〉) = max {fmax(π),W (〈s, t〉)} (5)

Here π.〈s, t〉 indicates the concatenated path obtained by
adding the edge (s, t) to the path π.
Remark: For the IFT algorithm to return the shortest paths,
it is required that the path cost function f be monotonically
incremental (MI), that is (a) f(π.〈s, t〉) ≥ f(π) and (b)
f(π1) ≥ f(π2) if and only if f(π1.〈s, t〉) ≥ f(π2.〈s, t〉). The
path cost functions in (4) and (5) both satisfy this criterion.
Another possible path cost function is

fcomb(π) = (fmax(π), fsum(π)) (6)

where fcomb(π1) < fcomb(π2) if (i) fmax(π1) < fmax(π2) or
(ii) fmax(π1) = fmax(π2) and fsum(π1) < fsum(π2). This
is also known as dictionary ordering which can be useful in
certain situations as well.

In the rest of the article, additive cost function is used
unless mentioned otherwise. We review the IFT algorithm
below for completeness. This is later used to efficiently
partition the graph given the seeds.
Input: Edge weighted graph G = (V,E,W ), set of source

points S, and initial labels of the source points.
Output: Labelling of all the vertices in V, L.

1: For all vertices x ∈ V , initialize - (i) L(x) = Null if x is
not labelled else, L(x) is the label. (ii) Cost Map, C such
that C(x) = 0 for all x labelled and∞ otherwise.

2: Initialize a priority Queue Q and insert all x to Q for
which C(x) <∞.

3: while Q is not empty do
4: Pick the element with least cost from Q, say s0.
5: for each s1 ∼ s0 (adjacent to), and C(s1) > C(s0) do
6: Compute cost C′ of the path π(s0).〈s0, s1〉, where

π(s0) denotes the optimal path to s0.
7: if C′ < C(s1) then
8: Update C(s1), L(s1) and value of s1 in Q.
9: end if

10: end for
11: end while
12: return L

2.3 Calculating the center of the cluster

One of the steps in K-Means algorithm is to calculate the
center of the cluster (Expectation Step). There exists several
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Fig. 2. Example illustrating the boundary vertices. Vertices are shown
in grey. Edge weights are as given near the corresponding edge. The
bounding box indicates the connected subgraph. Vertices in blue-bold
correspond to the boundary vertices for this subgraph.

methods to calculate the center depending on the domain of
the data. A few are discussed here.

1) If the data belongs to a space where it is possible to
calculate averages, such as Euclidean space, then the
center can be obtained by taking the averages. How-
ever, this center usually would not belong to the data.
Hence, the closest point to the average of the data is
taken as the center.

2) If the domain to which data belongs does not have
any specific structure then the center of the connected
subgraph, C , can be defined as

x∗ = arg min
x∈C

max
y∈C

d(x, y) (7)

The classic method of calculating the center consists of
using the Floyd-Warshall algorithm [14]. Distances be-
tween every pair of vertices is first calculated, and this
is used to calculate the center. The cost of this operation
is O(|C|3). There also exists faster GPU versions of the
algorithm as well [15].

3) From above, instead of calculating distances between
every possible pair of vertices, the boundary vertices
can be identified, and only the distances between the
boundary points and the remaining points can be cal-
culated. This reduces the complexity significantly. We
say a vertex x, belonging to a subgraph C , is a boundary
vertex if it is adjacent to a vertex in V \C . An illustration
is given in Fig. 2.

3 ITERATED WATERSHEDS

Recall that the problem of clustering which preserves con-
nectivity is framed as the following optimization problem.
Assume that k clusters are required and the set E ⊆ V × V
is given according to which the connectivity is defined.

minimize
∑
x∈V

d(x,M(x))

subject to |{M(x)|x ∈ V }| = k

{x|M(x) = ci} is connected for all i

(8)
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where, M(x) ∈ {c1, c2, · · · , ck}. Here, one needs to find the
centers ci as well as the map M which assigns each vertex
in V to a center.

As a first step, we slightly modify the optimization
problem in (8), by defining dissimilarity measure dW (., .)
as

dW (x, y) = min
π∈Π(x,y)

f(π) (9)

where Π(x, y) denotes the set of all paths between x and y.
The optimization problem is then rephrased as,

minimize
∑
x∈V

dW (x,M(x))

subject to |{M(x)|x ∈ V }| = k

{x|M(x) = ci} is connected for all i

(10)

The following reasons justify this modification:
1) We say that dW is equivalent to d, if, given any two

pairs of points (x1, x2) and (y1, y2), we have

dW (x1, x2) ≤ dW (y1, y2)⇔ d(x1, x2) ≤ d(y1, y2)
(11)

In these cases, we have that solving optimization prob-
lem in (8) is equivalent to solving optimization problem
in (10). Thus, under a relatively minor condition, we
have that these optimizations problems are equivalent.
A straightforward instance of such an equivalence is
that when using a complete graph and dW = d.

2) In the most general case, it is seen that graphs con-
structed using the k-nearest neighbors reflects well the
structure of the data. For instance, this property is
exploited for dimensionality reduction in [16]. In such
cases, one can make an argument for solving optimiza-
tion problem in (10) is more suitable than solving the
optimization problem in (8).

We now describe the algorithm to optimize the problem
in (10) and calculate the clusters. We refer to this as the
Iterated Watersheds algorithm.
Input: Edge weighted graph G = (V,E,W ), number of

clusters k.
Output: Labelling L : V → {1, 2, · · · , k}

1: Pick k random vertices from V - {c1, c2, · · · , ck}.
2: Initialize Ci ← {ci} for all i.
3: while convergence is not reached do
4: Using IFT algorithm, assign each vertex x to its near-

est center ci (say). Ci ← Ci ∪ {x}.
5: Compute the centers of each Ci.
6: end while

Intuitively, each of the two steps of the iterated water-
sheds algorithm is similar to expectation and maximization
steps of the K-Means algorithm. Thus, the above algorithm
can also be considered a variant of K-Means which pre-
serves connectivity.

This algorithm has the following properties:
Property 1: At the end of each iteration, the clusters Ci are
connected.

This is due to the fact that IFT algorithm calculates the
distances via paths on the graphs, and hence each vertex is
connected to the center it is assigned to. It follows that, two
vertices assigned to the same center are hence connected.

Property 2: Given the centers {c1, c2, · · · , ck}, the IFT algo-
rithm minimizes the cost∑

x∈V
dW (x,M(x)), (12)

whereM(x) denotes the center to which x is assigned. This,
once again, follows from the property of the IFT algorithm
which assigns each vertex to its nearest center.

Relation with Kernel K-Means
A related technique to the algorithm above is the Kernel
K-Means [9], where instead of calculating the distances
d(a, b) as in K-Means, it uses a transformation φ to calcu-
late d(φ(a), φ(b)). Intuitively, Kernel K-Means distorts the
distances, which allows the method to identify non-convex
clusters. Iterated watersheds can also be intuitively seen as
distorting the distance measurements by considering dis-
tance along the edges. Hence, iterated watersheds is closely
related to kernel k means.

The main difference is, instead of using the transforma-
tion φ, the above method uses an edge weighted graph and
the shortest distance on it to calculate the distance. Thus,
iterated watersheds calculate the distances without using
explicit kernels.

In [9], the authors mention that the kernel K-Means
algorithm is similar to the spectral clustering [8], and by ex-
tension it can be seen that iterated watersheds are similar to
spectral clustering as well. Thus, in this article we compare
the results with spectral clustering techniques, along with
related isoperimetric partitioning and K-Means technique.

The main advantages of iterated watersheds over spec-
tral clustering is that - solving for eigenvectors can be
numerically unstable in several cases. This does not matter
for iterated watersheds.

4 ANALYSIS AND ILLUSTRATIONS

In this section we analyze and illustrate the behavior of the
algorithm using a few experiments.
Implementation Notes:

(i) The iterated watersheds algorithm is compared mainly
with spectral clustering algorithm, since both can be
identified as adaptation of K-Means.

(ii) As with K-Means, iterated watersheds must also be
repeated with several different initializations to make
sure that all objects are identified. Each result of the
iterated watersheds presented here is taken from the
best of 10 repetitions.

(iii) Since, several experiments are based on data in Eu-
clidean space, the nearest vertex to the average is taken
to be the new center.

4.1 Time Complexity of Iterated Watersheds
Assuming that the number of clusters required is much
lesser than the data size, k << n, step (4) of the algorithm
takes linear time to label all the vertices. Time complexity of
step (5) of the algorithm depends on the method of finding
the centers. Using the nearest vertex to the average, step (5)
takes linear time as well. This is verified empirically in Fig.
3.
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(a)

Fig. 3. Example illustrating the time complexity. It can be seen that the
iterated watersheds scales linearly with size. The dataset considered is
“make_blobs” in sklearn [17] with number of centers = 2 and stdev =
1.25.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Example to illustrate the working of iterated watersheds. (a) - (d)
uses the make blobs dataset [17]. (a) shows the original data/classes.
(b) indicates the result obtained using K-Means. (c) shows the result
obtained using iterated watersheds on the complete graph. (d) shows
the result obtained using iterated watersheds with a constrained con-
nectivity. (e) - (h) uses the make circles dataset [18]. (e) shows the
original data/classes. (f) indicates the result obtained using K-Means.
(g) shows the result obtained using iterated watersheds on the complete
graph. (h) shows the result obtained using iterated watersheds with
a constrained connectivity. Note 1: The results of iterated watersheds
using complete graph and K-Means match. Note 2: When the con-
nectivity is constrained, iterated watersheds obtained clusters closer to
groundtruth.

In case of step (5), if the algorithm uses Floyd-Warshall to
compute the center, then the time complexity increases ex-
ponentially. Using only the distances from boundary points,
reduces the complexity depending on the data structure. In
one extreme case of complete graph, this is equivalent to
Floyd-Warshall, while for images/spatial data this would
take only linear time.

4.2 Comparison with K-Means

Recall that the motivation of iterated watersheds was by
taking the K-Means cost function and adding an additional
constraint of connectivity to the problem. Thus, when con-
sidering a complete graph, one has that all vertices are
adjacent to each other. Hence, in this case the results from
K-Means and iterated watersheds algorithm should match.
This is verified in Fig. 4.

When the connectivity is constrained, that is not all
edges are considered, iterated watersheds is expected to per-
form on par with K-Means. This is reflected in comparison
of the results in Fig. 4(f) and Fig. 4(h).

TABLE 1
Evaluation on Weizman datasets. The number of clusters is taken to be
2 for Weizman 1-Object dataset and 3 for Weizman 2-Object dataset.
Gaussian similarity with parameter β varied over {1., 2., 3., 5.} is used

for Spectral Clustering and Isoperimetric partitioning, and the best
results are taken.

Method AMI ARI F CA

1-
O

bj
ec

t

Iterated
Watersheds 0.2467 0.3126 0.7880 0.8329

Spectral
Clustering 0.1674 0.1568 0.6889 0.8697

Isoperimetric
Partitioning 0.0712 0.0600 0.7772 0.7666

K-Means 0.1811 0.2043 0.6684 0.8143

2-
O

bj
ec

t

Iterated
Watersheds 0.3675 0.3742 0.7478 0.8964

Spectral
Clustering 0.2716 0.2636 0.7576 0.8963

K-Means 0.2390 0.2099 0.5876 0.8873

4.3 Analysis using Image Segmentation

In this section, the proposed iterated watersheds is com-
pared with other clustering methods on the problem of
image segmentation. The results in this section are only
used for better understanding of the performance and not to
portray state-of-art results. In the next section, we shall see
the main application of the proposed algorithm. The code to
generate the results in this section and the next can be found
at [19].

The problem of image segmentation is defined as -
Given an image I , identify the subset of pixels assigned
to the objects within the image. An edge weighted graph
is constructed from the image as follows - each pixel is
assigned a vertex, adjacent pixels are connected giving a
4-adjacency graph, and the weights are taken to difference
in RGB values.The domain of image segmentation is useful
for analysis of clustering methods, since several labelled
datasets are available. Thus, image segmentation datsets -
Weizman 1-Object and 2-Object datasets [20] are used for
analysis.

To evaluate the iterated watersheds the following meth-
ods are used for comparison - (i) Spectral clustering is
considered since both iterated watersheds and spectral clus-
tering can be interepreted as kernel K-Means as discussed
in Section 2. (ii) Since, iterated watersheds are developed
by adapting K-Means, simple K-Means is also used for
comparison. (iii) Isoperimetric parititioning [21], a method
related to spectral clustering is also considered. However
since isoperimetric partitioning partitions the image into
two segments, only results on Weizman 1-Object results are
considered. .

Four evaluation metrics are considered - (i) Adjusted
Mutual Information (AMI) [22] which calculates the mutual
information adjusted for chance. (ii) Adjusted Rand Index
(ARI) [23] computes rand index adjusted to chance. (iii) F-
Score (Fr in [24]) computes the harmonic mean of precision
and recall. Precision denotes the ratio to the number of
pairs of pixels which have been predicted to have the same
label indeed does in the groundtruth and recall denotes
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5. Sample illustrative results on Weizman 1-Object Dataset. (a),(e),(i),(m) - Original Images. (b),(f),(j),(n) - Groundtruth images. (c),(g),(k),(o) -
Segments obtained by iterative watersheds. (d),(h),(i),(p) - Segments obtained using spectral clustering.

(a) (b) (c) (d)

Fig. 6. Sample illustrative results on hyperspectral data. (a) Slice of the Pavia University hyperspectral image. (b) Predicted cluster of (a) using
iterated watersheds. (c) Slice of the Salinas hyperspectral data. (d) Predicted clusters of (c) using iterated watersheds.
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(a)

(b) (c)

(d)

Fig. 7. Results on Mumbai Road Network Dataset. (a) Shows the complete road network in Mumbai. (b) Clustering obtained by the iterated
watersheds algorithm considering the number of clusters as 16. (c) The centers of each of the clusters in (b) shown as blue dots. (d) The final cost
after converging for varying number of clusters.
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TABLE 2
Comparison of Iterated Watersheds with K-Means and Greedy K Centers on road network datasets.

City Number
Centers

Iterated
Watersheds

K Means K Centers

Cost % Im-
provement Cost % Im-

provement

M
um

ba
i

3 72065.43 78660.29 8.38 105022.57 31.38

6 45424.89 64684.32 29.77 100682.75 54.88

9 34447.86 52245.34 34.07 73536.33 53.16

12 30329.42 42162.63 28.07 62578.70 51.53

15 28107.24 32336.66 13.08 58229.78 51.73

H
yd

er
ab

ad

3 68570.63 109640.46 37.46 107685.94 36.32

6 53022.46 62337.99 14.94 107112.82 50.50

9 45730.64 47932.50 4.59 112123.11 59.21

12 40298.87 47502.13 15.16 105458.64 61.79

15 35929.86 42816.08 16.08 102670.83 65.00

C
he

nn
ai

3 48618.69 144552.29 66.37 101894.35 52.29

6 34292.08 39070.15 12.23 100403.69 65.85

9 29105.73 34281.59 15.10 103995.35 72.01

12 25520.35 30471.39 16.25 55257.34 53.82

15 23736.54 26208.00 9.43 54228.99 56.23

Be
ng

al
ur

u

3 119816.38 219508.02 45.42 142934.18 16.17

6 88490.71 100132.84 11.63 135937.67 34.90

9 71256.02 77997.34 8.64 133889.24 46.78

12 62615.27 74549.43 16.01 127551.37 50.91

15 54755.50 63490.12 13.76 122551.30 55.32

C
al

cu
tt

a

3 21292.91 22532.27 5.50 40004.75 46.77

6 15060.60 15752.89 4.39 39098.16 61.48

9 12481.05 14292.80 12.68 37887.34 67.06

12 11033.54 12306.89 10.35 37938.90 70.92

15 10054.31 10709.78 6.12 32125.65 68.70

D
el

hi

3 58807.18 66272.17 11.26 100154.08 41.28

6 41037.44 47832.93 14.21 101074.01 59.40

9 33267.61 39463.66 15.70 64516.95 48.44

12 28281.70 33253.71 14.95 58961.44 52.03

15 25635.58 31785.57 19.35 51452.49 50.18

the number of pairs of pixels which have the same label
in the groundtruth has the same label in the prediction
as well. See [24] for more details. (iv) Clustering Accuracy
[25] is computed by assigning each cluster obtained the
class label with largest intersection. These results are shown
in Table 1. Observe that iterated watersheds perform as
well as other methods across several measures. Also K-
Means and spectral clustering do not ensure connectivity
of the components (as can be seen Fig. 5(p)), while iterated
watersheds ensure that the components are connected.

Recall that time complexity of spectral clustering is ap-
proximatelyO(n3/2) [26]. However, the algorithm described
here can be achieved in linear time. In summary, compared
to spectral clustering, we have that iterated watersheds
provides equivalent or better results with smaller time com-
plexity.

For completeness, results on some slices on hyperspec-

tral data is shown in Fig. 6. Observe that, while the al-
gorithm can predict the high level structure, it could not
identify small structures in the data.

5 ANALYSIS OF ROAD NETWORK

As an application of the proposed algorithm, we consider
the following problem - Given the road network, identify
the ‘ideal’ points to establish emergency stations. The main
responsibility of an emergency station is to reach the point of
incident as fast as possible. An ideal solution to the problem
would have the following properties -

1) The distance from the point of incident to the emer-
gency station must be as small as possible to allow for
quick reaction time.

2) The number of emergency stations must be as small as
possible to reduce the cost of establishment.
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To obtain a solution, we start with constructing an edge
weighted graph from the data, G = (V,E,W ). The set of
vertices V indicates the reference points in the city under
consideration. These reference points are used to calculate
the distance, and response time. Also, we assume that a
location of the emergency station would belong to this set.
In this case, we have considered the vertices to be all the
junction points in the graph. An alternate is to consider
points within, say 1 kilometer, of each other. However, the
approach remains the same.

The edge set E consists of tuples (x, y) such that x
and y are connected by a road and there exists no other
vertex between them. The edge weights W are taken to be
distances between the end points. In case, information is
available, one can consider the time taken to travel from
one to another as well.

Using the construction as above, observe that the prob-
lem can be restated as finding a set of points {c1, c2, · · · , ck},
such that ∑

x∈V
d(x,M(x)) (13)

where M(x) denotes the nearest emergency station to x,
d(., .) denotes the road distance. Observe that M(x) belongs
to {c1, c2, · · · , ck}. Also, the set {x | M(x) = ci} is con-
nected for all i. Thus, this is equivalent to optimization prob-
lem in (10). And hence, iterated watersheds are applicable
here. To identify the ideal number of stations, the number is
increased and the final cost is observed. The ideal number of
stations is at the point where the reduction in cost does not
justify the cost of establishing another emergency station.

Here we consider road networks of several cities taken
from [5]. Figure 7(a) represents the road network of Mum-
bai. Figure 7(b) shows a clustering obtained, when the
number of clusters is taken as 16. Figure 7(c) shows the
corresponding centers for the best result obtained. The cost
reduction with increase in number of emergency stations is
plotted in Fig. 7(d).

To illustrate the performance of iterated watersheds, we
consider two other approaches to solve this problem -

• K-Means is used to cluster the given dataset to
obtain the centers - the proposed spots for emergency
stations. Each of the other points is assigned to its
nearest emergency station, and the cost is taken as a
sum of all these distances.

• Note that the problem proposed here is equivalent to
the K-center problem which is NP-Hard. Greedy K-
Center is an approach which greedily picks the cen-
ters farthest from the already selected set of centers.
See [27] for detailed analysis.

Table 2 shows the cost given by (13) obtained by various
methods. Also, shown are the percentage improvement of it-
erated watersheds over these methods. It is easy to conclude
that iterated watersheds produce a good approximate solu-
tion. This is intuitively justified, since iterated watersheds
exploit the graph structure.

6 CONCLUSION AND FUTURE WORK

Several problems for efficient governance - zonation, river
linking, facility location, visualization of GIS data, can be

formulated as a clustering problem with an additional con-
straint that the clusters be connected. In this article, we
propose a novel method to obtain these clusters, referred to
as Iterated Watersheds. It is shown that iterated watersheds
extend the classical K-Means by considering the additional
constraint of connectivity which is common in several real
life problems. This has been empirically verified as well
by using results on complete graph, in which case iterated
watersheds match with K-Means.

To analyze the proposed clustering algorithm, we con-
sider the image segmentation problem since numerous la-
belled datasets are available. Iterated watershed is com-
pared with spectral clustering, isoperimetric partitioning
and K-Means on Weizman 1-Object and 2-Object datasets.
It is shown that iterated watersheds outperform these tech-
niques on a few measures and fare comparably good on
others.

However, as the main application area of the proposed
algorithm is for clustering problems occurring in gover-
nance, we consider the road network dataset. A simple
problem of placing emergency stations and suitable cost
function is considered. Using real world road networks of
various cities, iterated watersheds approach is compared
with K-Means and greedy K-center methods. It has been
shown that iterated watersheds result in very good im-
provements over these methods across various experiments.
This illustrates that the proposed algorithm can efficiently
cluster with constrained connectivity. This experiment also
illustrates that the proposed algorithm can be widely used,
thanks to its customizability.

In future we expect the current algorithm to be used
on other datasets as well. For instance, one of the main
problems of governance is understanding the root cause
behind certain behavior. It is vital in such cases to visualize
spatially distributed variables. Iterated watersheds can be
used to cluster the space into significant ‘zones’ based on
these variables and help in better visualization. Such appli-
cations constitute the future work. On the theoretical side,
we hope to improve the algorithm for finding the center of
the connected subgraph. The code is available at [19].
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