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A Topological Proof of a Theorem on 2-Nilpotence of Groups

We present a new proof of the following known theorem: if a finite group G has a cyclic Sylow 2-subgroup, then G is 2-nilpotent. The appeal of the new proof is in the fact that it is very easy due to a topological construction.

Introduction

It is a celebrated fact that some theorems of group theory are most easily proved through topological constructions. Schreier's theorem is a famous example of this [1, p. 29]. In this paper, we give a topological proof of a special case of the following theorem on p-nilpotence of groups.

Theorem 1 (Thevenaz [START_REF] Thevenaz | Most groups are p-nilpotent[END_REF]). Let G be a finite group and let P be a Sylow p-subgroup of G. Suppose P satisfies the following two conditions:

(1) Aut(P ) is a p-group.

(2) P has a central series 1 = P 0 ⊂ P 1 ⊂ . . . ⊂ P k = P such that for each i = 0, . . . , k, the only subgroup of P isomorphic to P i is P i itself.

Then, G is p-nilpotent.

We prove the following special case of Thevenaz's theorem in this paper.

Theorem 2 (Main Theorem). Let G be a finite group and let S be a Sylow

2-subgroup of G. If S is cyclic, then G is 2-nilpotent.
We would like to emphasize that our proof is worthwhile even though we only prove a special case, because the proof is very simple. In comparison, Thevenaz used the machinery of fusion systems theory in his proof [START_REF] Thevenaz | Most groups are p-nilpotent[END_REF].

In section 2, we describe a topological construction associated to a triple (G, x, y) where G is a finite group and x, y are elements of G. We then prove a lemma about groups (see Lemma 2) by means of this construction. In section 3, we prove the main theorem of the paper using this lemma. We finish the paper with some further discussion on the meaning of Theorem 1 (section 4.1) and on an interesting corollary of Theorem 2 (section 4.2).

2 The Topological Construction

In this section, we describe a way in which we associate to each triple (G, x, y) consisting of a finite group G and two elements x, y ∈ G a ramified covering of closed surfaces. Let B denote the standard sphere (the unit sphere in R 3 ) and let p i denote the tip of the unit vector êi for i = 1, 2, 3. Clearly, p 1 , p 2 , p 3 are points on B. We associate to each triple (G, x, y) a ramified covering map from a closed orientable surface X to B in which all of the ramification points lie in the fibers of p 1 , p 2 , p 3 . Before making the description of this association more precise, we fix some notation.

Note that the fundamental group of B \ {p 1 , p 2 , p 3 } is isomorphic to the free group on 2 generators. We would like to fix an identification between these groups. We consider the fundamental group with respect to the basepoint b ∈ B which is the tip of the unit vector -ê 3 . We denote the free group on two generators by F 2 and we fix a pair (t 1 , t 2 ) of generators. Note that π 1 (B \ {p 1 , p 2 , p 3 }, b) is generated by the classes of the following two loops: two small positively oriented circles around p 1 and p 2 joined to b along the shortest arcs. Hence, we fix an identification π

1 (B \{p 1 , p 2 , p 3 }, b) = F 2 such that the class of the loop around p i is identified with t i for i = 1, 2.
Let G be a finite group and let x, y ∈ G. We consider the underlying set of G as an F 2 -set by the following right action: For any g ∈ G, one has

g t 1 = g • x and g t 2 = g • y. Since π 1 (B \ {p 1 , p 2 , p 3 }, b) = F 2 ,
any finite right F 2 -set determines a closed orientable surface X and a ramified covering map from X to B in which all of the ramification points lie in the fibers of p 1 , p 2 , p 3 . We associate this ramified covering map to the triple (G, x, y).

Lemma 1. Let G be a finite group, let x, y be elements of G and let X → B be the ramified covering map associated to the triple (G, x, y). Then, the Euler characteristic of X is equal to

|G| ord(x) + |G| ord(y) + |G| ord(xy) -|G|.
Proof. First, the degree of the map X → B is clearly |G|. It is also easy to see that the points in the fiber of p i are in correspondence with the t i -orbits in G for i = 1, 2 while the points in the fiber of p 3 are in correspondence with the (t 1 • t 2 )-orbits. Therefore, the number of points in the fiber of p 1 is |G| ord(x) , the number of points in the fiber of p 2 is |G| ord(y) and the number of points in the fiber of p 3 is |G| ord(xy) . Hence, the Euler characteristic of X is given as follows by the Riemann-Hurwitz formula:

χ(X) = |G| • χ(B) -|G| - |G| ord(x) -|G| - |G| ord(y) -|G| - |G| ord(xy) = 2 • |G| -3 • |G| + |G| ord(x) + |G| ord(y) + |G| ord(xy) = |G| ord(x) + |G| ord(y) + |G| ord(xy) -|G|
We finish the section with a lemma of pure group theory.

Lemma 2. Let G be a finite group and let x, y ∈ G. Then

|G| ord(x) + |G| ord(y) + |G| ord(xy) -|G| ≡ 0 (mod 2).
Proof. Let X → B be the ramified covering map associated to the triple (G, x, y). Then, the left hand side is equal to the Euler characteristic of X by Lemma 1. But X is closed and orientable, hence its Euler characteristic is even.

The Proof of the Main Theorem

This section contains the proof of the main theorem. The steps of the proof are presented as lemmas.

Lemma 3. Let G be a finite group such that |G| is even. Consider the settheoretic function ψ : G → {0, 1} = Z 2 defined by ψ(x) ≡ |G| ord(x) (mod 2) for each x ∈ G. Then, ψ is a group homomorphism.

Proof. Clearly, ψ(x) + ψ(y) -ψ(xy) ≡ |G| ord(x) + |G| ord(y) + |G| ord(xy) -|G| (mod 2). Hence, Lemma 2 implies that ψ(x) + ψ(y) ≡ ψ(xy) (mod 2). In other words,

ψ(x) + ψ(y) = ψ(xy) ∈ Z 2 .
Lemma 4. Let G be a finite group such that |G| is even and let S be a Sylow 2-subgroup of G. Suppose S is cyclic. Then, G has a characteristic subgroup of index 2.

Proof. Let ψ denote the homomorphism ψ : G → Z 2 defined in Lemma 3 and let s be a generator of S. Then, ψ(s) ≡ |G| ord(s) = |G| |S| ≡ 1 (mod 2). Therefore, ψ is an epimorphism. Hence, the kernel of ψ is the desired characteristic subgroup of index 2.

We finish the section with the proof the Theorem 2 (the main theorem).

Proof. Let k be such that |S| = 2 k . We proceed by induction on k. If k = 0, there is nothing to prove, hence we assume k > 0.

By Lemma 4, G has a characteristic subgroup G 0 with |G : G 0 | = 2. Let S 0 denote the intersection S ∩ G 0 . The following are clear: S 0 is a Sylow 2subgroup of G 0 , |S 0 | = 2 k-1 and S 0 is cyclic. Therefore, G 0 is 2-nilpotent, by the induction hypothesis. Hence, let N denote the unique normal subgroup of G 0 for which

|G 0 : N | = 2 k-1 . Then, N is a characteristic subgroup of G, because N is characteristic in G 0 and G 0 is characteristic in G. Clearly, |G : N | = |G : G 0 | • |G 0 : N | = 2 k , therefore G is 2-nilpotent.
4 Further Discussion

Thevenaz's Theorem in Context

Thevenaz's theorem (Theorem 1) concludes the p-nilpotence of a finite group starting with a condition on its Sylow p-subgroup. Therefore, it is interesting to ask what condition on a p-group P is necessary and sufficient for one to conclude the following:

Any finite group G with Sylow p-subgroup isomorphic to P is p-nilpotent. (*) Thevenaz's theorem asserts that a pair of conditions is sufficient for concluding (*) and the following well-known theorem asserts that condition (1) (see Theorem 1) is, in fact, necessary.

Theorem 3. Let P be a p-group. Suppose Aut(P ) is not a p-group. Then there exists a finite group G with a Sylow p-subgroup isomorphic to P such that G is not p-nilpotent.

We provide a proof of this theorem for the lack of a reference.

Proof. Let H be a non-trivial subgroup of Aut(P ) for which p |H|. Let G be the semidirect product P H. Clearly, P is a Sylow p-subgroup of G. But G is not p-nilpotent because of the following: H is a subgroup of Aut G (P ), hence Aut G (P ) is not a p-group. This implies, in particular, that Aut G (P ) = Aut P (P ).

Therefore, Theorem 1 together with Theorem 3 forms a partial answer to the question of determining a necessary and sufficient condition on a p-group P for one to conclude (*). For a complete answer, one has to understand whether condition (2) of Theorem 1 is necessary or unnecessary. To the best of our knowledge, this question has not received a complete answer yet.

We finish the section with a short explanation of why the main theorem of this paper (Theorem 2) is a special case of Thevenaz's theorem (Theorem 1). Let S be a cyclic 2-group. Then, | Aut(S)| = |S| 2 , thus Aut(S) is a 2group. Moreover, the central series 1 = S 0 ⊂ S 1 = S obviously satisfies the condition (2) of Theorem 1. Therefore, Thevenaz's theorem applies to the hypothesis of Theorem 2.

A Corollary of the Main Theorem

As the main theorem (Theorem 2) of this paper was known, some corollaries and applications of it were also known. In this section, we mention a corollary and an example which we find interesting. We justify the stated facts instead of referring to another source.

Corollary 1. Let G be a finite group and let S be a Sylow 2-subgroup of G. If S is cyclic, G is solvable.

Proof. The Feit-Thompson Theorem states that any group of odd order is solvable. Hence, it implies that any 2-nilpotent group is solvable. But G is 2-nilpotent by Theorem 2.

Example. Let G be a finite group such that |G| ≡ 0 (mod 4). Then, G is solvable.

Proof. Let S be a Sylow 2-subgroup of G. Then, |S| = 1 or |S| = 2, hence S is cyclic. We conclude by Corollary 1.