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H®° interpolation and embedding theorems
for rational functions

Anton Baranov and Rachid Zarouf

Abstract. We consider a Nevanlinna—Pick interpolation problem on fi-
nite sequences of the unit disc D constrained by Hardy and radial-
weighted Bergman norms. We find sharp asymptotics on the correspond-
ing interpolation constants. As another application of our techniques we
prove embedding theorems for rational functions. We find that the em-
bedding of H* into Hardy or radial-weighted Bergman spaces in D is
invertible on the subset of rational functions of a given degree n whose
poles are separated from the unit circle and obtain asymptotically sharp
estimates of the corresponding embedding constants.

Mathematics Subject Classification (2010). Primary 15A60, 32A36,
26A33; Secondary 30D55, 26C15, 41A10.

Keywords. H interpolation, Blaschke product, Model space, Rational
function, Hardy spaces, Weighted Bergman spaces.

1. Introduction

We denote by D = {2z € C : |z| < 1} the unit disc and by Hol (D) the
space of holomorphic functions in D. We consider the following Banach spaces
X C Hol (D):
1. the Hardy spaces X = HP = HP(D), 1 < p < oo; we refer to [7] for the
corresponding definition and their general properties;
2. the radial-weighted Bergman spaces X = AP((1 — |z|2)ﬁd./4) = AP (8),
1<p<oo, f>—-1

X ={f €HoD) : || fIVyus = / FEP (1= 2P dA(z) < oo},

where A is the normalized area measure on D. We refer to [12] for general
properties of AP (). For 8 = 0 we shorten the notation to X = AP.

The work is supported by Russian Science Foundation grant 14-41-00010.
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1.1. Effective H° interpolation
We consider the following problem: given a Banach space X C Hol (D) and
a finite sequence o in D, what is the best possible interpolation of the traces
flos [ € X, by functions from the space H*? The case X C H* is of no in-
terest (such a situation implies the uniform boundedness of the interpolation
quantity ¢(o, X, H*) below), and so one can suppose that either H>* C X
or X and H* are incomparable. More precisely, our problem is to compute
or estimate the following interpolation quantity
clo, X, H®) = sup inf{HgHoo: ge H™, g|[,:f|[,}.
fex, lIfllx<1

It is discussed in [26] that the classical interpolation problems, those
of Nevanlinna—Pick and Carathéodory—Schur (see [16, p. 231]) on one hand
and Carleson’s free interpolation (see [17, p. 158]) on the other hand, are of
this nature. For general Banach spaces X containing H> as a dense subset,
¢ (o, X, H*) is expressed as

c(o, X, H*) = sup ”f”HOO/BgHOOa
fexnme=, | fllx<1

where B, is the finite Blaschke product

A—2z
B, = by, by = —,
)\1;!’_)\ A 1—- Xz

by being the elementary Blaschke factor associated to a A € D. We denote by
On,x = (A, ...; A) € D™ the one-point sequence of multiplicity n corresponding
to a given A € D.

It is a natural problem (related, e.g., to matrix analysis) to study the as-
ymptotic behaviour of ¢ (o, X, H*) when the set o approaches the boundary
and its cardinality tends to infinity. We put

Ch,r(X, H®) =sup {c(0, X, H®): 0 € D", I)I\laX|)\| <r}.
co

Initially motivated by a question posed in an applied context in [4, 5], asymp-
totically sharp estimates of C,, (X, H>) were derived in [26] for the cases
X = HP, p € 2N, and X = A%

Theorem 1.1. [26] Given n > 1, r € [0, 1), p € 2N and X € D with [N\ < r,
we have
1

n \7 n \7
I < n ;HpaHoo S n,r Hp; HOO S )
(1.1)

o < (ona, A2, H®) < Cp (A2 H) < b-——  (1.2)
1=\ ' ’ 1—r

where ap, b, are constants depending only on p and a,b are some absolute

constants.

a -
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Remark 1.2. The right-hand side inequality in (1.1) is established in [26] for
any p € [1, 00). The proof makes use of a deep interpolation result between
Hardy spaces by P. Jones [13], which we avoid in the present paper.

From now on, for two positive functions a and b, we say that a is dom-
inated by b, denoted by a < b, if there is a constant ¢ > 0 such that a < cb;
and we say that a and b are comparable, denoted by a < b, if both a < b and
b < a.

The following conjecture for general Banach spaces X (of analytic func-
tions of moderate growth in D) was formulated in [26]:

Cru v (X, H®) = px (1— 1;7“), (1.3)

where @x(t) stands for the norm of the evaluation functional f — f(t)
on the space X. One of the main results of [25] verifies the conjecture
(1.3) for the case X = A?(f), B € Z,. More recently an upper bound on
c(on, x, AP(B), H>®) with 1 <p <2, and § > —1 was derived in [27].

In this paper we

1. strengthen (1.1) by proving the left-hand side inequality for any p €
[1,400) and by providing a simple and direct proof of the right-hand
side one;

2. prove conjecture (1.3) for all radial-weighted Bergman spaces X =
AP(8) (see Theorem 2.1 below);

3. apply Theorem 2.1 to spectral estimates on norms of functions of matri-
ces (see Subsection 1.2 for details and Corollary 2.2 for the correspond-
ing statement);

4. show that the embedding of H*> into AP(f3) is invertible on the subset
of rational functions of a given degree n whose poles are separated from
the unit circle and obtain an asymptotically sharp estimate for the em-
bedding constant (see Subsection 1.3 for details and Theorem 2.3 for
the corresponding statement).

1.2. Motivations from matrix analysis

Let M,, be the set of complex n x n matrices and let ||T'|| denote the operator
norm of T" € M,, associated with the Hilbert norm on C". We denote by
o = o(T) the spectrum of T, by mr its minimal polynomial, and by |mr|
the degree of mp. In our discussion we will assume that ||7]| < 1 and call
such T a contraction. Let C,, C M,, denote the set of all contractions. For a
finite sequence ¢ in D, we denote by P, the monic polynomial with zero set
o (counted with multiplicities). For a finite sequence o in D and f € Hol(D),
V. Ptédk and N. Young [19] introduced the quantity

M(f, o) =suwp{||f(D)|| : T € Cp, mp = P,}.

Note that interesting cases occur for f such that:
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1. fls = 2¥|, (estimates on the norm of the powers of an n X n matrix, see
for example [18]);

2. flo = 27Y, (estimates on condition numbers and the norm of inverses
of n x n matrices, see [15]);

3. flo = (¢ — 2)7 Y, (estimates on the norm of the resolvent of an n x n
matrix, see for example [15, 21]).

Given a Blaschke sequence o in D and f € H®® it is possible to evaluate
M(f, o) as follows:

M(f, o) = f /B, u= = |1 (Ms,)ll, (1.4)

where Mp_ is the compression of the multiplication operation by z to the
model space Kp_, see Subsection 3.1 for the definitions. This formula is
due to N. K. Nikolski [15, Theorem 3.4] while the last equality is a well-
known corollary of Commutant Lifting Theorem of B. Sz.-Nagy and C. Foiag
14, 11, 20).

Let X C Hol(D) be a Banach space containing H>°. The above equality
on M(f, o) naturally extends to any f € X as follows. There exists an
analytic polynomial p interpolating f on the finite set o. Therefore for any
T € C,, with mp = P, and 0 C D, we have f(T') = p(T) (since f =p+ mrh
for some h € Hol(DD)). Hence,

M(f,0) = Mlp, o) = lplla=~/B, 1>
= lp(Mp, )| = IIf(Mp,)]l-

Here we used (1.4) applied to p. Moreover

Dl <5, g = mf{||p+ Bohlo : h € H®}
=inf{[|g)loc : 9lo =plo, g € H*}
=inf{||lglle : glo = flo, g€ H*}.

We conclude that

M(f, o) =inf {[|gllc : g€ H*®, glo = flo}.

Therefore, given a division-closed Banach space X C Hol (D) containing H >
and a finite sequence ¢ in D, it turns out that

sup M(f, 0) =c(o, X, H)
[Ifllx<1

and so, for alln > 1, r € (0, 1),

sup {./\/l(f, o): o0 eD" max|\ < r} =Cp, (X, H™).
[[fllx<1 A€o
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1.3. Embedding theorems for rational functions

In [9, 10] the following phenomenon was discovered: sharp embedding the-
orems are invertible on the set of rational functions of a given degree. Let
n > 1, let P, be the space of complex analytic polynomials of degree less or
equal than n and let

Rn={P/Q: P, Q€ Pn, Q) #0 for|(| <1}

be the set of rational functions of degree at most n with poles outside of the
closed unit disc D = {z € C : |z| < 1}. Recall that the Hardy-Littlewood
embedding theorem [7, Theorem 1.1] says that H? C AP(f) for any p > 1,
B> —1and qg= ﬁ. Given two Banach spaces of analytic functions in the
disc which contain R,,, denote by &, (X, Y) the best possible constant such
that

[fllx <&(X Y)Iflly,  feRn (1.5)

Dyn’kin [10, Theorem 4.1] proved that the Hardy-Littlewood embedding
theorem is invertible on R, ; namely,

148
P

En(H, A(8)) =< n*F
when ¢ = ﬁ.

Note that for many choices of X and Y we have &,(X,Y) = 400 for
every n € N, since the poles of the rational functions are allowed to be
arbitrarily close to the unit circle T = {z € C: |z| = 1}. This is for example
the case when X = H*® and Y = HP or Y = AP, 1 < p < +0oo (to see this
one can consider the function f(z) = (1 —7z)~! as r — 17). This observation
suggests to consider a more general problem when one replaces the class R,
in (1.5) by Ry, (for any fixed r € [0, 1)) defined by

Roo={P/Q: P.Q P Q) #0 for [ <1 ),

i.e., by the set of all rational functions of degree at most n > 1 without poles
in 1D. The quantity &,(X, Y) (when it is infinite) is replaced by the best
possible constant &, (X, Y) such that

HfHX < gn,T(X’ Y)”f”Yv f € Rn,ry

and we can study the asymptotic dependence on the parameters » and n
as r — 17 and n — oo. Recently, the authors [3, Theorem 2.4] proved
S. M. Nikolskii-type inequalities for rational functions (whose poles do not
belong to T) which can be formulated here as

n

1_1

P q
< < 0. 1.
1_r) , 0<p<g<oo (1.6)

En,r(HY, H?) < <
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1.4. Outline of the paper

The paper is organized as follows. Section 2 states our main results. Section
3 is devoted to the main ingredients and tools employed in the proofs. In
particular, we recall the so-called theory of model spaces which plays a central
role here (see Subsection 3.1) and discuss the strategy of the proofs of main
results (Subsection 3.2). Section 4 contains sharp asymptotic estimates for
the norms of derivatives of reproducing kernels in various function spaces. In
Sections 5 and 6 we prove, respectively, the upper and the lower bounds in
Theorems 2.1 and 2.3.

2. Main results

Theorem 2.1. Letn>1,r € [0, 1), p € [1, 4+00) and > —1. Then we have

1

n ;
Ch,r (H?, H>) < 2.1
= () (2.)
with constants depending only on p, and
248
Cor (42(6), 1) = (1) (0.2)

with constants depending only on p and (.

In view of the discussion in Subsection 1.2, the following corollary is
immediate:

Corollary 2.2. Letn > 1,7 €0, 1), p € [1, +00) and > —1. Then we have

n P
sup {M(f,0): 0 €D" max |\ <r} = < )
Hf||Hp§1{ A€o ) I—r

with constants depending only on p, and
sup {M(f, 0): o€D" max|A|l < 7"} =
[[fllap sy <1 A€o 1—7r

with constants depending only on p and (.

The techniques employed to prove Theorem 2.1 make use of the theory
of model spaces and their reproducing kernels. They naturally lead to asymp-
totically sharp estimates of the embedding constants &, ,(H>, AP(8)), 1 <
p<oo, B>—1.

Theorem 2.3. Letn>1,r €0, 1), p € [1, +00) and 8 > —1. Then we have
248

( " ) ’ (2.3)

En (1, A7(B)) = (17

X

with constants depending only on p and (.
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3. Main ingredients

In this section we give the main ingredients and tools we use in the proofs of
Theorem 2.1 and Theorem 2.3. We begin with the definition of model spaces.

3.1. Model spaces

Let © be an inner function, i.e., © € H* and |©(§)| =1 for a.e. £ € T. We
define the model subspace Kg of the Hardy space H? by

Ko = H>N (0H?)" = H> © OH”.
By the famous theorem of Beurling, these and only these subspaces of H?
are invariant with respect to the backward shift operator S* defined by

gp 110

We refer to [16] for the general theory of the spaces Kg and their numerous
applications. Given o € D", put B = B, and consider the model subspace
Kp. Let us first establish the relation between R,,, Ry, ,, and model spaces

Kp. It is well known that if
o= (Al, ey ALy A2y ey A2y ey Agy ey )\t) S ]D)n,

where every \; is repeated according to its multiplicity ns, Zizl ns = n,
then
Kp=span{ky,;: 1<s<t 0<j<n,—1},

where for A # 0, ky, ; = (d%)j kx and ky(z) = 1_%2 is the standard Cauchy

kernel at the point \, whereas ko, ; = z7/. Thus the subspace Kp consists of
rational functions of the form P/Q, where P € P,,_1 and Q € P,,, with the
poles 1/)1,..., 1/, of corresponding multiplicities (including possible poles
at o0). Hence, if f € R,, and 1/)y,..., 1/, are the poles of f, then f € K, p
with o= (A1,..., Ap).

For any inner function © the reproducing kernel of the model space Kg
corresponding to a point ¢ € D is of the form

1-0()e
1—-(z
We recall the definition of the Malmquist—Walsh family (e;)7_; for a sequence
o= (A,...,\n) € D" (see [17, p. 117]):

= (1 - 0(0)O(2))k¢(2)-

=

j—1
€1 = (1—|)\1|2) k}Al, €; = (1—|)\j|2) <Hb&> kAj; ]:2n
i=1
Note that (ej)?zl is an orthonormal basis of Kg for B = B,. The model
operator Mp evoked above in Section 1.2 is the compression of the shift
operator S : f — zf on Kp, ie., Mpf = PgSf, f € Kp, where Pp is the
orthogonal projection on Kp.
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3.2. Upper bounds in Theorems 2.1 and 2.3.

In this subsection we outline the strategy of the proof of Theorems 2.1 and
2.3.

From now on we denote by ( the Cauchy sesquilinear form:

)t
e

which makes sense for any h =3, h (k)zF € Hol(D) and g = > k>0 g(k)z*
analytic in the disc (1+ 6)D for some § > 0. If h, g € H?, then (-, -) coincides
with the usual scalar product in L?(T),

(h, g) = / h(w)gu)dm(u),

where m is the normalized Lebesgue measure on T. Also, denote by (h, g)
the scalar product on A? defined by

(h, g) = /D hw)g@dAw),  h, g€ A2

As in [27, 26], we will use the following interpolation operator:

frePaf=Y (f exen (3.1)
where (ej);_, is the Malmquist-Walsh basis of Kp. If f € H?, then this is
the usual orthogonal projection of f onto K. However the formula Pgf =
>or_y (f. ex) ex correctly defines this operator for any f € Hol(ID).

3.2.1. The upper bounds in Theorem 2.1. For X = H? 1 < p < 400, the
proof is simple. We have

1PefO = (f, k&) I < 1l 1K |1,

where ¢ is the conjugate of p. It remains to use the estimate for Hk?HHq,
¢ € T, given in Proposition 4.1.

To relate Ppf(¢) = <f, kf> to the norm of f in a Bergman space

AP(f3), we use the simplest form of the Green formula,

(0, ¥) = (¢, S™Y) + 9(0)(0), (32)
which is true, in particular, when ¢ is analytic in some disc (1 + §)D, 6 > 0,
and ¥ € H*. We then apply it to ¢ = kJCB and Y = fe XN H™.
If =1 < 8 <0, then we apply the Holder inequality and it remains to
estimate the norm of the derivative (kf )" in the dual Bergman space. This
norm is estimated in Proposition 4.1.

To treat the case § > 0, we need a modified Green formula. Recall
that the fractional differentiation operator D, —1 < a < o0, is defined by

D,(z™) = %zm, m = 0,1, 2, ..., and extended linearly to the
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whole space Hol(D) (see [12, Lemma 1.17]). Then, for a function f analytic
in a neighborhood of D and —1 < a < oo, we have

[ r@itiaaw) = @+ 1) [ st (1- ) daw) @3

for any g € H™ (see [12, Lemma 1.20]). Note that even for [ € N, D, f differs
from the usual derivative (). However,

-1
IDufllars) = IF D ar(a) + D 1F9(0)] (3.4)
=0

for any Bergman space AP(f).
Formula (3.3) reduces the problem to estimates of the Bergman norms
of (kCB)(l), [ € N, which are again given in Proposition 4.1.

3.2.2. The upper bound in Theorem 2.3. To prove the upper bound in Theo-
rem 2.3 it is sufficient to note that given f € R,, , with poles 1/X17 e 1/Xn
(repeated according to multiplicities and satisfying [\;| < r foralli =1...n),
we have f € K.p where B= B,, 0 = (A1,...,\,). Therefore

FQ) =(f, k&%)

This means that f pointwise coincides with the interpolation operator (3.1)
and we can apply the same reasoning as above with zB instead of B.

3.3. Lower bounds

The lower bound problem in Theorem 2.1 is treated by using the “worst”
interpolation n-tuple o = oy, = (A, ..., \) € D", a one-point set of multi-
plicity n (a Carathéodory—Schur type interpolation problem). The “worst”
interpolation data comes from the Dirichlet kernels EZ;& z¥ transplanted
from the origin to A. The lower bound in (2.3) is achieved by rational func-
tions of the same kind (i.e., whose poles are concentrated at the same point

1/A).

4. Estimates of norms of reproducing kernels

We will use the following simple Bernstein-type inequality for rational func-
tions (see, e.g., [3, Theorem 2.3]). Let 0 = (A1,...,\,) € D", let B = B, be
the corresponding finite Blaschke product and 7 = maxye, |[A|. Given | € N
we have
!
O, < (L 4.1
1700 % (1) 16l (1)

for any f € Kp.
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We need to introduce an additional scale of Banach spaces of holomor-
phic functions in D. The weighted Bloch space B,, 0 < a < 1, consists of
functions f € Hol(D) satisfying

£l = sup [ f'(2)] (1 — [2])" < o0
zeD
(which is in fact a seminorm).

Proposition 4.1. Let o = (A1,...,\,) € D" and B = B, be the corresponding
finite Blaschke product, 1 = maxye, |A| and z € D. The following inequalities
hold:

1. Given q € (1, +00] we have

1—1
||k§||Hqs( n ) . (4.2)

1—1r
2. Givenl e N and 0 < o <1 we have
n +2—«
EBYO|5. < . 4.3
162) s, < (17 (13)
3. Gien g € (1, 400) and v € (=1, ¢ — 1] we have

9_2a+2

Y oy S (2 n 1.4
162 v S (12 ) (4.4
4. Given q € (1, 400) and v € (-1, q] we have
3_y+2
162 s S (125 ) - (45)
z LR Ny

All involved constants may depend on q, o and ~ but do not depend on n, r
and z.

Proof. Note that all above norms (in appropriate powers) are subharmonic
functions in z. Thus, it suffices to prove the inequalities only in the case
z=( € T. So in what follows we assume that ¢ € T.

Proof of (4.2). For ¢ = 2,

n

1-[BP -y 2

K1 = —— =2 51 Bi-1(0)]
‘ S ;u—MP ’

Zl+|/\j| < l+r

1—|)\j| 1—r

j=1
Here B; = 3:1 bx,, Bo = 1. The estimate for ¢ = oo follows from
n
K2 < IRE e IkE e S T

for any u, ¢ € D. If ¢ € [2, 00), then we write

q—1
_ n
21 < IERRIR2IE 5 ()
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Finally for ¢ € (1, 2) we apply the following result by W. Cohn [8, Lemma
4.2]. Denoting by p the conjugate exponent of ¢ (i.e., % + 1—17 =1)

1€ 114 sup

geEHP, ||g|lmp <1

/ 9(=) KB (2)dm(2)
T

= sup /PBg(z)kCB(z)dm(z)
geH?, ||gllpp <1 1JT

S sup Ih(O)];

heKp, |h|lap <Cp

where the last inequality is due to the fact that h = Pgpg € Kp and there
exists C}, > 0 such that || Pggllar < Cpllglla», p € (1, 00).

Applying the inequality |||l < (1fr)1/p||h||Hp, h € Kp, which is a
special case of (1.6), we obtain (4.2).

Proof of (4.3). Clearly, for a = 1,

I+1
n
sup(1 = )] (£2) ()] = 1) s, < 160 5 (2

by (4.1). Therefore, for any 0 < « < 1,

+2—«
o n
I62)0 s, < G2 IED DS 5 ()

which completes the proof.

Proof of (4.4). For the derivative of kj? we have

(k&) (z) = ¢B(Q)

(€ —2)?

Then we can write H(k?)'Hqu(,y) = I, + I, where
B(¢) —B(z) — ((—2)B'(z)
I —
' /z—csl,;” (€—=2)?
B(¢Q) = B(z) — ((—2)B'(2) |
Ir =
i /z<>1——r =27

Since |B” (u)| S (12 ) for any u € D, it follows that

q

(1 —=[2])"dA(2)

and

(1—|z])"dA(2).

I, < max|B" (u)|" / (1~ |2)"dA(2)
|lz—¢|< =T

ueD

2q Y+2 2q—2—v
< n 1—r < n .
~A\l-r n ~A\l—r
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Now we estimate I5. To this aim we first observe that if we put w =
(1—12)¢, then |z — ¢|/2 < |1 — wz| < 3|z — (|/2 when |z — (| > (1 —r)/n
Hence,

BO-BE" 12|
/ZC>¥‘ (z—¢)? (L= =)A= /|1—w2|2q A(z)

_ n 2q—v—2
= = (T |

Here we use the standard fact (see, e.g., [12, Theorem 1.7]) that for oo > —1
and > a + 2 one has

AP pYS YO S
/D |1 — wz|/3d“4( ) = (1 — |w|)B—a—2 (4.6)

with constants depending on a and 3, but not on w € D. Note that v €
(—1, ¢ — 1] and so in our case the assumptions on exponents are satisfied.
It remains to estimate

/ - ?_@Z) (- |2 dA(e) = [ LB

Take e > 0 sufficiently small so that € < min(¢—1,v+1), and put s = v+1—e¢.
Then s € (0,q). Writing

[B'(2)|*(1 = [2)7 = |B'(2)|"*(1 = [z (|1B'(2)|(1 - |2]))°

and observing that sup,,cp |B'(w)|(1 — |u|) < 1, we get

i< B — |z gdA(z),S( " )q_S/Di(l_V_')W_SdA(z)

(1 —1[z])"dA(z) =

D |1 — E}Z|q

|1 —wzle 1—r |1 —wzld

(here we use the inequality |B’(u)| < 2, u € D). Since v — s = —1 + ¢ and

Nl/r’

qg—v7+s—2=qg—1—¢>0, we get by (4.6)

1— y—s q—y+s—2
/7( |Z_|) dA(z) < — = n ,
b = w27 A—Jwpr 72 \1=r

which completes the proof of (4.4).

—_

Proof of (4.5). Note that

B() = B(x) - ((—2)B'(z) - 5L B"(2)
(€—2)?

whence |(k<B)”(z)| < sup,ep |B"(u)|/3, z € D. Since |B" (u)| < (1f—r)3 for
any u € D, it follows that

(k&) (2)] =2

)

3
B\ < o " < n
|(kE) (u)|Nzlég|B (u)| < (1_r> :



H®° interpolation and embedding theorems for rational functions 13

Therefore

/z—cgl;,f

ROV (- PaAe) S (17 ) [

L=r la—¢|< 1=

3¢ /1 T2
1—7r n '
It remains to estimate

_ CEI _ B Ll
7= /| U=l Az, g /| (1-|2])"dA(2)

e amgl>izr € — 2]

(1 [£)dAC)

IN

A
3

and

Js ;:/l BTN yaac).

z—¢|>1" |C - Z|q

The estimate J; =< (&)3‘17277 follows immediately from (4.6). Now let

s = 2EL Then s € [0, ¢] and we have

1— |z
2 S sup B ()= -sup (1~ [ul)"|B/)1) - [ OB ).
weD w€D le¢>izr ¢ — 2[4

As in the proof of (4.4), let w = ¢ (1 — 1=Z). Then, by (4.6),

n \"7 [ (1—|z])F n \"° 1
< (I G-z - ~ .
J2 ~ <1_r) ,/]D) |1_wz|2q dA(Z) (1_7‘) (1_ |w|)2(1—’7+8—2

Weusedthefactthat2q—fy—|—s—2:2q—%—%>0sinceq2’yandq>1.
To estimate Js note that |[B”(u)] < 2(1—|u)™, u € D. Let € €

(0, min(q — 1,7+ 1)) and put s = %1_5 Then s € (0,q), v —2s = —1+¢

andg—7+2s—2=qg—1—¢>0. Now

s < sup | B[ -sup (1 = [ | B" ") - [ (Ul L A T
u€eD ueh |z—¢[>1or |1 — ’LUZ|(1
n 2q—2s 1 q—y+2s5—2 n 3q—v—2
(=) Ew) o G
This completes the proof of (4.5). O

Corollary 4.2. Letl € N, [ >2, g€ (1,00) and v € (-1, ¢q]. We have

[4+1—2+2
1 n ‘
1(k8) PN a0y S <1 — r) :

Proof. An application of [2, Theorem 1.3] yields

n

-2
162y S (125) 162 avcy:

Now the result follows from inequality (4.5). O
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5. Proofs of the upper bounds in Theorems 2.1 and 2.3

5.1. The upper bounds in (2.1): a direct proof

We start by giving an easier proof than the one in [26, Theorem 2.3] of the
upper bound in (2.1) for the case 1 < p < +o00. The main drawback of the
proof in [26] is that it makes use of a strong interpolation result between
Hardy spaces by P. Jones [13]. The proof below is a two-line corollary of
HP-norms estimates of reproducing kernel of model spaces.

Proof. For any f € HP,
\Pef(O = 1{f, k&) | < N fllmo ke, CED,

where % + % = 1. Taking the supremum over all ¢ € D, we obtain from (4.2)
that

1
o< (1),

for any o = (A\y,...,\,) € D™, O

5.2. The upper bound in (2.2)

In the following proof, given o € D" we will assume first that f € H> and
bound || f{|ze /B, g in terms of || f|| 4»(gy. The corresponding upper bound
for c¢(o, AP (B), H*) will follow by density.

Proof. Case 1: 8 < 0. First we prove the upper bound for 8 € (—1,0]. Let
[ € AP (B) M H*> be such that || f[|ars) < 1. Let
9(¢) = (Pef)(C) = (f. kC).

Applying the Green formula (3.2) to ¢ = kf and ¢ = f we obtain

9(¢) = F(O)KZ(0) = (kE)', S*f) = /D (k&) (w)S* f (u)dA(u). (5.1)
We first assume that p > 1 so that its conjugate exponent ¢ (i.e.,
is finite. Applying the Hélder inequality to (1 — |u|)?/?|S*f(u)| and (1 —
|u|)—#/P ’(kf)’(u)’ with exponents p and ¢, we obtain

((KEY, S*F)| < NS™ Fllara) | (BE) | aa(=(a-1)8)

and the estimate for ||g||~ follows by a direct application of (4.4) with v =
—(g—1)8 €[0,¢g — 1) (note that S* is bounded from AP(S) onto itself and
KE(0)] < 2).

If p=1 then

g2
i} n
(RE), S OIS WFLaray 16 s S N1fllaxe) (1 —r)

by (4.3) with l =0 and a = —0.
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Case 2: 8 > 0. Now we prove the upper bound for 8 > 0. Applying (5.1) and
(3.3) with [ = [%} + 1 we get

((k?)’, S*f) = /DDl ((kf)’) (u)S*f(u)(1 — |ul?)'dA(u). (5.2)

Again we first assume that p > 1 so that its conjugate exponent ¢ is finite.
8 3
Writing (1 — |ul?)! = (1 — |u|2)5+l7% and applying the Holder inequality to
3 — 3
(1~ )3 577 (w) and (1~ [u/2)" 5 Dy ((2)') (1) we get
1

((E) S™ I < 15" Fllar(s) (/D(l = [ul)?*| Dy ((KE)') (U)l"dA(u)> .

where o = — %. It remains to apply Corollary 4.2 with v = qa € [0, ¢: the
result follows since

1D: ((EE)') | aa(g) = N(RE) ) a(gay-
If p =1 then, by (4.3),

B+2
. n
(S, S* DI S W )| (E) D 5o < N1F N arcs) <1 _r) '

5.3. The upper bound in (2.3)

Proof. The upper bound in Theorem 2.3 follows directly from the following
observation: let f € R,, and 1/A1,...,1/\, are the poles of f (repeated ac-
cording to multiplicities), then f € K,p with 0 = (A1,...,A,). In particular

we have f = Psf = <f, k?>, where B(z) = 2B(z). Now we can repeat the
above proof for B instead of B. O

6. Proof of the lower bounds

In this section we estimate from below the interpolation constant
c(o, X, H*) for the one-point interpolation sequence o , = (A, A, ..., A) €
D™

clon,x, X, H®) =sup{| fllae/ppu=: f€XNHZ, [|flx <1},

where || f |z jpn e = inf{|[f + 0%gllec 1 g € X N H>} (recall that by(z) =
1)‘_7;2). Since the spaces X = HP, AP() and H* are rotation invariant we
have ¢ (op,x, X, H®) = c(0n, 4, X, H>) for every A, p with |A| = |u| = 7.

Without loss of generality we can thus suppose that A = —r.
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6.1. The lower bounds in Theorem 2.1

Recall that we need to prove the following estimates:

¢ (0, —p, H?, H®) > < n )'1’ (6.1)

1—r
and
248
o0 n P
clon s 4760), 1B 2 (1 (6.2
for any n >1,r €0, 1), p € [1, 400) and 8 > —1.
Proof. For N € N, we consider the test function
Pn = ﬁf’ (6.3)

where
1—r?
Qn = 1—|—7"z (Zb ) = ml)i(b—r(z))

and D, (z) = Zn 01 27 is the (analytic part of) the n*" Dirichlet kernel. We
have
H‘pnnHm/b’ﬁrHO@

lenllx
Thus we need to obtain an upper estimate for ||, ||x and a lower one for
lenll o jpn pros-

¢ (0n,—r, X, H®) >

n—1

Step 1. Upper estimate for ||¢,| m», N = 1. Note that Q,, = (31—, €x)?,
where ¢y, are the elements of the Malmquist—Walsh basis. Hence, ||Q,||m =
n. Now we compute [|Q, ||~ Note that @, o b_, is a polynomial of degree
2n — 2 with positive coefficients: indeed,

n—1 2 n—1 2
Q ob Z k 1—’[“ 1/2 _(1_ 2)71 1+(1+ )Z k+ n
nO0—pr = 1+7"b ) = r r z rz .

k=1

In particular,

oLt
[@nlloc = [[@n 0 b—r|loc = Qnob_r(1 ) =n’ 11— (6.4)
and for any p > 1, [ Qullf < |Qulla Qa5 Thus
1
1 3
|1@Qnll e <27 (J:) . (6.5)

Step 2. Upper estimate for ¢,/ ar(g). Assume that 3 € (-1, ] where ! >0
is an integer and put N =1+ 2. We will prove that

_ B2
n2N =

H<Pn||Ap(ﬂ) N m (6.6)
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The change of variable w = b_,.(z) (equivalently, z = b_,.(w)) gives

[ 10 GPAAE) = [ )i

for any function f summable with respect to A. Then we have
1R %5y = (1—7"2)% /D 11+ rw|*PN =128\ D, (w)PNP (1 — Jw|?)PdA(w)
T [ 1D~ ) dA(w)
since pN > N > 4+ 2 and so 2pN — 4 — 24 > 0. It remains to see that
DAY = ) PaAGw) S 2

Indeed, for p = 1 we have by a very rough estimate

(n—=1)N —=x (n—1)N kQN_Q

N2 DY (k)2 IN—26-2
1Dn ||A2(ﬁ) - kZ L1+8 S kz L1+5 S ’
=0 =1

while for p € [1, c0),

/D D (w)2VP (1~ ) d A(uw)

IA

1D 15 DA 2 )

n2N(p—1),2N-28-2 _ 2pN-2-§

A

This completes the proof of (6.6).

Step 3. Lower estimate for ||, ||~ /on . Put W, := ¢, 0 b_;. Clearly,

lnllmoe jor moe = ([l zroe jan mroe -
We will show that
2N
[l oo jzn e 2 A=y (6.7)

Denote by F,, the n-th Fejer kernel, F,(z) = 5= 2ljl<n (1 — %)zj, and

denote by * the usual convolution operation in L!(T). Then, for any g €
L (T), we have ||g * Fylloo < ||9llcollEnllzr = ||glloc- On the other hand,

since g/*\h(j) = §(j)h(j) and ﬁn(]) = 0 for every j > n, we have
gxF, =T, « F,

for any g € H*> such that g(k) = \fln(k), k=0,1,,...,n— 1. Hence, for any
such 9, ||gHOO > H\I/n *FnHoo and so

1Walliee e = inf {llglloe : g € H®, (k) = ¥ulk), 0k <01}
> ||y, * Fylloo > (T * F)(1).
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Note that the convolution with F), gives us the Cesaro mean of the partial
sums of the Fourier series. Denote by S; the j-th partial sum for ¥,, at 1.
Recall that

n—1 2N
U,(z) = ﬁ (1 + (147 sz —|—rz"> .

k=1

Since all Taylor coefficients for W,, are positive, we have

1 [(2N)~14] . 2N
Sz o (00 2 )|
L+ @ +n[EN) )N o 2
- (1—r2)N ~M(1=r)N

with the constants depending on N only. Hence,
1 & nQN
v, x F,)(1)=— —
(o x n ;} (1—r)N
which proves (6.7).

Step 4. Completion of the proof. The estimate (6.1) follows from (6.5) and
(6.7) (with N =1 and ¢,, = Q). Combining (6.6) and (6.7) we arrive at the
estimate (6.2). O

6.2. The lower bounds in Theorem 2.3

Proof. We prove the lower bound for &, ,(H>, AP(8)) in (2.3). We put N =
I + 2, where [ > 0 is the integer such that 5 € (I — 1, ], and consider the
test function ¢, defined in (6.3) with m = [;%] (assuming that n > 2N).
Therefore

m—1 2N
Om = ( Z (1- |r|2)1/2b’ir 1+ rz)_l) € R, r

k=0

We know from (6.4) that

N
1+

@ = (15)
-Tr

and it follows from (6.6) that

2N - £42 mJ*ﬁ
HQanHAP(ﬁ) S N_Bt2 S 7&”@%”00
(I—7r) P 1—7r) »

which completes the proof. O
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