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Abstract

Communication between tasks and load imbalance have been identified
as a major challenge for the performance and energy efficiency of parallel
applications. A common way to improve communication is to increase
its locality, that is, to reduce the distances of data transfers, prioritizing
the usage of faster and more efficient local interconnections over remote
ones. Regarding load imbalance, cores should execute a similar amount
of work. An important problem to be solved in this context is how to
determine an optimized mapping of tasks to cluster nodes and cores that
increases the overall locality and load balancing. In this paper, we propose
the EagerMap algorithm to determine task mappings, which is based on
a greedy heuristic to match application communication patterns to hard-
ware hierarchies and which can also consider the task load. Compared to
previous algorithms, EagerMap is faster, scales better, and supports more
types of computer systems, while maintaining the same or better quality
of the determined task mapping. EagerMap is therefore an interesting
choice for task mapping on a variety of modern parallel architectures.

1 Introduction

Optimizing the execution of parallel applications has become an important re-
search topic in recent years [5, 19]. Modern parallel systems consist of many in-
terconnected cluster nodes that themselves constitute a parallel shared-memory
machine with a deep memory hierarchy. In such architectures, communication
and load imbalance can have a higher impact on application performance than
computation [39, 18]. A common way to reduce the impact of communication
is to improve the locality of communication, by increasing the use of local inter-
connections and reducing the use of remote ones [42, 39]. Load imbalance can
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be improved by using dedicated load balancing algorithms. These optimizations
can be performed in parallel applications that use message passing libraries such
as MPI [12], but also in applications that use the shared memory paradigm, such
as OpenMP or UPC [2, 1].

In both types of parallel applications, the communication performance be-
tween the tasks of a parallel application are influenced by the levels of the
hierarchy [43]. Communication through a shared cache memory or intra-chip
interconnection is faster than communication between processors due to the
slower inter-chip interconnections [35, 14]. Likewise, communication within a
machine is faster than the communication between nodes in a cluster or grid.
The network speeds also vary, increasing the difference in the communication
latencies and bandwidths. Clusters and grids impose an additional challenge,
since each node can have a different machine configuration. Tasks that commu-
nicate intensely should be mapped to PUs close together in the hierarchy. To
improve load balance, we need to analyze the load of each task of the parallel
application and map them to the cores in such a way that the loads of all cores
are similar. In this context, the mapping of tasks to processing units (PUs)
plays a key role in the performance of parallel applications [44].

Four main steps are required in the process of mapping tasks to the archi-
tecture. The first step is to detect the communication between the tasks. In
message passage environments, the messages sent between the tasks need to be
monitored. The second step is to detect the topology of the hierarchy, which is
also highly dependent on the type of architecture. In shared memory architec-
tures, tools such as hwloc [11] can be used, while most cluster environments have
vendor-specific tools to manage topologies. The third step is to use a mapping
algorithm to generate a mapping of tasks to PUs, combining communication,
load, and topology information. The final step is to execute the application
with the determined mapping, or migrate tasks to their assigned PUs.

This paper focuses on the third step: the mapping algorithm. The task map-
ping problem can be defined as follows [14]. Consider two graphs, one represent-
ing the parallel application, and one representing the parallel architecture. In
the application graph, vertices represent tasks and edges represent the amount
of communication between them. In the architecture graph, vertices represent
the machine components, including the PUs, cache memories, NUMA nodes,
network routers, switches, and others organized hierarchically, while edges rep-
resent the links’ bandwidth and latency. The task mapping problem consists
of finding a mapping of the tasks in the application graph to the PUs in the
architecture graph, such that the total communication cost is minimized and
the load on the cores is even.

The complexity of finding an optimal mapping is NP-Hard [9]. Due to the
high number of tasks and PUs, finding an optimal mapping for an application is
unfeasible. Heuristics are therefore employed to compute an approximation of
the optimal mapping. However, current mapping algorithms still present a high
execution time, since they were developed focusing on static mappings and are
mostly based on complex analysis of the graphs. This reduces their applicability,
especially for online mapping, since their overhead may harm performance.

In this paper, we propose EagerMap, an efficient algorithm to generate task
mappings. It coarsens the application graph by grouping tasks that communi-
cate intensely. This coarsening follows the topology of the architecture hierarchy.
Based on observations of application behavior, we propose an efficient greedy
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strategy to generate each group. It achieves a high accuracy and is faster than
other approaches of the state of the art. After the coarsening, we map the group
graph to the architecture graph.

EagerMap was initially proposed in [15]. The main extensions and improve-
ments presented in this paper are the following.

� The original algorithm supported symmetric tree topologies only, which
limited its applicability mostly to shared memory machines. We extended
it to also support clusters and grids, where the topology of the network
that connects the cluster/grid is arbitrary and the topology internal to
each compute node is a symmetric tree.

� We also designed a parallel version of EagerMap, allowing it to calculate
mappings faster.

� We added load balancing support to EagerMap that can handle oversub-
scribed scenarios (more threads/processes than processing units).

2 Related Work

Previous studies evaluate the impact of task mapping considering communica-
tion [43], showing that it can influence several hardware resources. In shared
memory environments, communication-based task mapping reduces execution
time, cache misses and interconnection traffic [16]. In the context of cluster
and grid environments, mapping tasks that communicate to the same comput-
ing node reduces network traffic and execution time [10, 24]. Communication
costs can also be minimized in virtualized environments [40], demonstrating its
importance for cloud computing.

Several mapping algorithms have been proposed to optimize communication
and load balancing. Most traditional algorithms are based on graph partition-
ing, such as Scotch [38]. The algorithm is based on the idea of divide and
conquer, recursively allocating subsets of processes to subsets of PUs. The al-
gorithm bipartitions an unprocessed set of PUs into two disjoint subsets, and
calls a graph bipartitioning algorithm to split the subset of tasks associated with
the PUs across the two subsets. As bipartitionings are performed recursively,
the set sizes decrease, until all sets have only one element. A disadvantage of
Scotch is that the topology description requires information about the commu-
nication latency between the PUs, and such values have a high influence in the
final mapping. This presents a challenge for Scotch, since it is difficult to deter-
mine an accurate value for its parameters. On the other hand, EagerMap does
not depend on such information, which makes it easier to use and can cause
more reliable results. Other works that follow the same basic idea of Scotch are
Zoltan [20], METIS [33, 31], and Chaco [23]. The work described in [22] also
uses graph partitioning to group tasks, but it uses a greedy technique to map
the groups to the topology. Some of these algorithms have been parallelized,
such as PT-Scotch [13] and Par-METIS [32].

Tree representations are used in TreeMatch [26], which can lead to more opti-
mized algorithms in architectures that can be represented in this way. However,
the algorithm used in TreeMatch to group tasks has an exponential complexity
because it generates all possible groups of tasks for each level of the memory
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hierarchy. This can lead to unreasonable mapping calculation time depending
on the number of tasks. Another limitation of TreeMatch is that it is not able
to calculate mapping for most clusters or grids, as their topology may not be
represented by a tree. TreeMatch has also been ported to the Charm++ envi-
ronment [27], where support for load balancing was included. [4] also proposes
a load balancer for Charm++ with a focus on the integrated OpenMP runtime.

MPIPP [12] is a framework to find optimized mappings for MPI-based ap-
plications. MPIPP initially maps each task to a random PU. At each iteration,
MPIPP selects pairs of tasks to exchange PUs to reduce communication cost
as much as possible. The communication costs depend on chosen parameters,
and can be related to the number of messages or amount of data transferred
between the MPI processes. This process is repeated several times, improving
the quality of the mapping on each iteration, and can go on until no gains are
achieved. One of the main drawbacks of MPIPP is that it depends too much on
the initial random mapping, which does not have any guarantees regarding the
mapping quality. Due to this, MPIPP can generate bad mappings. Other works
that are based on the concept of refining an initial mapping at each iteration
are [8] and [30].

Our previous work [14] uses Edmonds’ graph matching algorithm [21] to
calculate mappings, which solves the maximum weight perfect matching for
complete weighted graphs to generate mappings. The idea of the proposal is
to call the graph matching algorithm several times to generate the groups of
threads that should be mapped together. Each time the matching algorithm is
called, it generates pairs of threads that have a high degree of communication.
Since it always generates pairs of threads, the solution is limited to environments
where the number of tasks and PUs is a power of two. Another problem is that
the proposed technique must be coded for a particular number of threads and
architecture, which does not work automatically.

3 EagerMap: Greedy Hierarchical Mapping

EagerMap receives three pieces of input: a communication matrix containing
the amount of communication between each pair of tasks, the load of each task
and a description of the architecture hierarchy. It outputs which PU executes
each task. To represent the architecture hierarchy, we use a tree, in which
the vertices represent objects such as PUs and cache memories, and the edges
represent the links between them. Our task grouping is performed with an effi-
cient greedy strategy that is based on an analysis of the communication pattern
of parallel applications. Fig. 1 depicts the different communication patterns
of several parallel benchmark suites [3, 28, 36, 7], which we obtained using the
methodology described in Section 4.2. We observe three essential characteristics
in the communication behavior of the applications that need to be considered
for an efficient mapping strategy:
1. There are two types of communication behavior: structured and unstruc-
tured communication. In applications with structured communication, each
task communicates more with a subgroup of tasks, such that mapping these sub-
groups to PUs nearby in the hierarchy can improve performance. In Fig. 1, all
applications except Vips show structured communication patterns. Our map-
ping algorithm is designed to handle structured communication patterns, be-
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cause in applications with unstructured communication, there may not be a
task mapping that can improve performance.
2. In applications with structured communication patterns, the size of the
subgroups with intense internal communication is usually small when compared
to the total number of tasks in the parallel application. For instance, in the
communication pattern of CG-MPI (Fig. 1b), subgroups of 8 tasks communi-
cate intensely, out of 64 tasks in total.
3. The amount of communication within each subgroup is much higher than
the amount of communication between different subgroups.

In this section, we describe EagerMap in detail, give an example of its oper-
ation and discuss its complexity. We first describe the algorithm only consider-
ing communication, and then we extend it to consider both communication and
load.

3.1 Description of the EagerMap Algorithm

The algorithm requires two previously initialized variables: nLevels and
execElInLevel. nLevels is the number of shared levels of the architecture hier-
archy plus two. This addition is required to create a level to represent applica-
tion tasks (level 0) and another level to represent the processing units (level 1).
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Figure 1: Example communication matrices for parallel applications consisting
of 64 tasks. Axes represent task IDs. Cells show the amount of communication
between tasks. Darker cells indicate more communication. The communication
matrices were generated as explained in Section 4.2.
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Algorithm 1: MapAlgorithm: The top level algorithm of EagerMap.

Input: commMatrixInit[][], nTasks
Output: map[]
LocalData: nElements, i, nGroups, rootGroup, commMatrix[][], groups[],

previousGroups[]
GlobalData: nLevels, execElInLevel[], hardwareTopologyRoot

1 begin
2 for i←0 ; i<nTasks ; i←i+1 do
3 groups[i].id ← i;
4 groups[i].nElements ← 0;

5 end
6 nElements ← nTasks;
7 commMatrix ← commMatrixInit;
8 for i←1 ; i<nLevels ; i←i+1 do
9 previousGroups ← groups;

/* GenerateGroupsForLevel is implemented in Algorithm 2. */

10 [nGroups, groups] ← GenerateGroupsForLevel(commMatrix, nElements, i,
previousGroups, execElInLevel[i]);

11 if i < nLevels-1 then
/* RecreateMatrix is implemented in Algorithm 4. */

12 commMatrix ← RecreateMatrix(commMatrix, groups, nGroups);

13 end
14 nElements ← nGroups;

15 end
16 rootGroup.nElements ← nElements;
17 for i←1 ; i<nElements ; i←i+1 do
18 rootGroup.elements[i] ← groups[i];

19 end
/* MapGroupsToTopology is implemented in Algorithm 5. */

20 MapGroupsToTopology(archTopologyRoot, rootGroup, map);
21 return map;

22 end

execElInLevel is a vector with nLevels positions. execElInLevel[0] is not
used. execElInLevel[1] contains the number of processing units. For positions
i, such that 1 < i < nLevels, the value is the number of hardware objects on the
respective architecture hierarchy level. Hardware objects are cores, caches, pro-
cessors and NUMA nodes, among others. For instance, execElInLevel[2] can
be the number of cores, execElInLevel[3] the number of last level caches, and
execElInLevel[nLevels−1] the number of NUMA nodes. Since private levels of
the architecture hierarchy are not important for our mapping strategy, we only
consider the shared levels when preparing both nLevels and execElInLevel.

3.1.1 Top Level Algorithm

The top level mapping algorithm is shown in Algorithm 1. It calculates the map-
ping for each level on the architecture hierarchy. The groups variable represents
the groups of elements for the level being processed. The previousGroups vari-
able represents the groups of elements of the previous level. First, it initializes
groups with the application tasks (loop in line 2). Afterwards, it iterates over
all levels on the architecture hierarchy, in line 8. After generating the groups of
tasks for a level (line 10) (explained in Section 3.1.2), the algorithm generates
a new communication matrix (line 12, discussed in Section 3.1.3). This step is
necessary since we consider each group of tasks as the base element for mapping
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Algorithm 2: GenerateGroupsForLevel: Generates the groups for a
level of the architecture hierarchy.

Input: commMatrix[][], nElements, level, previousGroups[], avlGroups
Output: nGroups, groups[]
LocalData: chosen[], elPerGroup, leftover, gi, inGroup, i, newGroup

1 begin
2 nGroups ← min(nElements, avlGroups);
3 elPerGroup ← nElements / nGroups;
4 leftover ← nElements % nGroups;
5 for i←0 ; i<nElements ; i←i+1 do
6 chosen[i] ← 0;
7 end
8 gi ← 0;
9 for i←0 ; i<nElements ; i←i+inGroup do

10 inGroup ← elPerGroup;
11 if leftover > 0 then
12 inGroup ← inGroup + 1;
13 leftover ← leftover - 1;

14 end
/* GenerateGroup is implemented in Algorithm 3. */

15 newGroup ← GenerateGroup(commMatrix, nElements, inGroup, chosen,
previousGroups);

16 newGroup.nElements ← inGroup;
17 newGroup.id ← gi;
18 groups[gi] ← newGroup;
19 gi ← gi + 1;

20 end
21 return [nGroups, groups] ;

22 end

on the next hierarchy level.
The groups variable implicitly generates a tree of groups. Level 0 repre-

sents the tasks. Level 1 represents groups of tasks. Level 2 represents groups
of groups of tasks. In other words, on each level a new application graph is
generated by coarsening the previous level. After the loop in line 8 finishes,
the groups variable represents the hierarchy level nLevels − 1 and contains
nElements elements. We set up rootGroup to point to these elements of the
highest level (for loop in line 17). Finally, the algorithm maps the tree that
represents the tasks, rootGroup, to the tree that represents the architecture
topology, archTopologyRoot. This procedure is explained in Section 3.1.4.

3.1.2 Generating the Groups for a Level of the Architecture Hier-
archy

The GenerateGroupsForLevel algorithm, described in Algorithm 2, handles
the creation of all groups for a given level of the architecture hierarchy. It
expects that the levels of hierarchy up to the previous processed level to be
already grouped in previousGroups. The maximum number of groups is the
number of hardware objects of that level. The selection of which elements belong
to each group is performed by GenerateGroup.

The GenerateGroup algorithm, in Algorithm 3, groups elements that present
a large amount of communication among themselves. For the grouping, the
algorithm adopts a greedy strategy as follows. Each iteration of the loop in
line 2 adds one element to the group. The added element, expressed by the
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Algorithm 3: GenerateGroup: Generates one group of elements that
communicate.
Input: commMatrix[][], totalElements, groupElements, chosen[], previousGroups[]
Output: group
LocalData: i, j, k, w, wMax, winners[], winner

1 begin
2 for i←0 ; i<groupElements ; i←i+1 do
3 wMax ← -1;
4 for j←0 ; j<totalElements ; j←j+1 do
5 if chosen[j]=0 then
6 w ← 0;
7 for k←0 ; k<i ; k←k+1 do
8 w ← w + commMatrix[j][winners[k]];

9 end
10 if w > wMax then
11 wMax ← w;
12 winner ← j;

13 end

14 end

15 end
16 chosen[winner] ← 1;
17 winners[i] ← winner;
18 group.elements[i] ← previousGroups[winner];

19 end
20 return group

21 end

winner variable, is the one that presents the largest amount of communication
relative to the elements already in the group. The chosen variable is used
to avoid selecting the same element more than once. GenerateGroup can be
parallelized in the loop of line 4, where each thread would compute its local
winner in parallel, as we will explain in Section 3.5.

3.1.3 Computing the Communication Matrix for the next Level of
the Architecture Hierarchy

RecreateMatrix, described in Algorithm 4, regenerates the communication ma-
trix to be used for the next level of the architecture hierarchy. The new com-
munication matrix has an order of nGroups. It contains the amount of com-
munication between the groups. It is calculated by summing up the amount of
communication between the elements of different groups.

3.1.4 Mapping the Group Tree to the Architecture Topology Tree

The algorithm to map the group tree to the architecture topology tree is
MapGroupsToTopology, detailed in Algorithm 5. It performs a recursion over
the levels of the architecture hierarchy. The recursion stop condition happens
when it reaches the lowest level of the architecture topology, the processing
unit (PU) (line 2). If the stop condition is not fulfilled, the algorithm already
knows that the maximum number of groups per level never exceeds the number
of hardware objects of that level, as explained in GenerateGroupsForLevel.
Therefore, if the level of the architecture hierarchy in the recursion is shared
(line 6), the algorithm only assigns one hardware object of the following level
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Algorithm 4: RecreateMatrix: Calculates the communication matrix
for the next level.
Input: commMatrix, groups[], nGroups
Output: newCommMatrix[][]
LocalData: i, j, k, z, w

1 begin
2 for i←0 ; i<nGroups-1 ; i←i+1 do
3 for j←i+1 ; j<nGroups ; j←j+1 do
4 w ← 0;
5 for k←0 ; k<groups[i].nElements; k←k+1 do
6 for z←0 ; z<groups[j].nElements; z←z+1 do
7 w ← w + commMatrix[ groups[i].elements[k].id ][

groups[j].elements[z].id ];

8 end

9 end
10 newCommMatrix[i][j] ← w;
11 newCommMatrix[j][i] ← w;

12 end

13 end
14 return newCommMatrix ;

15 end

Algorithm 5: MapGroupsToTopology: Maps the group tree to the
hardware topology tree.

Input: hardwareObj, group, map[]
LocalData: i

1 begin
2 if hardwareObj.type = ProcessingUnit then
3 for i←0 ; i<group.nElements ; i←i+1 do
4 map[ group.elements[i].id ] ← hardwareObj.id;

5 end

6 else if hardwareObj.nSharers > 1 then
7 for i←0; i<group.nElements; i←i+1 do
8 MapGroupsToTopology(hardwareObj.linked[i], group.elements[i], map);
9 end

10 else
11 MapGroupsToTopology(hardwareObj.linked[0], group, map);

12 end

13 end
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Figure 2: Mapping 16 tasks in an architecture with 8 PUs, L3 caches shared by
2 PUs, 2 processors per machine, and 2 machines.

to each group and recursively calls itself for each element of the following level.
Otherwise, the level is private and is not considered for mapping (line 10).

3.2 Mapping Example in a Multi-level Hierarchy

For a better understanding of how our mapping algorithm works, we present
an example of mapping 16 tasks in a cluster of 2 machines, each consisting of
8 cores, with L3 caches shared by 2 cores and 2 processors per machine. Fig. 2a
illustrates the hierarchy of the machine, which needs to be transformed in the
topology tree shown in Fig. 2c. The topology tree can be generated either
automatically, using tools such as hwloc [11], or manually by the programmer.
Private levels, with arity 1, such as L1 and L2 caches, as well as the processor,
are not relevant. The global variable nLevels has the value of 4, since there are
4 levels in the hierarchy. Therefore, execElInLevel has 4 positions. Position 0
represents the tasks and is not used. Position 1 represents the PUs (the cores
in this case) and its value is 8. Position 2 represents the L3 caches and its value
is 4. Finally, position 3 represents the machines and its value is 2.

Regarding Algorithm 1 (MapAlgorithm), the loop in line 8 is executed
3 times. In the first iteration, it generates the groups of tasks that execute
in each core. Since the number of tasks is 16 and the number of cores is 8, it
generates 8 groups of 2 tasks each. The communication matrix used in the first
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Figure 3: Communication matrices used in our example. A box is drawn around
the groups of tasks generated by the algorithm.
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Figure 4: Example of the GenerateGroup algorithm, when generating the first
group in our example.

iteration is shown in Fig. 3a. We demonstrate how the first group is generated
in Fig. 4 (GenerateGroup, Algorithm 3). When i is 0, the winners vector is
empty and task 0 is selected to be the first one of the group. When i is 1, the
task that presents the most communication to the tasks in the winners vector is
task 1. Therefore, task 1 is selected as winner and enters the group. Algorithm
GenerateGroup then returns a group formed by tasks [0, 1], implicitly stored
in the group.elements vector.

GenerateGroupsForLevel (Algorithm 2) repeats the same procedure until
all groups of the level are formed. Then, the communication matrix for the next
level, in Fig. 3b, is calculated by RecreateMatrix (Algorithm 4). The second
iteration of the loop in line 8 of MapAlgorithm behaves similarly, but selects
which groups of tasks from the previous iteration share each L3 cache. Since
the number of groups was 8 and there are 4 L3 caches, it generates 4 new groups
with 2 elements from the previous level in each.

In the third iteration of the loop in line 8 of MapAlgorithm, it selects
which groups of groups of tasks share each machine. The communication matrix
illustrated in Fig. 3c is used. Since the number of groups generated in the
previous iteration was 4 and there are 2 machines, it generates 2 new groups of
2 elements each. To complete the group tree, the rootGroup variable points to
these 2 groups. Afterwards, in line 19 of MapAlgorithm, the task group tree
shown in Fig. 2b is finished.

MapGroupsToTopology (Algorithm 5) maps the task group vertices to ver-
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tices of the architecture hierarchy. The mapping begins from the root node.
Tasks [0 − 7] are mapped to Machine 0. Tasks [0 − 3] are mapped to L3 cache 0.
Tasks [0 − 1] are mapped to PU 0 (core 0). The recursion continues until all
groups of tasks are mapped to a PU (core). In this example, tasks x and x + 1,
where x is even, will be mapped to core x/2.

3.3 Complexity of EagerMap

For the analysis of the complexity of EagerMap, we first introduce the variables
used in the equations. E is the number of elements to be mapped in the current
level of the architecture hierarchy (tasks or groups of tasks), which is different for
each level. G is the number of elements per group. P is the number of processing
units. N is the number of tasks to be mapped. L is the number of levels on
the architecture hierarchy. To make it easier to calculate the complexity, we
consider that P ≤ N .

The complexity of GenerateGroup is:

G∑
i=1

E∑
j=1

i =

G∑
i=1

E · i ≤ E ·G2 (1)

The complexity of GenerateGroupsForLevel is shown in Equation 2. The
number of groups is E

G . Also, E is an upper bound for G.

E/G∑
i=1

GenerateGroup ≤
E/G∑
i=1

E ·G2 ≤ E

G
· E ·G2 ≤ E3 (2)

The complexity of RecreateMatrix is O(E2). The complexity of
MapGroupsToTopology is the same as performing a depth-first search, O(V +
C), where V is the number of vertices and C is the number of edges. Since
our groups variable implicitly forms a tree, we know that C = V − 1. The
last level of this tree has N vertices, and the penultimate level has P vertices.
The number of vertices of the other levels is the number of the previous level,
divided by the number of sharers. The number of sharers is greater than 1 since
we only keep track of shared levels. Therefore, V ≤ N + P + 2 · P = O(N).
With this, the complexity of MapGroupsToTopology is O(N).

The complexity of the top level algorithm, MapAlgorithm, depends on all
previous algorithms, as shown in Equation 3. To calculate the complexity, we
have to take into account that the value of E changes on each level of the
architecture hierarchy.

L∑
i=0

(
GenerateGroupsForLevel + RecreateMatrix

)
+MapGroupsToTopology

(3)

=

L∑
i=0

(
O
(
E3

i

)
+ O

(
E2

i

) )
+ O(N) (4)

We can rewrite Equation 4 as Equation 5 by considering that the algorithm
iterates L + 1 times (L levels of the architecture topology plus one level for the
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Algorithm 6: LbGenerateGroupsForLevel: Generates the groups for
a level of the architecture hierarchy.

Input: commMatrix[][], nElements, level, previousGroups[], avlGroups
Output: nGroups, groups[]
LocalData: chosen[], gi, i, newGroup, totalLoad

1 begin
2 totalLoad ← 0;
3 for i←0 ; i<nElements ; i←i+1 do
4 chosen[i] ← 0;
5 totalLoad ← totalLoad + previousGroups[i].load;

6 end
7 gi ← 0;
8 for i←0 ; i<nElements ; i←i+newGroup.nElements do
9 loadThreshold ← totalLoad / avlGroups;

/* LbGenerateGroup is implemented in Algorithm 7. */

10 newGroup ← LbGenerateGroup(commMatrix, nElements, chosen,
previousGroups, loadThreshold, i);

11 newGroup.id ← gi;
12 totalLoad ← totalLoad - newGroup.load;
13 avlGroups ← avlGroups - 1;
14 groups[gi] ← newGroup;
15 gi ← gi + 1;

16 end
17 return [nGroups, groups] ;

18 end

tasks) and that only shared topology levels are represented, which means that,
in the worst case scenario, the topology will be a binary tree with P leaves and
a maximum number of vertices equal to 2P − 1.

≤
L∑

i=1

[
O

((
P

2i−1

)3
)

+ O

((
P

2i−1

)2
)]

+
(
O(N3) + O(N2)

)
+ O(N) (5)

≤ 2
(
O(P 3) + O(P 2)

)
+
(
O(N3) + O(N2)

)
+ O(N)

= 3
(
O(N3) + O(N2)

)
+ O(N) = O

(
N3
) (6)

With the simplifications shown in Equation 6, we find that EagerMap has a
polynomial complexity of O(N3).

3.4 Considering the Task Load

In a parallel application, it is very common to have its tasks use the CPU
for different amounts of time and thereby have different computational power
requirements. We call the CPU power a task requires to complete its execu-
tion the task load. In order to consider the task load when mapping tasks,
and thereby balancing the load, the algorithms presented in the previous sec-
tions need slight modifications. Most modifications are done in the algorithms
GenerateGroupsForLevel (Algorithm 2) and GenerateGroup (Algorithm 3).
In these algorithms, the total number of elements is related to the number of
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Algorithm 7: LbGenerateGroup: Generates one group of elements
that communicate.
Input: commMatrix[][], totalElements, chosen[], previousGroups[], loadThreshold,

done
Output: group
LocalData: i, j, w, wMax, winners[], winner

1 begin
2 group.load ← 0;
3 group.nElements ← 0;
4 for i←0 ; done<totalElements AND group.load<loadThreshold; i←i+1 do
5 wMax ← -1;
6 for j←0 ; j<totalElements ; j←j+1 do
7 if chosen[j]=0 then
8 w ← 0;
9 for k←0 ; k<i ; k←k+1 do

10 w ← w + commMatrix[j][winners[k]];

11 end
12 if w > wMax then
13 wMax ← w;
14 winner ← j;

15 end

16 end

17 end
18 chosen[winner] ← 1;
19 winners[i] ← winner;
20 group.elements[i] ← previousGroups[winner];
21 done ← done + 1;
22 group.nElements ← group.nElements + 1;
23 group.load ← group.load + previousGroups[winner].load;

24 end
25 return group

26 end

tasks, and they try to keep the number of tasks per group as close as possible
to nElements/nGroups. To consider the task load, we modify the concept of
an element to represent the task load. In this way, instead of the task, the
algorithm uses the task load. And instead of the total number of elements, the
algorithm uses the total task load. The idea is to group tasks that communicate
in the same groups, but limit the group sizes by the load, not number of tasks.

The modified algorithms to consider the load can be found in Algorithms 6
(LbGenerateGroupsForLevel) and 7 (LbGenerateGroup). The key idea is that
the maximum load of a group (loadThreshold) is recalculated on every iteration
of the loop (line 9 in Algorithm 6). We do this to get a more even balance
of the load for the next groups, since the actual load of the group rarely is
exactly totalLoad/avlGroups due to the different loads between the tasks. If
this is not done, the loads of the last groups are usually very low. Regarding
Algorithm 7, the main difference is that the group size is limited by the average
load loadThreshold, in line 4, while in the non load balancing version of the
algorithm the group size was limited to the average number of tasks per group.

3.5 Parallel EagerMap

The function GenerateGroup is the only function in the critical path of Ea-
gerMap that can be parallelized without changing the serial version behavior.
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Algorithm 8: ParallelGenerateGroup: Generates one group of ele-
ments that communicate.
Input: commMatrix[][], totalElements, groupElements, chosen[], previousGroups[]
Output: group
LocalData: i, j, wMax, nt, winners[], winner, threadResult[]

1 begin
2 for i←0 ; i<groupElements ; i←i+1 do
3 wMax ← -1;
4 #pragma omp parallel

ThreadData: id, j, w, k
5 id ← getThreadID();
6 #pragma omp master
7 nt ← getNumberOfThreads();
8 threadResult[id].wMax ← -1;
9 #pragma omp for

10 for j←0 ; j<totalElements ; j←j+1 do
11 if chosen[j]=0 then
12 w ← 0;
13 for k←0 ; k<i ; k←k+1 do
14 w ← w + commMatrix[j][winners[k]];

15 end
16 if w > threadResult[id].wMax then
17 threadResult[id].wMax ← w;
18 threadResult[id].winner ← j;

19 end

20 end

21 end

22 end
23 wMax ← -1;
24 for j←0 ; j<nt ; j←j+1 do
25 if threadResult[j].wMax>wMax then
26 wMax ← threadResult[j].wMax;
27 winner ← threadResult[j].winner;

28 end

29 end
30 chosen[winner] ← 1;
31 winners[i] ← winner;
32 group.elements[i] ← previousGroups[winner];

33 end
34 return group

35 end
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RecreateMatrix and MapGroupsToTopology could also be parallelized. How-
ever, the overhead of parallelizing them surpasses the benefits.

The parallel version of EagerMap consists of parallelizing the loop of line 4 of
Algorithm 3. This loop is responsible for finding the next task that will belong
to a group. The idea of the parallel algorithm is that we can search for the
next task in parallel, where each thread evaluates a subset of the total tasks
and finds its local task that maximizes the group communication.

The parallel algorithm is shown in Algorithm 8. We express the paralleliza-
tion in a notation similar to the OpenMP standard. In the beginning of the
parallel block, in line 4, we initialize the vector threadResult containing the lo-
cal task that maximizes the group communication. The local task is searched in
parallel in the for loop in line 10. After that, the task that maximizes communi-
cation is selected from the local task found by each thread, in line 24. Although
there are no critical regions, we do not expect a linear speedup because the par-
allel region has a short duration. The speedup should be higher with a larger
number of tasks.

The function calls to GenerateGroup related to the first hierarchy level
are the most expensive procedures, since they are processing the grouping of
tasks. Thereby, for the first hierarchy level, we use the parallel version. For
the subsequent levels, the cost of GenerateGroup falls dramatically, such that
is better to use the sequential version.

3.6 Running EagerMap in Non-Tree Topologies

The previous algorithms presented in this section work only in symmetric tree
topologies. This makes them applicable only to shared memory machines, or
clusters where all machines have the same topology. In this section, we explain
how to extend EagerMap to work on any kind of cluster or grid. The idea is to
make a pre-computation of which tasks will run on each machine of the cluster,
and then call the previously presented algorithms for each machine separately.
We consider that the communication within each machine is much faster than
the communication between different machines.

The algorithms that perform this pre-computation are very similar to the
others and are also based on a greedy grouping strategy. The first thing the
algorithm does is to calculate the number of tasks that each machine will ex-
ecute. For that, it counts the total number of available PUs in all machines,
and spreads the tasks in such a way that every machine will have the closest
possible number of tasks per PU. For instance, if the number of tasks is equal
to the total number of PUs, each machine will have 1 task per PU. After that,
it generates the group of tasks that each machine will run in a greedy way sim-
ilarly to Algorithm 3, where the next task to be added to a group is the one
that maximizes the communication to the elements already within the group.

The final step, as already explained, is to call EagerMap separately for each
group. In this way, we can handle any kind of cluster/grid regardless of the
topology or if the machines have different configurations. The load balance can
be taken into account in this step in a very similar way to what is explained
in Section 3.4. The division of the tasks that will run on each group can be
parallelized as explained in Section 3.5.
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4 Evaluation Methodology of EagerMap

In this section, we show how we evaluate our proposal. We discuss the bench-
marks and architecture used in our evaluation, how we obtain the communica-
tion matrices, and other mapping strategies used for comparison.

4.1 Benchmarks

For the evaluation of the mapping algorithms, we use applications from the
MPI implementation of the NAS parallel benchmarks (NPB) [3], the OpenMP
NPB implementation [28], the High Performance Computing Challenge (HPCC)
benchmark [36] and the PARSEC benchmark suite [7]. The NAS benchmarks
were executed with input size B, HPCC with an input matrix with 40002 ele-
ments and PARSEC was executed with the native input size.

Most experiments are based on applications with a static communication be-
havior. HPCC, which has several communicative phases, was used to show that
efficient online algorithms, such as EagerMap, are important for applications
with a dynamic behavior. All applications were configured to create a number
of threads equivalent to the number of PUs of the machine.

4.2 Generating the Communication Matrices

For the MPI-based benchmarks, we used the eztrace framework [41] to trace all
MPI messages sent by tasks and built a communication matrix based on the
number of messages sent between tasks. We also generated the communication
matrices using the number of bytes and, although the value of each individual
cell was different, the overall pattern was the same. For the HPCC benchmark,
which has a different communication pattern for each step, we also use eztrace
to generate the matrices statically, since the communication pattern does not
change between executions. For the benchmarks that use shared memory for
implicit communication using memory accesses, we built a memory tracer based
on the Pin binary analysis tool [34], similarly to [6]. This tool traces all memory
accesses from the tasks. We build a communication matrix by comparing mem-
ory accesses to the same memory address from different tasks and increment
the matrix on every match.

4.3 Generating the Task Load

To measure the task load, we count the amount of instructions executed by each
thread, which better represents the load than the traditional CPU time [17].
Therefore, the load between the tasks are imbalanced when the amount of in-
structions executed by each thread is different.

4.4 Hardware Architecture

The hardware architecture used in our experiments regarding shared memory
consists of 4 Intel Xeon X7550 processors for a total of 64 PUs. In this archi-
tecture, there are three possibilities for communication between tasks. Tasks
running on the same core can communicate through the fast L1 or L2 caches and
have the highest communication performance. Tasks that run on different cores
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have to communicate through the slower L3 cache, but can still benefit from
the fast intra-chip interconnection. When tasks communicate across physical
processors, they need to use the slow inter-chip interconnection.

For the cluster experiments, we used OpenMPI 1.6.5 and two types of ma-
chines: (A) 2 Intel Xeon E5530, with a total of 16 PUs, and (B) 2 Intel Xeon
CPU E5-2640v2, with a total of 32 PUs. We used only half of the PUs of the
machines because it presented better performance than using all PUs due to
SMT and poor support from OpenMPI. We evaluated 6 different clusters with
these machines:
4×8 4 machines of type A, 32 tasks in total
2×16 2 machines of type B, 32 tasks in total
4×16 4 machines of type B, 64 tasks in total
8×16 8 machines of type B, 128 tasks in total
Mixed-32 2 machines of type A and 1 of type B, 32 tasks in total
Mixed-64 4 machines of type A and 2 of type B, 64 tasks in total

To evaluate the load-aware EagerMap, we used a Xeon Phi Coprocessor
model 3120P, with the Knights Corner architecture. We used this architecture
because, due to the large number of cores (57 cores, each 4-way SMT), load
balancing plays a key role in its performance.

4.5 Comparison

We compare EagerMap to (i) a Random mapping, which is an average result of
30 different random mappings; (ii) TreeMatch [25, 26]; (iii) Scotch [38]; and (iv)
MPIPP [12]. Most performance results are normalized to the performance of the
default operating system mapping, the Linux Completely Fair Scheduler [29],
which focuses on keeping the load balanced between the tasks and cores.

5 Results

We evaluate the performance and quality of our algorithm, as well as the per-
formance improvements obtained when mapping the tasks of the applications.

5.1 Performance of the Mapping Algorithms

Fig. 5 shows the execution time of the four mapping algorithms for all bench-
marks. For 128 tasks, EagerMap is about 10 times faster than Scotch, 1000 times
faster than TreeMatch, and 100,000 times faster than MPIPP. TreeMatch has an
exponential complexity, so a much higher execution time is expected for it. Due
to this, the difference in execution time between TreeMatch and EagerMap in-
creases together with the number of tasks. MPIPP is much slower than the
other mechanisms because it needs to perform several iterations to refine its
initial random mapping. It did not finish executing when the number of tasks
was higher than 128.

5.2 Quality of the Mapping

The quality of the calculated mapping determines the benefits that can be
achieved. Quality is measured by the amount of locality achieved. We use
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Equation 7 to calculate the quality, which is provided in the source code of
TreeMatch. In this equation, n is the number of tasks, M [i][j] is the amount
of communication between tasks i and j, map[x] is the processing unit (PU)
mapped, and lat[a][b] is the latency of the PUs in the hierarchy. We calculated
the latencies using LMbench [37].

MappingQuality =

n−1∑
i=1

n∑
j=i+1

M [i][j]

lat
[
map[i]

][
map[j]

] (7)

Fig. 6 presents the mapping quality results for the communication matrices
previously illustrated in Fig. 1. Applications with more structured communi-
cation patterns presented the highest improvements, as expected. CG-MPI,
LU-MPI and HPCC (Phase 7) presented the best improvements because their
communications can be easily optimized by mapping neighboring tasks together.
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Figure 5: Execution time (in ms) of the mapping algorithms, for different num-
bers of tasks to be mapped.
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Figure 6: Comparison of the mapping quality, normalized to the random map-
ping. Higher values are better.
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Figure 7: Speedup of the parallel version of EagerMap with different number of
tasks to be mapped, varying the number of execution threads.

In BT-MPI and MG-MPI, near and distant tasks communicate, presenting more
challenges for the mapping algorithm. The reason is that if neighboring tasks are
mapped together, the communication between distant tasks does not improve.
Likewise, mapping distant tasks together does not improve communication be-
tween neighboring tasks. In applications with less structured patterns, such as
Streamcluster, a lower improvement is expected because the ratio of communi-
cation between tasks that communicate more and tasks that communicate less
is lower. Vips is the only application with unstructured communication, such
that no task mapping was able to improve its communication.

The quality obtained with MPIPP is similar to the random mapping, since
MPIPP is based on refining an initial random mapping. Although MPIPP can
work with few tasks, when the number of tasks increases, the possibilities of
permutation increase exponentially. This makes it more difficult to find new
combinations to improve the initial solution. EagerMap, TreeMatch and Scotch
presented similar results for all applications. This result demonstrates that
EagerMap is able to achieve results as good as more complex algorithms due to
the characteristics of the communication patterns we observed in Section 3.

5.3 Speedup of the Parallel Version of EagerMap

The speedup of the parallel version of EagerMap when mapping different num-
bers of tasks can be found in Fig. 7. We analyze the speedup relative to the
number of tasks because it is the parameter with most influence in execution
time. The task tree structure has little impact on the speedup, since the parallel
algorithm is applied only to the first levels of the hierarchy (usually only to the
first level), as explained in Section 3.5. As we explain in Section 3.5, we do
not expect a linear speedup because the duration of the parallel phase is short.
The parallel phase is restarted several times during the mapping calculation,
imposing overhead in the parallelization. On the other hand, the impact of the
overhead is decreased when the number of tasks to be mapped increases, as can
be seen in the figure. This happens because, with more tasks, the duration of
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Figure 8: Performance improvement compared to the operating system mapping
of the NAS-MPI and NAS-OMP benchmarks in a shared memory environment.

the parallel phase increases. With 131072 tasks, the speedup using 32 threads
was 13.7, and should be higher for more tasks.

It is important to note that, when the number of tasks is large, the usage
of the parallel version of EagerMap is encouraged. This happens because the
execution time grows fast with the increase of the number of tasks. For instance,
with 32768 tasks, the single threaded execution required 43 minutes. With
131072 tasks, the single threaded execution time grew to 25 hours. Using the
parallel version with 32 threads, the execution time was reduced to 5.8 minutes
and 1.8 hours, respectively.

5.4 Performance Improvements in a Shared-Memory En-
vironment

We executed applications using the mapping obtained with the algorithms in
the machine with Intel Xeon X7550 processors. The execution time results for
the MPI and OpenMP NAS Benchmarks are shown in Fig. 8. For these appli-
cations, since their communication pattern is stable, we calculated the mapping
statically. As a case study for online mapping, we used the HPCC Bench-
mark, shown in Fig. 9, since it contains 16 phases with different communication
behaviors. For each phase, we call the mapping algorithm and migrate tasks
accordingly. Execution time results correspond to the average of 30 executions,
and are normalized to the execution time of the original policy of the operating
system. The confidence interval is smaller than 1% for all algorithms.

In general, applications with more structured communication patterns
present higher performance improvements. For instance, CG-MPI’s perfor-
mance was significantly improved when compared to the OS mapping, since
its communication pattern shows high potential for mapping, as discussed in
Section 5.2. On average, EagerMap improved performance by 10.3%, while
TreeMatch, Scotch and MPIPP showed improvements of 9.6%, 8.7% and 8.4%,
respectively. The results of the HPCC Benchmark (Fig. 9) show a larger im-
provement by EagerMap than related work. Also, the lower overhead of our
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Figure 10: Performance improvements from the load-aware EagerMap in Xeon
Phi for the NAS OpenMP benchmarks compared to the operating system map-
ping.

algorithm does not harm the application performance as much as TreeMatch
and MPIPP.

5.5 Performance Improvements from the Load-Aware Al-
gorithm

The performance improvements from the load-aware EagerMap in Xeon Phi is
shown in Fig. 10. On average, EagerMap improved the performance by 44.9%,
while Scotch, Scatter and Compact improved by an average of 17.8%, 19.3%
and 9.6%, respectively. Scatter and Compact do not perform any analysis on
the communication and load, following only pre-defined rules. This shows that
EagerMap, by actually considering the communication and load aspects of the
applications, can provide a better performance improvement. On the other
hand, Scotch also takes into account both the load and communication to cal-
culate the mapping. This indicates that EagerMap can make a better use of
this information than Scotch.
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(e) Mixed-32.
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Figure 11: Performance improvement compared to the operating system map-
ping of the NAS-MPI benchmarks in the clusters.

5.6 Performance Improvements in Clusters

The results of the cluster experiments with applications from the MPI NAS
benchmarks can be found in Fig. 11. The results are normalized to the random
mapping. The mapping was performed only statically because OpenMPI does
not support task migration between nodes.
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EagerMap achieves performance results similar to Scotch. However, as
shown in Section 5.1, the time EagerMap requires to calculate the mapping
is about 10 times faster than Scotch. In the experiments with 32 tasks, in
the 4×8, 2×16 and Mixed-32 clusters, the application CG was the one that
achieved the best results, where the performance was improved by up to 394%
in Mixed-32. In 4×16, with 64 tasks, LU was the application with the best
improvements, of 286%. BT and SP use less cores than the total in all clusters
except 4×16 and Mixed-64 (the applications use a quadratic number of tasks),
and Scotch presents better results. In 4×16 and Mixed-64, EagerMap was bet-
ter. This shows that EagerMap is better at optimizing for communication, while
Scotch is better at balancing the load between the machines. Regarding MG,
the Interleave policy achieves good results because, coincidentally, its mapping
is very close to the best mapping possible for MG.

6 Conclusions

The mapping of tasks to PUs in parallel architectures influences the communi-
cation performance and load balance. The communication performance can be
improved by mapping tasks that communicate to PUs nearby in the memory
hierarchy or to the same node in clusters or grids, making use of faster inter-
connections. The load balance can be improved by mapping the tasks in such a
way that the load is evenly distributed among the PUs. The mapping algorithm
selects which PU will execute each task and plays a key role in these types of
mapping. When the mapping algorithm considers both metrics, more challenges
arise, since these metrics can lead to contradictory decisions.

In this paper, we proposed EagerMap, that originally worked only in shared-
memory architectures and only considered the communication pattern. We
added support for load balancing, mapping in clusters and grids, and proposed
a parallel version to accelerate its execution. In contrast to previous work, it
adopts a more efficient method to select which tasks should be mapped together,
based on an analysis of the communication pattern of parallel applications. We
performed experiments with a large set of benchmarks with different commu-
nication characteristics. Results show that EagerMap calculated better task
mappings than the state of the art, with a drastically lower overhead and better
scaling, which makes EagerMap more suitable for online mapping.

As future work, we intend to study EagerMap to allow it to execute in a
cluster in a distributed way.

EagerMap is licensed under the GPL and is available at
http://github.com/ehmcruz/eagermap.

Acknowledgment

This research received funding from the EU H2020 Programme and from
MCTI/RNP-Brazil under the HPC4E project, grant agreement n.o 689772. It
was also supported by Intel.

24

http://github.com/ehmcruz/eagermap


References

[1] A. Anbar, O. Serres, E. Kayraklioglu, A.-H. A. Badawy, and T. El-Ghazawi.
Exploiting Hierarchical Locality in Deep Parallel Architectures. ACM
Transactions on Architecture and Code Optimization (TACO), 13(2):1–25,
2016.

[2] R. Azimi, D. K. Tam, L. Soares, and M. Stumm. Enhancing Operating
System Support for Multicore Processors by Using Hardware Performance
Monitoring. ACM SIGOPS Operating Systems Review, 43(2):56–65, apr
2009.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The
NAS Parallel Benchmarks. International Journal of Supercomputer Appli-
cations, 5(3):66–73, 1991.

[4] S. Bak, H. Menon, S. White, M. Diener, and L. Kale. Multi-level load bal-
ancing with an integrated runtime approach. In IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2018.

[5] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and
O. Schwartz. Communication lower bounds and optimal algorithms for
numerical linear algebra. Acta Numerica, 23(May):1–155, 2014.

[6] N. Barrow-Williams, C. Fensch, and S. Moore. A Communication Char-
acterisation of Splash-2 and Parsec. In IEEE International Symposium on
Workload Characterization (IISWC), pages 86–97, 2009.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In International
Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 72–81, 2008.

[8] J. E. Boillat and P. G. Kropf. A Fast Distributed Mapping Algorithm. In
Joint International Conference on Vector and Parallel Processing (CON-
PAR 90 – VAPP IV), pages 405–416, 1990.

[9] S. Bokhari. On the Mapping Problem. IEEE Transactions on Computers,
C-30(3):207–214, 1981.

[10] B. Brandfass, T. Alrutz, and T. Gerhold. Rank reordering for MPI com-
munication optimization. Computers & Fluids, 80(July):372–380, 2013.

[11] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst. hwloc: A Generic Framework for
Managing Hardware Affinities in HPC Applications. In Euromicro Confer-
ence on Parallel, Distributed and Network-based Processing (PDP), pages
180–186, 2010.

[12] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn. MPIPP: An Au-
tomatic Profile-guided Parallel Process Placement Toolset for SMP Clus-
ters and Multiclusters. In ACM/IEEE International Conference for High

25



Performance Computing, Networking, Storage and Analysis (SC), pages
353–360, 2006.

[13] C. Chevalier and F. Pellegrini. PT-Scotch: A Tool for Efficient Parallel
Graph Ordering. Parallel Computing, 34(6-8):318–331, July 2008.

[14] E. H. M. Cruz, M. Diener, M. A. Z. Alves, and P. O. A. Navaux. Dynamic
thread mapping of shared memory applications by exploiting cache coher-
ence protocols. Journal of Parallel and Distributed Computing (JPDC),
74(3):2215–2228, mar 2014.

[15] E. H. M. Cruz, M. Diener, L. L. Pilla, and P. O. A. Navaux. An Effi-
cient Algorithm for Communication-Based Task Mapping. In International
Conference on Parallel, Distributed, and Network-Based Processing (PDP),
pages 207–214, 2015.

[16] E. H. M. Cruz, M. Diener, L. L. Pilla, and P. O. A. Navaux. Hardware-
assisted thread and data mapping in hierarchical multicore architectures.
ACM Trans. Archit. Code Optim., 13(3):28:1–28:28, Sept. 2016.

[17] E. H. M. Cruz, M. Diener, M. S. Serpa, P. O. A. Navaux, L. Pilla, and I. Ko-
ren. Improving communication and load balancing with thread mapping
in manycore systems. In Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP), pages 93–100, 2018.

[18] W. J. Dally. GPU Computing to Exascale and Beyond. Technical report,
nVidia, 2010.

[19] M. Deveci, K. Kaya, B. Ucar, and U. V. Catalyurek. Fast and High Qual-
ity Topology-Aware Task Mapping. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 197–206, 2015.

[20] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V.
Catalyurek. Parallel hypergraph partitioning for scientific computing. In
IEEE International Parallel & Distributed Processing Symposium (IPDPS),
pages 124–133, 2006.

[21] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Jour-
nal of Research of the National Bureau of Standards – Section B. Mathe-
matics and Mathematical Physics, 69B(1 and 2):125, 1965.

[22] R. Glantz, H. Meyerhenke, and A. Noe. Algorithms for Mapping Paral-
lel Processes onto Grid and Torus Architectures. In 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based Pro-
cessing, pages 236–243, mar 2015.

[23] B. Hendrickson and R. Lelandy. The chaco users guide version 2.0. Tech-
nical report, Sandia National Laboratories, 1995.

[24] S. Ito, K. Goto, and K. Ono. Automatically optimized core mapping to
subdomains of domain decomposition method on multicore parallel envi-
ronments. Computers & Fluids, 80:88–93, jul 2013.

26



[25] E. Jeannot and G. Mercier. Near-optimal placement of MPI processes on
hierarchical NUMA architectures. In Euro-Par Parallel Processing, pages
199–210, 2010.

[26] E. Jeannot, G. Mercier, and F. Tessier. Process Placement in Multicore
Clusters: Algorithmic Issues and Practical Techniques. IEEE Transactions
on Parallel and Distributed Systems, 25(4):993–1002, apr 2014.

[27] E. Jeannot, G. Mercier, and F. Tessier. Topology and Affinity Aware Hi-
erarchical and Distributed Load-balancing in Charm++. In Workshop on
Optimization of Communication in HPC (COM-HPC), pages 63–72, 2016.

[28] H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation of NAS Par-
allel Benchmarks and Its Performance. Technical Report October, NASA,
1999.

[29] M. T. Jones. Inside the linux 2.6 completely fair sched-
uler. https://www.ibm.com/developerworks/linux/library/

l-completely-fair-scheduler/, 2009. [Online; accessed June-2018].

[30] Z. Jovanovic and S. Maric. A heuristic algorithm for dynamic task schedul-
ing in highly parallel computing systems. Future Generation Computer
Systems, 17(6):721–732, apr 2001.

[31] G. Karypis and V. Kumar. Metis – unstructured graph partitioning and
sparse matrix ordering system, version 2.0. Technical report, University of
Minnesota, Department of Computer Science, 1995.

[32] G. Karypis and V. Kumar. Parallel Multilevel K-way Partitioning Scheme
for Irregular Graphs. In ACM/IEEE Conference on Supercomputing, pages
1–21, 1996.

[33] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM J. Sci. Comput., 20(1):359–392, Dec.
1998.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), pages
190–200, 2005.

[35] H. Luo, P. Li, and C. Ding. Thread data sharing in cache: Theory and
measurement. In ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 103–115, New York, NY, USA,
2017. ACM.

[36] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifer, B. Lucas, J. Kep-
ner, J. Mccalpin, D. Bailey, D. Takahashi, J. Jack, and R. Rabenseifner.
Introduction to the HPC Challenge Benchmark Suite. Technical report,
2005.

[37] L. McVoy and C. Staelin. Lmbench: Portable Tools for Performance Anal-
ysis. In USENIX Annual Technical Conference (ATC), pages 23–38, 1996.

27

https://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/
https://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/


[38] F. Pellegrini. Static Mapping by Dual Recursive Bipartitioning of Pro-
cess and Architecture Graphs. In Scalable High-Performance Computing
Conference (SHPCC), pages 486–493, 1994.

[39] J. Shalf, S. Dosanjh, and J. Morrison. Exascale Computing Technology
Challenges. In High Performance Computing for Computational Science
(VECPAR), pages 1–25, 2010.

[40] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra. Starling: Minimiz-
ing Communication Overhead in Virtualized Computing Platforms Using
Decentralized Affinity-Aware Migration. In International Conference on
Parallel Processing (ICPP), pages 228–237, sep 2010.

[41] F. Trahay, F. Rue, M. Faverge, Y. Ishikawa, R. Namyst, and J. Dongarra.
EZTrace: a generic framework for performance analysis. In International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 618–
619, 2011.

[42] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L.
Chamberlain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Han-
nig, E. Jeannot, A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief,
N. Maruyama, C. J. Newburn, and M. Pericás. Trends in data locality ab-
stractions for hpc systems. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 28(10):3007–3020, Oct 2017.

[43] W. Wang, T. Dey, J. Mars, L. Tang, J. W. Davidson, and M. L. Soffa.
Performance Analysis of Thread Mappings with a Holistic View of the
Hardware Resources. In IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS), 2012.

[44] J. Zhai, T. Sheng, and J. He. Efficiently Acquiring Communication Traces
for Large-Scale Parallel Applications. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 22(11):1862–1870, 2011.

28


	Introduction
	Related Work
	EagerMap: Greedy Hierarchical Mapping
	Description of the EagerMap Algorithm
	Top Level Algorithm
	Generating the Groups for a Level of the Architecture Hierarchy
	Computing the Communication Matrix for the next Level of the Architecture Hierarchy
	Mapping the Group Tree to the Architecture Topology Tree

	Mapping Example in a Multi-level Hierarchy
	Complexity of EagerMap
	Considering the Task Load
	Parallel EagerMap
	Running EagerMap in Non-Tree Topologies

	Evaluation Methodology of EagerMap
	Benchmarks
	Generating the Communication Matrices
	Generating the Task Load
	Hardware Architecture
	Comparison

	Results
	Performance of the Mapping Algorithms
	Quality of the Mapping
	Speedup of the Parallel Version of EagerMap
	Performance Improvements in a Shared-Memory Environment
	Performance Improvements from the Load-Aware Algorithm
	Performance Improvements in Clusters

	Conclusions

