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A NON-CONSERVATIVE HARRIS’ ERGODIC THEOREM

VINCENT BANSAYE, BERTRAND CLOEZ, PIERRE GABRIEL, AND ALINE MARGUET

Abstract. We consider non-conservative positive semigroups and obtain necessary and suf-
ficient conditions for uniform exponential contraction in weighted total variation norm. This
ensures the existence of Perron eigenelements and provides quantitative estimates of spec-
tral gaps, complementing Krein-Rutman theorems and generalizing recent results relying on
probabilistic approaches. The proof is based on a non-homogenous h-transform of the semi-
group and the construction of Lyapunov functions for this latter. It exploits then the classical
necessary and sufficient conditions of Harris’ theorem for conservative semigroups. We apply
these results and obtain exponential convergence of birth and death processes conditioned on
survival to their quasi-stationary distribution, as well as estimates on exponential relaxation
to stationary profiles in growth-fragmentation PDEs.
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1. Introduction

We are interested in the asymptotic behavior of positive semigroups acting on a weighted
space of measures. For conservative semigroups, Harris’ ergodic theorem [42, 54, 40] provides a
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necessary and sufficient condition for the existence of a unique invariant probability measure and
the exponential convergence of the semigroup to this invariant measure for the weighted total
variation distance. It combines a Doeblin condition on small sets that provides a contraction
and a Lyapunov function that pushes back the mass to these small sets. For non-conservative
semigroups, the Perron-Frobenius [62, 35] and Krein-Rutman [46] theory gives conditions en-
suring the existence of a steady distribution which grows or decreases exponentially fast, see
[14, 43, 24]. We propose a Harris type theorem in that case. We obtain necessary and sufficient
conditions to guarantee the existence of a (unique) Perron solution and the exponential conver-
gence of the non-conservative semigroup to this solution, uniformly with respect to the weighted
total variation distance.

We start by stating the framework of our study. Let X be a measurable space. For any
measurable function ϕ : X → (0,∞) we denote by B(ϕ) the space of measurable functions
f : X → R which are dominated by ϕ, i.e. such that the quantity

‖f‖B(ϕ) = sup
x∈X

|f(x)|
ϕ(x)

is finite. Endowed with this weighted supremum norm, B(ϕ) is a Banach space. Let B+(ϕ) ⊂
B(ϕ) be its positive cone, namely the subset of nonnegative functions.

We denote by M+(ϕ) the cone of positive measures on X which integrate ϕ, i.e. the set of
positive measures µ on X such that the quantity

µ(ϕ) =

∫
X
ϕdµ

is finite. The space of weighted signed measures M(ϕ) is defined here by

M(ϕ) =M+(ϕ)×M+(ϕ)�∼
where (µ1, µ2) ∼ (µ̃1, µ̃2) if µ1 + µ̃2 = µ2 + µ̃1. An element µ ofM(ϕ) acts on B(ϕ) through

µ(f) = µ1(f)− µ2(f),

where (µ1, µ2) is any representative of the equivalence class µ. This motivates the notation
µ = µ1 − µ2 to mean that µ is the equivalence class of (µ1, µ2). Clearly M(ϕ) is canonically
isomorphic to the space of finite signed measures on X , but it is not a subspace except if ϕ
is bounded from below by a positive constant. Through this isomorphism the Hahn-Jordan
decomposition of signed measures ensures that for any µ ∈ M(ϕ) there exists a unique couple
(µ+, µ−) ∈ M+(ϕ)×M+(ϕ) of mutually singular measures such that µ = µ+ − µ−. We endow
M(ϕ) with the weighted total variation norm

‖µ‖M(ϕ) = |µ|(ϕ) = µ+(ϕ) + µ−(ϕ) = sup
‖f‖B(ϕ)≤1

|µ(f)|

which makes it a Banach space, the canonical isomorphism with the space of signed measures
being actually an isometry if the latter is endowed with the standard total variation norm.

We consider two measurable functions V : X → (0,∞) and ψ : X → (0,∞) and a positive
semigroup (Mt)t≥0 acting both on B(V ) (on the right f 7→ Mtf) and M(V ) (on the left µ 7→
µMt). We also assume the standard duality relation (µMt)f = µ(Mtf) and we denote this
common value by µMtf. For two functions f, g : Ω→ R, we use the notation f . g when there
exists a constant C > 0 such that f ≤ Cg on Ω.We now state our assumptions onM = (Mt)t≥0.

Assumption A. There exist τ, T > 0, β > α > 0, θ ≥ 0, (c, d) ∈ (0, 1]2, K ⊂ X and ν a
probability measure on X supported by K such that
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(A0) ψ ≤ V on X and V . ψ on K; MV . V and Mψ & ψ on [0, T ]×X ,

(A1) MτV ≤ αV + θ1Kψ,

(A2) Mτψ ≥ βψ,

(A3) For all x ∈ K and f ∈ B+(V/ψ),

Mτ (fψ)(x) ≥ c ν(f)Mτψ(x),

(A4) For any integer n,

d sup
x∈K

Mnτψ(x)

ψ(x)
≤ ν

(
Mnτψ

ψ

)
.

Assumption A is an extension of the criterion for exponential convergence of conservative
semigroups for the weighted total variation distance [40], see forthcoming Theorem 2.1. They
are linked to classical assumptions for spectral gaps of non-conservative semigroups, see in par-
ticular [58, 7, 21]. They relax these assumptions and provide necessary conditions for exponential
convergence in total variation distance.
More precisely, one can compare A to the assumptions of [58, Theorem 5.3], where (A2) corre-
sponds to (2), while (1) and (4) seem to be relaxed and simplified here. In particular Doeblin’s
condition (A3) is less restrictive than assuming strong positivity or irreducibility.
Assumption A provides an extension of the conditions of [7] in the homogeneous case. In that
latter, Doeblin’s condition (A3) was required on the whole space X , which imposes the “coming
back from infinity” property. It does not hold for instance in the two applications we consider in
the present paper.
Our assumptions are very similar to [21]. Our approach is different, as explained below. In
particular, we relax the boundedness of ψ required in [21] and we obtain necessary conditions for
weighted exponential convergence. As a by product, we can capture new regimes, see the two
applications and comments in Section 4.1 for convergence to quasi-stationary distribution.

The main result of the paper can be stated as followed. Its proof is postponed to Section 3.5.

Theorem 1.1. (i) Let (V, ψ) be a couple of measurable functions from X to (0,∞) which sat-
isfies Assumption A. Then, there exists a unique triplet (γ, h, λ) ∈ M+(V ) × B+(V ) × R of
eigenelements of M with γ(h) = ‖h‖B(V ) = 1, i.e. satisfying for all t ≥ 0

γMt = eλtγ and Mth = eλth. (1.1)

Moreover, there exists C,ω > 0 such that for all t ≥ 0 and µ ∈M(V ),∥∥e−λtµMt − µ(h)γ
∥∥
M(V )

≤ C ‖µ‖M(V ) e−ωt. (1.2)

(ii) Assume that there exist a positive measurable function V, a triplet (γ, h, λ) ∈ M+(V ) ×
B+(V )×R, and constants C,ω > 0 such that (1.1) and (1.2) hold. Then, the couple (V, h/‖h‖B(V ))
satisfies Assumption A.

In case (i) we have additionally the estimates log(β)/τ ≤ λ ≤ log(α + θ)/τ and (ψ/V )qψ .
h . V for some q > 0. Besides, as explained in the next section and in the forthcoming proofs,
one can also provide quantitative bounds for all the constants above, expressed using the con-
stants of Assumption A.
Assumption A happens to be necessary for exponential convergence. We also provide in this
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paper more convenient sufficient conditions. In the conservative case, Foster-Lyapunov inequal-
ity (A1) is usually checked through a so-called drift condition on the generator [55]. In Section 2.4,
we give the counterpart in the non-conservative case. Loosely speaking, writing L the generator
of (Mt)t≥0, we prove that

LV ≤ aV + ζψ, bψ ≤ Lψ ≤ ξψ,

entail that (A0), (A1) and (A2) hold. Furthermore, (A3) and (A4) can be easily checked under
irreducibility conditions when X is discrete, while in the continuous setting coupling methods
can be invoked.

Spectral results for semigroups have been obtained recently using stability theorems for
the associated Markov processes. Let us mention in particular works associated with growth-
fragmentation process [13] and Feynman-Kac semigroups [34]. The results here are related but
the proofs are different. We use a non-homogeneous Markov process rather than a penalization
of an homogeneous Markov process arising through Feynman-Kac formula. In particular, we
stress that our results provide the existence of eigenelements without needing the application of
Krein-Rutman theorem. Furthermore, our contraction method is extendable to non-homogeneous
setting and applications and in this vein we refer to [7] for the case of Doeblin conditions. Let us
finally mention [70, 71] for related works on exponential convergence for subconservative semi-
groups. It provides in particular relevant sufficient conditions for (A3) and (A4) when K = X .

The paper is structured as follows. In Section 2, we give the main statements and ingredients
of the paper, which both lead to the proof of Theorem 1.1 and provide additional quantitative
estimates. We first recall the classical conservative Harris theorem. Then, we introduce the
non-homogeneous conservative auxiliary semigroup which allows us to extend this result to non-
conservative cases by proving the existence of eigenelements and quantifying the spectral gap.
We end this section by stating some handy sufficient conditions. Section 3 contains the proofs
of these statements. In Section 4 we derive new results for two well studied examples, namely
the random walk on integers absorbed in 0 and the growth-fragmentation equation.

2. Main statements and outline of the proof

In this section, we explain the main steps of the proof of Theorem 1.1 and give more quantita-
tive estimates, especially about the spectral gap. We also introduce the key objects and ideas of
the paper. First, we recall the well-known Harris ergodic theorem, for conservative semigroups,
that we slightly adapt to our purposes, see forthcoming Theorem 2.1. Then, we introduce the
non-homogeneous conservative semigroup P (t) via a h-transform. We provide for this semigroup
both a Lyapunov function (Lemma 2.2) and a Doeblin condition on small sets (Lemma 2.3) using
Assumption A. Theorem 2.1 can then be applied to this conservative semigroup and forthcom-
ing Proposition 2.4 yields a contraction principle for P (t). We can then prove the existence of
eigenelements (γ, h, λ) and control the growth of the mass Mtψ by eλt and conclude. Finally,
we give in Section 2.4 sufficient conditions for verifying Assumption A, which will be useful for
forthcoming applications. Let us stress that in the lemmas of Sections 2 and 3, Assumption A
is implicitly supposed to be verified.

2.1. Contraction in total variation for conservative operators. The following result is a
direct generalization of [40, Theorem 1.3]. The adaptation of the proof is briefly given in Sec-
tion 3.1 for completeness. We consider a positive operator P acting both on bounded measurable
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functions f : X → R on the right and on bounded measures µ of finite mass on the left, and
such that (µP )f = µ(Pf). Note that the right action of P extends trivially to any measurable
function f : X → [0,+∞]. We assume that P is conservative in the sense that

P1 = 1,

or equivalently, if µ is a probability measure then so does µP.

Theorem 2.1. Assume that there exist two measurable functions V0, V1 : X → [0,∞) and
(a, b) ∈ (0, 1)2, c > 0, R > 2c/(1− a) and a probability measure ν on X such that:

• for all x ∈ X ,
PV0(x) ≤ aV1(x) + c, (2.1)

• for all x ∈ {V1 ≤ R},
δxP ≥ bν. (2.2)

Then, there exist y ∈ (0, 1) and κ > 0 such that for all probability measures µ1 and µ2,

‖µ1P − µ2P‖M(1+κV0) ≤ y ‖µ1 − µ2‖M(1+κV1) . (2.3)

In particular, for any b′ ∈ (0, b) and a′ ∈ (a + 2c/R, 1), one can choose

κ =
b′

c
, y = max

{
1− (b− b′),

2 + κRa′

2 + κR

}
.

Usually, for conservative semigroups and Markov chains [54, 40], Theorem 2.1 is stated and
used with one single function V0 = V1. The contraction in total variation then gives the ex-
ponential convergence of the sequence (µPn)n≥0 to the unique invariant measure. Hereafter, a
time-inhomogeneous semigroup is involved and a suitable family of functions Vk is considered.

2.2. Auxiliary conservative semigroup and Lyapunov functions. To exploit the previous
estimates, we need to consider a relevant conservative semigroup associated to M . Let us fix a
positive function g ∈ B(V ) and a time t > 0. For any 0 ≤ s ≤ u ≤ t, we define the operator
P

(t,g)
s,u acting on bounded measurable functions f through

P (t,g)
s,u f =

Mu−s(fMt−ug)

Mt−sg
. (2.4)

We observe that the family P (t,g) = (P
(t,g)
s,u )0≤s≤u≤t is a non-homogeneous conservative semi-

group (or semiflow, or propagator), meaning that for any 0 ≤ s ≤ u ≤ v ≤ t,

P (t,g)
s,u P (t,g)

u,v = P (t,g)
s,v .

It has a probabilistic interpretation in terms of particles systems, see e.g. [50] and references
below. Roughly speaking, it provides the position of the backward lineage of a particle at time
t sampled with a bias g.

The particular case g = 1:

P (t,1)
s,u f =

Mu−s(fMt−u1)

Mt−s1
,

corresponds to uniform sampling and has been successfully used in the study of semigroups, see
[26, 27, 5, 20, 50, 7]. In particular [20, 7] obtain quantitative uniform exponential estimates of
M in the particular case K = X . More precisely, when K = X , [20] guarantees the equivalence
between assumptions (A3)-(A4) for M and the Doeblin assumption (2.2) for P (t,1). However,
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for several examples these conditions do not hold on the whole space X , see the applications of
Section 4. Such conditions are valid only on some (compact) subset K ⊂ X . A counterpart of
Harris ergodic theorem for non-conservative semigroup is then expected and obtained below.

Whenever possible, the right positive eigenfunction of the semigroup provides another relevant
choice for g. More precisely, if there exist a positive function h and a real number λ such that
Mth = eλth for any t ≥ 0, then (2.4) simplifies for g = h. Indeed,

Psf = P
(t,h)
u,u+sf =

Ms(hf)

eλsh

is a conservative homogeneous semigroup P . This transformation is usually called (Doob) h-
transform and we refer to [29, 60], [30, chapter VIII] or [65, Section 39 p.83]. It allows to derive
a Markov process from a non-conservative semigroup. This transformation provides a powerful
tool for the analysis of branching processes and absorbed Markov process, see e.g. respectively
[47, 32, 22] and [29, 23]. Let us explain here how to apply Theorem 2.1 with (Ps)s≥0 and get
the asymptotic behavior of M . Inequality (2.1) with V0 = V1 and P = Pτ reads PτV0 ≤ aV0 + c
and that latter writes Mτ (V0h) ≤ aV0h+ ch in terms of the original semigroup. This inequality
is guaranteed by (A1) by setting V = V0h and ψ = h. Additionally, Equation (2.2) corresponds
exactly to (A3). Thus, in cases we know a positive eigenelement h, checking (A1) and (A3)
with (V, h) allows to derive ergodic estimates for M using P and V0 = V/h.

In this paper, we deal with the general case and consider a positive function ψ satisfying (A2).
We introduce the following non-homogeneous conservative semigroup

P (t)
s,uf = P (t,ψ)

s,u f =
Mu−s(fMt−uψ)

Mt−sψ
. (2.5)

In general and at least for our applications, ψ will be not an eigenelement or 1. Nevertheless,
the analogy with the h-transform above suggests to look for Lyapunov functions of the form
V0 = V/ψ. The family of functions V/Mkτψ actually readily satisfies (2.1). But their level sets
may degenerate as k →∞, which raises a problem to check (2.2). We compensate the magnitude
of Mkτψ and introduce the functions

Vk = ν

(
Mkτψ

ψ

)
V

Mkτψ
. (2.6)

The two following lemmas, which are proved in Section 3.3, ensure that (Vk)k≥0 indeed provides
relevant Lyapunov functions with Doeblin’s condition satisfied on the sublevel sets for P (t).

Lemma 2.2. For all k ≥ 0 and n ≥ m ≥ k + 1, we have

P
(nτ)
kτ,mτVn−m ≤ aVn−k + c,

where
a =

α

β
∈ (0, 1), c =

θ

c(β − α)
≥ 0.

Lemma 2.3. Let R > 0 and set

p =

⌊ log
(

2R(α+θ)
(β−α)d

)
log(β/α)

⌋
+ 1. (2.7)

Then, there exists a family of probability measures {νk,n, k ≤ n} such that for all 0 ≤ k ≤ n− p
and x ∈ {Vn−k ≤ R},

δxP
(nτ)
kτ,(k+p)τ ≥ b νk,n,
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where b ∈ (0, 1] is defined by

b =
(cd(β − α))2β

2θ(α+ θ)(αR+ θ)

1∑`
j=1(a/cr)j

with R = supK V/ψ and r = (β/(α(R+ θ/(β − α)) + θ))
2.

We can now state the key contraction result.

Proposition 2.4. Let (V, ψ) be a couple of measurable functions from X to (0,∞) which satisfies
Assumption A. Let R > 2c/(1− a), b′ ∈ (0, b), a′ ∈ (a + 2c/R, 1) and set

κ =
b′

c
, y = max

{
1− (b− b′),

2 + κRa′

2 + κR

}
.

Then, for any µ1, µ2 ∈M+(V/ψ) and any integers k and n such that 0 ≤ k ≤ n− p,∥∥µ1P
(nτ)
kτ,(k+p)τ − µ2P

(nτ)
kτ,(k+p)τ

∥∥
M(1+κVn−k−p)

≤ y ‖µ1 − µ2‖M(1+κVn−k) .

2.3. Quantitative estimates for non-conservative semigroups. We now derive from P (t)

the expected estimates for the original semigroup M , under the conditions of Proposition 2.4.
Using notation introduced in the previous section, we set

ρ = max {y, ap} = max

{
1− (b− b′),

2 + κRa′

2 + κR
, ap
}
∈ (0, 1), (2.8)

with b′ ∈ (0, b) and a′ ∈ (a + 2c/R, 1). Let us first consider the existence of eigenelements.

Lemma 2.5. There exists h ∈ B+(V ) and λ ∈ R such that for all t ≥ 0

Mth = eλth.

Moreover, (
ψ

V

)q
ψ . h . V,

with q = log(cr)/ log(a) > 0 and there exists C > 0 such that for all µ ∈M+(V ) and t ≥ 0,∣∣∣∣µ(h)− µMtψ

ν(Mtψ/ψ)

∣∣∣∣ ≤ Cµ(V )2

µ(ψ)
ρbt/pτc. (2.9)

Lemma 2.6. There exists γ ∈M+(V ) such that γ(h) = 1 and for all t ≥ 0,

γMt = eλtγ.

Moreover, there exists C > 0 such that for all t ≥ 0 and µ ∈M+(V ),∥∥∥∥γ(·ψ)

γ(ψ)
− µMt(·ψ)

µMt(ψ)

∥∥∥∥
M(1+κV0)

≤ C
(
µ(V )

µ(ψ)
+

θ

β − α

)
ρbt/pτc. (2.10)

Using Lemma 2.6 and (A0) and (A1), we have eλτγ(V ) = γMτV ≤ (α+θ)γ(V ) and eλτγ(ψ) =
γMτψ ≥ βγ(ψ). It yields the following estimate of the eigenelement

log(β)

τ
≤ λ ≤ log(α+ θ)

τ
. (2.11)

We can now provide quantitative estimates for the exponential convergence to the profile given
by these eigenelements.
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Theorem 2.7. Under Assumption A, there exists C > 0 such that for all µ ∈M+(V ) and t ≥ 0
we have ∥∥µMt − γeλtµ(h)

∥∥
M(V )

≤ Cµ(V )

µ(ψ)
e−σt min

{
µMtψ, µ(V )eλt

}
, (2.12)

where
σ =

− log ρ

pτ
> 0.

Remark 2.8. The rate σ of exponential convergence is explicit in terms of the constants in
Assumption A. Notice that σ is not equal to the spectral gap ω in Theorem 1.1, which is obtained
by applying Theorem 2.7 with (V, h/‖h‖B(V )) after having checked that this couple satisfies As-
sumption A with other constants, see forthcoming Section 3.5. We recall that these spectral gaps
and multiplicative constants are explicit in the proofs.

Finally, the renormalisation of the semigroup by its mass Mt1 may also be relevant for appli-
cations. Let us mention in particular the study of the convergence of the conditional probability
to quasi-stationary distribution and the study of the typical trait in a structured branching pro-
cess, see respectively Section 4.1 and e.g. [7, 50, 51]. For the sake of convenience, we use the
notation P(V ) for the set of probability measures which belong toM(V ).

Corollary 2.9. If Assumption A holds and infX V > 0, there exist C > 0 and π ∈ P(V ) such
that for every µ ∈M+(V ) and t ≥ 0,∥∥∥∥ µMt

µMt1
− π

∥∥∥∥
TV
≤ Cµ(V )

µ(h)
e−ωt. (2.13)

2.4. Sufficient conditions: drift on the generator and irreducibility. Assumptions (A0)-
(A1)-(A2) can be checked conveniently through conditions on the generator L of the semigroup
(Mt)t≥0. We give here such sufficient conditions by adopting a weak but practical definition of
the generator, which can be seen as a mild formulation of L = ∂tMt|t=0

, similarly as in [39]. For
F,G ∈ B(V ) we say that

LF = G

if for all x ∈ X the function s 7→MsG(x) is locally integrable, and for all t ≥ 0

MtF = F +

∫ t

0

MsGds.

In general for F ∈ B(V ), there may not exist G ∈ B(V ) such that LF = G, meaning that F is
not in the domain of L. Therefore we relax the definition by saying that

LF ≤ G, resp. LF ≥ G,
if for all t ≥ 0

MtF − F ≤
∫ t

0

MsGds, resp. MtF − F ≥
∫ t

0

MsGds.

We can now state the drift conditions on L guaranteeing the validity of Assumptions (A0)-(A1)-
(A2). For convenience, we use the shorthand ϕ ≈ ψ to mean that ψ . ϕ . ψ.

Proposition 2.10. Let V, ψ, ϕ : X → (0,∞) such that ψ ≤ V and ϕ ≈ ψ. Assume that there
exist constants a < b and ζ ≥ 0, ξ ∈ R such that

LV ≤ aV + ζψ, Lψ ≥ bψ, Lϕ ≤ ξϕ.
Then, for any τ > 0, there exists R > 0 such that (V, ψ) satisfies (A0)-(A1)-(A2) with K =
{V ≤ Rψ}.
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This result will be useful for the applications in Section 4. We provide now a sufficient
condition for (A3)-(A4).

Proposition 2.11. Let K be a finite subset of X and assume that there exists τ > 0 such that
for any x, y ∈ K,

δxMτ ({y}) > 0.

Then (A3)-(A4) are satisfied for any positive function ψ ∈ B(V ).

This sufficient condition is relevant for the study of irreducible processes on discrete spaces. We
refer to Section 4.1 for an application to the convergence to quasi-stationary distribution of birth
and death processes. As a motivation, let us also mention the study of the first moment semigroup
of discrete branching processes in continuous time and more generally of the exponential of
denumerable non-negative matrices, for which irreducibility is generally easy to check.

We end this part by noting that Propositions 2.10 and 2.11 provide explicit constants for
Assumptions (A0)-(A1)-(A2) and (A3)-(A4), see the proofs in Section 3.6.

3. Proofs

3.1. Conservative semigroups: proof of Theorem 2.1. For any function V : X → [0,∞),
let us define the distance distV on X by

distV (x, y) =

{
0 x = y

2 + V (x) + V (y) x 6= y
.

We also introduce a semi-norm on measurable functions f : X → R defined by

‖f‖Lip(V ) = sup
x 6=y

|f(x)− f(y)|
distV (x, y)

,

and the associated (Wasserstein) metric on P(X ) given by

distV (µ1, µ2) = sup
‖f‖Lip(V )≤1

∫
X
f(x)(µ1 − µ2)(dx).

We know from [40, Lemma 2.1] that for any couple of probability measures µ1 and µ2

distV (µ1, µ2) = ‖µ1 − µ2‖M(1+V ) .

The proof of Theorem 2.1 given below is a direct adaptation of the proof of Theorems 1.3 and 3.1
in [40].

Proof of Theorem 2.1. Let f be a test function such that ‖f‖Lip(κV0) ≤ 1 and take x 6= y. Fix a′ ∈
(a + 2c/R, 1) and b′ ∈ (0, b), and set κ = b′/c and y = max {1− b + b′, (2 + κRa′)/(2 + κR)}.
Considering successively the cases V1(x) + V1(y) ≥ R and V1(x) + V1(y) ≤ R as in [40, Proof of
Theorem 3.1], and using (2.1) and (2.2), we obtain

|Pf(x)− Pf(y)| ≤ y distκV1
(x, y),

so that
‖Pf‖Lip(κV1) ≤ y.
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Finally, for any probability measure µ1 and µ2,

distκV0(µ1P, µ2P ) = sup
‖f‖Lip(κV0)≤1

∫
X
Pf(x)(µ1 − µ2)(dx)

≤ sup
‖Pf‖Lip(κV1)≤y

∫
X
Pf(x)(µ1 − µ2)(dx) = y distκV1

(µ1, µ2)

and the proof is complete. �

3.2. Preliminary inequalities. We first give useful inequalities which are directly deduced
from iterations of inequalities in Assumption A. For all t ≥ 0, let us define the following operator

M̂t : f 7→Mt(1Kcf)

and for convenience, we introduce the following constants

Θ =
θ

β − α
, R = sup

K

V

ψ
,

which are well-defined and finite under Assumption A.

Lemma 3.1. For all k ≥ 0, we have

i)

M̂k
τMτV ≤ αkMτV,

ii) for all µ ∈M+(V ),
µMkτV

µMkτψ
≤ ak

µ(V )

µ(ψ)
+ Θ,

iii) for all x ∈ K and n ≥ k,

Mnτψ(x) ≤ (α(R+ Θ) + θ)kM(n−k)τψ(x),

iv) for all x ∈ K, and f ∈ B+(V/ψ),

M(k+1)τ (fψ) (x) ≥ ck+1ν(f)M(k+1)τψ(x),

where

ck+1 = ck+1

(
β

α(R+ Θ) + θ

)k
. (3.1)

Remark 3.2. We observe that (ck)k≥1 is a decreasing geometric sequence. Indeed (A0), (A1)
and (A2) ensure that on K

βψ ≤Mτψ ≤MτV ≤ (αR+ θ)ψ,

so that β ≤ (αR + θ) < (α(R + Θ) + θ). Together with the fact that c < 1, we get that (ck)k≥1

is a geometric progression with common ratio smaller than one.

Points i) and ii) of Lemma 3.1 are sharp inequalities , while iv) extends Assumption (A3) for
any time.



A NON-CONSERVATIVE HARRIS’ ERGODIC THEOREM 11

Proof. Using (A1) we readily have 1KcMτV ≤ αV and i) follows by induction.
Composing respectively (A1) and (A2) with Mkτ yields

M(k+1)τV ≤ αMkτV + θMkτψ; M(k+1)τψ ≥ βMkτψ.

Combining these inequalities gives

M(k+1)τV

M(k+1)τψ
≤ a

MkτV

Mkτψ
+
θ

β

and ii) follows by induction recalling that a < 1.
By definition of R we immediately deduce from ii) that for any x ∈ K,

MkτV (x)

Mkτψ(x)
≤ R+ Θ.

Combining this inequality with

Mnτψ ≤M(n−1)τMτV ≤M(n−1)τ (αV + θψ),

coming from (A1) and ψ ≤ V , yields for x ∈ K,

Mnτψ(x) ≤ (α(R+ Θ) + θ)M(n−1)τψ(x).

The proof of iii) is completed by induction.

Finally, let x ∈ K. We have

M(n+1)τ (fψ) (x)

M(n+1)τψ(x)
=
Mτ (Mnτ (fψ))(x)

M(n+1)τψ(x)

≥ cν
(
Mnτ (fψ)

ψ

)
Mτψ(x)

M(n+1)τψ(x)
,

using (A3) with the function Mnτ (fψ) /ψ. Besides,

ν

(
Mnτ (fψ)

ψ

)
= ν

(
Mτ (M(n−1)τ (fψ))

ψ

)
≥ cν

(
ν

(
M(n−1)τ (fψ)

ψ

)
Mτψ

ψ

)
≥ cβν

(
M(n−1)τ (fψ)

ψ

)
,

using again (A3) and (A2). Iterating the last inequality and plugging it in the previous one, we
obtain

M(n+1)τ (fψ) (x)

M(n+1)τψ(x)
≥ cn+1βn

Mτψ(x)

M(n+1)τψ(x)
ν(f).

Moreover, for x ∈ K, we have

M(n+1)τψ(x) ≤ (α(R+ Θ) + θ)nMτψ(x)

using iii). We obtain for all x ∈ K:

M(n+1)τ (fψ) (x)

M(n+1)τψ(x)
≥ cn+1

(
β

α(R+ Θ) + θ

)n
ν(f),

which completes the proof. �
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3.3. Contraction of P (t): proofs of Lemmas 2.2 and 2.3 and Proposition 2.4. The
following statement proves that (Vk)k≥0 is a family of Lyapunov functions for the sequence of
operators (P

(nτ)
kτ,(k+1)τ )0≤k≤n−1.

Lemma 3.3. For all k ≥ 0 and n ≥ m ≥ k, we have

P
(nτ)
kτ,mτVn−m ≤ am−kVn−k +

θ

cβ

m−1∑
j=k

am−jP
(nτ)
kτ,jτ (1K) .

Proof. By definition of Vk in (2.6), we have, for 0 ≤ k ≤ n,

P
(nτ)
(k−1)τ,kτVn−k =

Mτ

(
Vn−kM(n−k)τψ

)
M(n−k+1)τψ

= ν

(
M(n−k)τψ

ψ

)
MτV

M(n−k+1)τψ

Using (A1) and (A2), we have MτV ≤ αV + θψ1K and M(n−k)τψ ≤M(n−k+1)τψ/β. We obtain
from the definitions of a and Vn−k+1 that

P
(nτ)
(k−1)τ,kτVn−k ≤ aVn−k+1 + ν

(
M(n−k)τψ

ψ

)
θψ1K

M(n−k+1)τψ
.

Besides, combining (A2) and (A3) with f = M(n−k)τψ/ψ, we get

ν

(
M(n−k)τψ

ψ

)
ψ 1K

M(n−k+1)τψ
≤ 1K

cβ
.

The last two inequalities yield

P
(nτ)
(k−1)τ,kτVn−k ≤ aVn−k+1 +

θ 1K
cβ

and the conclusion follows by iteration using that P (nτ)
kτ,mτVn−m = P

(nτ)
kτ,(k+1)τ · · ·P

(nτ)
(m−1)τ,mτVn−m.

�

Proof of Lemma 2.2. Using that P (nτ)
kτ,(j−1)τ (1K) ≤ 1 and a < 1, it is a direct consequence of

Lemma 3.3. �

Using (A3) and (A4) and following [20, 7], we prove a Doeblin condition (2.2) on the set K for
the auxiliary semigroup P (t). However, K is not in general a sublevel set of Vk. This situation
is reminiscent of [40, Assumption 3] and we adapt here their arguments. For that purpose, we
need a lower bound for the Lyapunov functions (Vk)k≥0, which is stated in the next lemma.

Lemma 3.4. For every n ≥ 0, we have

d1M(n+1)τψ ≤ ν
(
Mnτψ

ψ

)
MτV and Vn ≥ d2,

with

d1 =
(
1− a

)
d, d2 =

β − α
α+ θ

d.
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Proof. First, using (A4),

dM(n+1)τψ = dMτ [1KMnτψ + 1KcMnτψ]

≤Mτ

[
ν

(
Mnτψ

ψ

)
1K ψ + d1KcMnτψ

]
≤ ν

(
Mnτψ

ψ

)
Mτψ + d M̂τMnτψ.

Then, by iteration, using (A2) and ψ ≤ V,

dM(n+1)τψ ≤ ν
(
Mnτψ

ψ

) n∑
j=0

β−jM̂ j
τMτψ ≤ ν

(
Mnτψ

ψ

) n∑
j=0

β−jM̂ j
τMτV.

Hence by Lemma 3.1 i)

dM(n+1)τψ ≤
1

1− a
ν

(
Mnτψ

ψ

)
MτV

and the first identity is proved. From the definition of Vn we deduce

Vn ≥ d1

M(n+1)τψ

Mnτψ

V

MτV
≥ d1

β

α+ θ
= d2

by using successively (A2), (A1), and ψ ≤ V . �

We now prove the Doeblin-type condition (2.2) for the auxiliary semigroup.

Proof of Lemma 2.3. First, we introduce the measure νi defined for all integer i ≥ 0 by

νi(f) = ν

(
f
Miτψ

ψ

)
.

For any x ∈ K, j ≤ k ≤ n, we have using Lemma 3.1 iv) with the function fM(n−k)τψ/ψ,

P
(nτ)
(j−1)τ,kτf(x) =

M(k−j+1)τ

(
fM(n−k)τψ

)
(x)

M(n−j+1)τψ(x)
≥ ck−j+1 νn−k (f)

M(k−j+1)τψ(x)

M(n−j+1)τψ(x)
.

for any nonnegative measurable function f . Then, Lemma 3.4 and (A2) yield

P
(nτ)
(j−1)τ,kτf(x) ≥ d1ck−j+1

νn−k (f)

νn−j(1)

M(k−j+1)τψ(x)

MτV (x)
≥ d1ck−j+1β

k−j νn−k (f)

νn−j(1)

Mτψ(x)

MτV (x)
.

Recalling from (A1) and (A2) that for x ∈ K,
Mτψ(x)

MτV (x)
≥ β

αR+ θ
,

and from Lemma 3.1 iii) and ν(K) = 1 that
νn−k(1)

νn−j(1)
≥ 1

(α(R+ Θ) + θ)k−j
,

we get for x ∈ K,

P
(nτ)
(j−1)τ,kτf(x) ≥ αk−j

νn−k (f)

νn−k(1)
, (3.2)

where

αi = d1c
i+1 β

αR+ θ
ri, r =

(
β

α(R+ Θ) + θ

)2

.
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The previous bound holds only on K. We prove now that the semigroup charges K at an
intermediate time and derive the expected lower bound. More precisely, setting

ωi =
ai

αi
and S` =

∑̀
j=1

ω`−j =
αR+ θ

dc(β − α)
.
∑̀
j=1

( a

cr

)j
,

we obtain for k ≤ n− 1 and 1 ≤ ` ≤ n− k ,

P
(nτ)
kτ,(k+`)τf =

1

S`

k+∑̀
j=k+1

ωk+`−jP
(nτ)
kτ,(j−1)τP

(nτ)
(j−1)τ,(k+`)τ (f)

≥ 1

S`

k+∑̀
j=k+1

ωk+`−jP
(nτ)
kτ,(j−1)τ (1KP

(nτ)
(j−1)τ,(k+`)τf) ≥ B(`)

k,n

νn−k−` (f)

νn−k−`(1)
,

where the last inequality comes from (3.2) and

B
(`)
k,n =

1

S`

k+∑̀
j=k+1

ak+`−jP
(nτ)
kτ,(j−1)τ (1K).

To conclude, we need to find a positive lower bound for B(`)
k,n which does not depend on k

or n. For that purpose, we first observe that the second bound of Lemma 3.4 ensures that
P

(nτ)
kτ,(k+`)τVn−k−` ≥ d2. Using now Lemma 3.3 yields

k+∑̀
j=k+1

ak+`−jP
(nτ)
kτ,(j−1)τ1K ≥ cβ

d2 − a`Vn−k
θ

,

for n ≥ k + `. For x ∈ {Vn−k ≤ R} and ` = p defined in (2.7), we get

B
(p)
k,n ≥ cβ

d2

2θSp
=

c2β3d2
1

2θ(α+ θ)(αR+ θ)

1∑p
j=1(a/cr)j

which ends the proof. �

Proof of Proposition 2.4. Let n and k be two integers such that 0 ≤ k ≤ n − p, and consider
R > 2c/(1− a). According to Lemmas 2.2 and 2.3, the conservative operator P (nτ)

kτ,(k+p)τ satisfies
condition (2.1) with the functions Vn−k−p and Vn−k and condition (2.2) with the probability
measure νk,n. Applying Theorem 2.1 then yields the result. �

3.4. Quantitative estimates: proofs of Lemmas 2.5 and 2.6 and Theorem 2.7. The
proof of Theorem 2.7 is split into several lemmas. We introduce the following constant

C0 = sup
s≤pτ

max

{∥∥∥∥MsV

V

∥∥∥∥
∞
,

∥∥∥∥ ψ

Msψ

∥∥∥∥
∞

}
, (3.3)

which is finite under Assumption (A0). We also consider for every µ ∈ M+(V ) the family of
operators (Qµt )t≥0 defined by

Qµt f =
µMt(ψf)

µMt(ψ)

for f ∈ B(V0). Fixing the measure µ, the operator f 7→ Qµt f is linear. Observe that Qδxt = δxP
(t)
0,t

so that Proposition 2.4 implies contraction inequalities for δx 7→ Qδxnpτ . Notice that µ 7→ Qµnpτ
is non-linear and forthcoming Lemma 3.7 extends the contraction to general space of measures.
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Then, in Lemma 3.8, we extend the inequalities to continuous time by a simple discretization
argument. Finally, we prove the existence of the eigenvector and eigenmeasure, respectively
stated in Lemma 2.5 and Lemma 2.6. The section ends with the proof of Theorem 2.7.

Let us first provide a useful upper bound for Vk. For that purpose, we set

p =

⌊
log
(
2(1 + θ/α)(Θ +R)

)
log (1/a)

⌋
+ 1, C1 =

2(α(R+ Θ) + θ)p+1

ccp−1βp+1
. (3.4)

where (ck)k≥0 is defined in (3.1).

Lemma 3.5. For all positive measure µ such that

µ(V )

µ(ψ)
≤ Θ +R, (3.5)

we have for all k ≥ p,

ν

(
Mkτψ

ψ

)
≤ C1

µMkτψ

µ(ψ)
. (3.6)

The idea is the following: condition (3.5) ensures the existence of a time p at which the
semigroup charges K. Then, (A3) yields (3.6). It will be needed in this form in the sequel, but
could be extended to more general right hand sides in (3.5).

Proof. Recalling that M̂τ = Mτ (1Kc · ) and using that for all g ∈ B(V ),M(k+1)τg = Mτ (1KMkτg)+

M̂τ (Mkτg), we obtain by induction

Mkτg = M̂kg +

k∑
j=1

M̂k−j
τ Mτ

(
1KM(j−1)τg

)
.

Let g = ψ1K . Using Lemma 3.1 iv) with f = 1K and that ν(K) = 1, we have

Mkτ (1Kψ) ≥
k∑
j=1

M̂k−j
τ Mτ

(
1KM(j−1)τ (1Kψ)

)
≥

k∑
j=1

cj−1M̂
k−j
τ Mτ

(
1KM(j−1)τψ

)
≥ ck−1

k∑
j=1

(
M̂k−j
τ Mjτψ − M̂k−j

τ Mτ

(
1KcM(j−1)τψ

))

= ck−1

k∑
j=1

(
M̂k−j
τ Mjτψ − M̂k−j+1

τ M(j−1)τψ
)

= ck−1

(
Mkτψ − M̂k

τ ψ
)
,

with the convention that c0 = 1. Then, using (A2) and the fact that M̂k
τ ψ ≤ M̂k−1

τ MτV together
with Lemma 3.1 i) yields

Mkτ (1Kψ) ≥ ck−1

(
βkψ − αk−1MτV

)
.
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Next, (A1) and the fact that V ≥ ψ yield

Mkτ (1Kψ) ≥ ck−1β
k
(
ψ − ak (1 + θ/α)V

)
. (3.7)

Using the definition (3.4) of p and the fact that a ≤ 1 ensure that ap2 (1 + θ/α) (Θ + R) ≤ 1,
and (3.5) yields

ap (1 + θ/α)µ(V ) ≤ µ(ψ)/2.

Then, (3.7) becomes
µMpτ (1Kψ) ≥ cp−1β

pµ(ψ)/2. (3.8)

Using
µMnτψ ≥ µMpτ (1KM(n−p)τψ) = µMpτ (1KMτ ((M(n−p−1)τψ/ψ)ψ))

for n ≥ p and successively (A3) with f = M(n−p−1)τψ/ψ, (A2) and (3.8), we get

µMnτψ ≥ ccp−1β
p+1µ(ψ)

2
ν

(
M(n−p−1)τψ

ψ

)
.

Finally, combining this estimate with Lemma 3.1 iii) ensures that

ν

(
Mnτψ

ψ

)
≤ (α(R+ Θ) + θ)p+1ν

(
M(n−p−1)τψ

ψ

)
≤ C1

µMnτψ

µ(ψ)
,

which ends the proof. �

Lemma 3.6. For all positive measure µ such that

µ(V )

µ(ψ)
≤ Θ +R,

we have for all s ≥ pτ ,

ν

(
Msψ

ψ

)
≤ C ′1

µMsψ

µ(ψ)
,

where C ′1 = C2
0C1R.

Proof. Let u = s− bs/τcτ. First, by definition of C0 in (3.3), we have

Muψ ≥ C−1
0 ψ. (3.9)

Moreover, for x ∈ K, using that ψ < V and the definition of R, we get

Muψ(x) ≤MuV (x) ≤ C0V (x) ≤ C0Rψ(x). (3.10)

Then, using successively (3.10) combined with the fact that ν(K) = 1, Lemma 3.5, and (3.9),
we get

ν

(
Msψ

ψ

)
≤ C0Rν

(
Mbs/τcτψ

ψ

)
≤ C0RC1

µMbs/τcτψ

µ(ψ)
≤ C ′1

µMsψ

µ(ψ)
,

which ends the proof. �

In the next lemma, we generalize Proposition 2.4 to the families (Qµnpτ )n≥0. Recall that p is
defined in Lemma 2.3, κ and y are defined in Proposition 2.4 and ρ is defined in (2.8).
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Lemma 3.7. For all measures µ1, µ2 ∈M+(V/ψ) and all n ≥ 0 we have∥∥Qµ1
npτ −Qµ2

npτ

∥∥
M(1+κV0)

≤ C2ρ
n

(
µ1(V )

µ1(ψ)
+
µ2(V )

µ2(ψ)

)
, (3.11)

where
C2 = max

{
2a−p + κC1

(
1 + 2Θa−p

)
, 2 (1 + κΘ) a−(p+p) + κ

}
(3.12)

with C1, p defined in (3.4).

Proof. Fix µ1, µ2 ∈M+(V/ψ), f ∈ B(V/ψ) with ‖f‖B(1+κV0) ≤ 1 and an integer n ≥ 0. Set

m =

 log
(
µ1(V )
µ1(ψ) + µ2(V )

µ2(ψ)

)
p log (1/a)

+ 1, (3.13)

and for convenience,

n = pτn, m = pτm.

By definition of the auxiliary semigroup in (2.5), we have

µ1Mn(fψ)µ2Mnψ − µ2Mn(fψ)µ1Mnψ

=

∫
X 2

Mnψ(x) Mnψ(y)

(
Mn(fψ)(x)

Mnψ(x)
− Mn(fψ)(y)

Mnψ(y)

)
µ1(dx)µ2(dy)

≤
∫
X 2

Mnψ(x)Mnψ(y)
∥∥∥δxP (n)

0,n − δyP
(n)
0,n

∥∥∥
M(1+κV0)

µ1(dx)µ2(dy).

Using Proposition 2.4, we get for n ≥ m,

µ1Mn(fψ)µ2Mnψ − µ2Mn(fψ)µ1Mnψ (3.14)

≤ yn−m
∫
X 2

Mnψ(x)Mnψ(y)
∥∥∥δxP (n)

0,m − δyP
(n)
0,m

∥∥∥
M(1+κV(n−m)p)

µ1(dx)µ2(dy).

Using the definition of the norm onM(1 + κV(n−m)p) and the definition of V(n−m)p in (2.6), we
obtain ∥∥∥δxP (n)

0,m − δyP
(n)
0,m

∥∥∥
M(1+κV(n−m)p)

≤
∫
X

(1 + κV(n−m)p(z))
∣∣∣δxP (n)

0,m − δyP
(n)
0,m

∣∣∣ (dz)
≤ 2 + κν

(
Mn−mψ

ψ

)(
MmV (x)

Mnψ(x)
+
MmV (y)

Mnψ(y)

)
.

Combining this inequality with (3.14) and ρ ≥ y, we get

Qµ1
n f −Qµ2

n f

=
µ1Mn(fψ)µ2Mnψ − µ2Mn(fψ)µ1Mnψ

µ1Mnψ.µ2Mnψ

≤ ρn
(

2ρ−m + κρ−mν

(
Mn−mψ

ψ

)(
µ1MmV

µ1Mnψ
+
µ2MmV

µ2Mnψ

))
. (3.15)

We now bound each term of the right-hand side. First, using that ap ≤ ρ and (3.13), we have

ap ≤ ρm
(
µ1(V )

µ1(ψ)
+
µ2(V )

µ2(ψ)

)
. (3.16)

Second, Lemma 3.1 ii) ensures that for µ ∈ {µ1, µ2},
µMmV

µMmψ
≤ ampµ(V )

µ(ψ)
+ Θ. (3.17)
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Besides (3.13) also guarantees that for µ ∈ {µ1, µ2}.

ampµ(V )

µ(ψ)
≤ 1.

It means that that the positive measure µMm satisfies inequality (3.5), since 1 ≤ R ≤ R + Θ.
Then, Lemma 3.5 applied to µMm with k = (n−m)p yields for all n ≥ m+ p/p,

ν

(
Mn−mψ

ψ

)
µMmV

µMnψ
≤ C1

µMmMn−mψ

µMmψ

µMmV

µMnψ
≤ C1

µMmV

µMmψ
.

Finally, using again (3.17) and (3.16), we get

ν

(
Mn−mψ

ψ

)(
µ1MmV

µ1Mnψ
+
µ2MmV

µ2Mnψ

)
≤ C1

(
µ1MmV

µ1Mmψ
+
µ2MmV

µ2Mmψ

)
≤ C1(1 + 2Θa−p)ρm

(
µ1(V )

µ1(ψ)
+
µ2(V )

µ2(ψ)

)
.

Plugging the last inequality in (3.15) ensures that for all n ≥ m+ p/p,

Qµ1
n f −Qµ2

n f ≤ (2a−p + κC1(1 + 2Θa−p))

(
µ1(V )

µ1(ψ)
+
µ2(V )

µ2(ψ)

)
ρn.

To conclude, it remains to show that (3.11) also holds for n ≤ m+ p/p. We have

‖Qµ1
n −Qµ2

n ‖M(1+κV0) ≤ ‖Q
µ1
n ‖M(1+κV0) + ‖Qµ2

n ‖M(1+κV0) ≤ 2 + κ
µ1MnV

µ1Mnψ
+ κ

µ2MnV

µ2Mnψ
.

Using again (3.17), we have for µ ∈ {µ1, µ2}

µMnV

µMnψ
≤ anp

µ(V )

µ(ψ)
+ Θ ≤ ρnµ(V )

µ(ψ)
+ Θ,

so that

‖Qµ1
n −Qµ2

n ‖M(1+κV0) ≤ 2 (1 + κΘ) + κρn
(
µ1(V )

µ1(ψ)
+
µ2(V )

µ2(ψ)

)
.

Finally, ρ ≥ ap and n ≤ m+ p/p and (3.13) yield

1 ≤ ρna−(p+mp) = ρna−(p+p)a−(m−1)p ≤ ρna−(p+p)

(
µ1(V )

µ1(ψ)
+
µ2(V )

µ2(ψ)

)
,

and we get

‖Qµ1
n −Qµ2

n ‖M(1+κV0) ≤ ρ
n
(

2(1 + κΘ)a−(p+p) + κ
)(µ1(V )

µ1(ψ)
+
µ2(V )

µ2(ψ)

)
,

for all n ≤ m+ p/p, which ends the proof. �

We now extend the previous lemma to continuous time.

Lemma 3.8. For all µ1, µ2 ∈M+(V/ψ) and all t ≥ 0,

‖Qµ1

t −Q
µ2

t ‖M(1+κV0) ≤ C
′
2ρ
bt/pτc

(
µ1(V )

µ1(ψ)
+
µ2(V )

µ2(ψ)

)
,

where C ′2 = C2
0C2 and C0, C2 have been defined in (3.3) and (3.12) respectively.
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Proof. Let n = bt/pτc and δ = t− npτ ∈ [0, pτ). According to Lemma 3.7, we have

‖Qµ1

t −Q
µ2

t ‖M(1+κV0) =

∥∥∥∥µ1MδMnpτ (fψ)

µ1MδMnpτψ
− µ2MδMnpτ (fψ)

µ2MδMnpτψ

∥∥∥∥
M(1+κV0)

≤ C2ρ
n

(
µ1Mδ(V )

µ1Mδ(ψ)
+
µ2Mδ(V )

µ2Mδ(ψ)

)
.

Using the definition (3.3) of C0 for the last term ends the proof. �

We have now all the ingredients to prove the existence of the eigenelements and the associated
estimates. We start with the right eigenfunction and preliminary estimates.

Proof of Lemma 2.5. We define
η(·) = ν(·/ψ)

and, for t ≥ 0,

ht =
Mtψ

ν (Mtψ/ψ)
=

Mtψ

ηMtψ
.

The proof is divided into four steps. We begin by giving preliminary estimates onMtψ. Next,
we show that ht converges in B(V 2/ψ) as t → ∞. Then, we establish that its limit h is an
eigenvector. Finally, we give a lower bound for h.

Recalling the definition of C0 in (3.3) and using the first part of Lemma 3.4 and (A1), we
obtain for any t ≥ 0,

Mtψ(x) ≤ C0M(bt/τc+1)τψ(x) ≤ C0d
−1
1 (α+ θ)(ηMbt/τcτψ)V (x). (3.18)

Using now Mbt/τcτψ ≤ C0Mtψ, we get

Mtψ ≤ C2
0d
−1
1 (α+ θ)(ηMtψ)V. (3.19)

Since ‖Mtψ/ψ‖B(1+κV0) = supX Mtψ/(ψ + κV ), we get for any t ≥ 0,∥∥∥∥Mtψ

ψ

∥∥∥∥
B(1+κV0)

≤ C2
0d
−1
1 (α+ θ)(ηMtψ) sup

X

V

ψ + κV
≤ C2

0 (α+ θ)

d1κ
ηMtψ. (3.20)

Using again the definition of C0, we get

ηMt+sψ ≥ C−1
0 (ηMbt/τcτ )(Msψ).

Besides, from Lemma 3.1 (ii) and the fact that V ≤ Rψ on K
ηMbt/τcτV

ηMbt/τcτψ
≤ abt/τcη(V ) + Θ ≤ R+ Θ,

so µ = ηMbt/τcτ verifies (3.5). Lemma 3.6 applied to µ gives for all s ≥ pτ ,

(ηMbt/τcτ )(Msψ) ≥ C ′1
−1

(ηMbt/τcτψ)(ηMsψ).

Putting the two last estimates together, we get for all bs/τc ≥ p
ηMt+sψ ≥ (C0C

′
1)−1(ηMbt/τcτψ) ηMsψ. (3.21)

We can now proceed to the second step: the convergence of (ht)t≥0. Let µ ∈M+(V ). We use
that

µ(ht+s) =
µMt+sψ/µMtψ

ηMt+sψ/ηMtψ
µ(ht)
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to obtain that

|µ(ht+s)− µ(ht)| ≤
∣∣∣∣µMt+sψ

µMtψ
− ηMt+sψ

ηMtψ

∣∣∣∣ 1

ηMt+sψ/ηMtψ
µ(ht)

=

∣∣∣∣Qµt (Msψ

ψ

)
−Qηt

(
Msψ

ψ

)∣∣∣∣ µMtψ

ηMt+sψ
.

Then, Lemma 3.8 yields

|µ(ht+s)− µ(ht)| ≤ C ′2ρbt/pτc
∥∥∥∥Msψ

ψ

∥∥∥∥
B(1+κV0)

(
µ(V )

µ(ψ)
+ ν

(
V

ψ

))
µMtψ

ηMt+sψ
. (3.22)

Plugging (3.18), (3.20) and (3.21) into (3.22) yields for all bs/τc ≥ p

|µ(ht+s)− µ(ht)| ≤ C4
0C
′
1C
′
2

(α+ θ)2

d2
1κ

ρbt/pτc
(
µ(V )

µ(ψ)
+ ν

(
V

ψ

))
µ(V ).

Recalling that ψ ≤ V , V ≤ Rψ on K and ν(Kc) = 0, we get for all bs/τc ≥ p

|µ(ht+s)− µ(ht)| ≤ C3ρ
bt/pτcµ(V )2

µ(ψ)
, (3.23)

with C3 = C4
0C
′
1C
′
2

(α+θ)2

d21κ
(1 +R). Taking µ = δx we deduce

‖ht+s − ht‖B(V 2/ψ) ≤ C3ρ
bt/pτc.

By Cauchy criterion, this ensures that ht converges as t→∞ in B(V 2/ψ) to a limit denoted by
h. Moreover from Lemma 3.4, we have that d2 ≤ Vn = V/hnτ and letting n→∞ yields

h ≤ d−1
2 V. (3.24)

Letting s→∞ in (3.23) implies (2.9).

We now move on to the third step and check that h is an eigenfunction. For all x ∈ X , we
have

ηMt

(
Msψ

ηMsψ

)
Mt+sψ(x)

ηMt+sψ
= δxMt

(
Msψ

ηMsψ

)
.

Letting s→ +∞ in this identity and using boundedness condition from (3.19), we get

(ηMth) . h(x) = Mth(x).

Hence h is an eigenvector of Mt associated to the eigenvalue ηMth. Moreover,

ηMt+sh = ηMt(Msh) = (ηMsh) . (ηMth),

and t 7→ ηMth is locally bounded, since from (3.24) and Assumption (A0) we have that Mh .
MV . V on [0, T ] × X for any T > 0. Then, there exists λ ∈ R such that for all t ≥ 0,
ηMth = eλtη(h) = eλt, since η(h) = 1, and this completes the proof.

Let us proceed to the last step and show that h is lower bounded. Combining the fact that

Mnτψ ≥Mkτ (1KM(n−k)τψ) = Mkτ (1KMτ ((M(n−k−1)τψ/ψ)ψ))

for all k ≤ n with (A3) and (A2), we get

Mnτψ ≥ cβ(ηM(n−k−1)τψ)Mkτ (1Kψ).

Recalling (3.7) and dividing by ηMnτψ, we obtain
Mnτψ

ηMnτψ
≥ cβck−1

(
βkψ − αk−1 (α+ θ)V

) ηM(n−k−1)τψ

ηMnτψ
.
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Let n→∞, the left-hand side converges to h and using from Lemma 3.1 iii) that

ηM(n−k−1)τψ

ηMnτψ
≥ 1

(α(R+ Θ) + θ)k+1

and recalling the expression of ck in (3.1), we obtain

h ≥ c (cr)
k

(
ψ − ak−1α+ θ

β
V

)
.

Considering now

k = k(x) =

 log
(
ψ(x)
V (x)

β
2(α+θ)

)
log(a)

+ 2,

and recalling that r = β2/(α(R+ Θ) + θ)2 ensures that

ψ − ak−1α+ θ

β
V ≥ ψ/2.

We get

h ≥ c′1
(
ψ

V

)q
ψ,

with c′1 = c (cr)
2+log( β

2(α+θ) )/ log(a)
/2 > 0 and q = log(cr)/ log(a) > 0. �

Remark 3.9. Notice that the eigenfunction h built in this proof satisfies ν(h/ψ) = 1 and the
constants in (V/ψ)qψ . h . V depend on this normalization. If we normalize h such that
‖h‖B(V ) = 1 as in Theorem 1.1 we get c1d2 (ψ/V )

q
ψ ≤ h ≤ V.

We consider now the left eigenelement.

Proof of Lemma 2.6. Let us use again η = ν(·/ψ). Applying Lemma 3.8 to µ1 = η and µ2 = ηMs,
we get for t, s ≥ 0, ∥∥Qηt+s −Qηt ∥∥M(1+κV0)

≤ C ′2ρbt/pτc
(
ν

(
V

ψ

)
+
ηMsV

ηMsψ

)
.

Then, using Lemma 3.1 ii), V ≤ Rψ on K, ν(K) = 1 and the definition of C0 in (3.3), we have∥∥Qηt+s −Qηt ∥∥M(1+κV0)
≤ C ′2ρbt/pτc

(
R+ C2

0a
bs/τcR+ Θ

)
.

Therefore, the sequence of probabilities (Qηt )t≥0 satisfies the Cauchy criterion in M(1 + κV0)
and it then converges to a probability measure π ∈M(1 + κV0). Similarly, applying Lemma 3.8
to µ1 = µ and µ2 = ηMs, we also have∥∥Qηt+s −Qµt ∥∥M(1+κV0)

≤ C ′2ρbt/pτc
(
µ(V )

µ(ψ)
+ C2

0a
bs/τcR+ Θ

)
for any µ ∈M(1 + κV0). Letting s tend to infinity yields

‖π −Qµt ‖M(1+κV0) ≤ C
′
2

(
µ(V )

µ(ψ)
+ Θ

)
ρbt/pτc. (3.25)

Now, we have π(h/ψ) . π(V/ψ) = π(V0) < +∞ and we can then define γ ∈M(ψ + κV ) by

γ(f) =
π(f/ψ)

π(h/ψ)
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for f ∈ B(ψ + κV ) = B(V ). Observe that γ(h) = 1. Next,

Qηt+s(f/ψ) = Qηt (Msf/ψ)
ηMtψ

ηMt+sψ
. (3.26)

Applying (2.9) to µ = ηMs and µ = η,
ηMtψ

ηMt+sψ
−−−−→
t→+∞

e−λs.

Then, letting t→∞ in (3.26), we obtain

π(f/ψ) = π(Msf/ψ)e−λs,

which ensures that γ is an eigenvector. Adding that π(f) = γ(fψ)/γ(ψ) since π is a probability
measure, (2.10) follows from (3.25). �

Proof of Theorem 2.7. Using that

‖π −Qµt ‖M(1+κV0) = sup
f∈B(1+κV0)

∣∣∣∣γ(fψ)

γ(ψ)
− µMt(fψ)

µMtψ

∣∣∣∣ =

∥∥∥∥ γ

γ(ψ)
− µMt

µMtψ

∥∥∥∥
M(ψ+κV )

and multiplying (3.25) by µMtψ, we get∥∥∥∥µMtψ
γ

γ(ψ)
− µMt

∥∥∥∥
M(ψ+κV )

≤ C ′2ρbt/pτc
(
µ(V )

µ(ψ)
+ Θ

)
µMtψ. (3.27)

Moreover, h ∈ M(ψ + κV ) since h . V . As γ(h) = 1, the previous inequality applied to the
eigenfunction h yields ∣∣∣∣µMtψ

γ(ψ)
− µ(h)eλt

∣∣∣∣ ≤ C ′2ρbt/pτc(µ(V )

µ(ψ)
+ Θ

)
µMtψ.

Then, recalling that ψ ≤ V , we have∥∥∥∥µMtψ
γ

γ(ψ)
− γeλtµ(h)

∥∥∥∥
M(ψ+κV )

=

∣∣∣∣µMtψ

γ(ψ)
− eλtµ(h)

∣∣∣∣ ‖γ‖M(ψ+κV ) (3.28)

≤ C ′2ρbt/pτc
(
µ(V )

µ(ψ)
+ Θ

)
µMtψ × (1 + κ)γ(V ).

Combining (3.27) and (3.28), by triangular inequality, we get∥∥µMt − γeλtµ(h)
∥∥
M(ψ+κV )

≤ C ′2ρbt/pτc
(
µ(V )

µ(ψ)
+ Θ

)
µMtψ (1 + (1 + κ)γ(V )) .

This gives the first part of (2.12). Finally, by integration of (3.18)

µMtψ ≤ C0d
−1
1 (α+ θ)ν(Mbt/τcτψ/ψ)µ(V ).

Adding that γ(V )/γ(ψ) ≤ Θ according to Lemma 3.1 ii) and γMbt/τcτ = eλbt/τcτγ from
Lemma 2.6, Lemma 3.5 applied to µ = γ yields

ν(Mbt/τcτψ/ψ) ≤ C1eλbt/τcτ

for t ≥ pτ and we obtain

µMtψ ≤ C0C1d
−1
1 (α+ θ)e|λ|τµ(V )eλt.

It proves (2.12) for t ≥ pτ with

C = C ′2(1 + Θ) (1 + (1 + κ)γ(V )) max(1, C0C1d
−1
1 (α+ θ)e|λ|τ ).

The fact that (2.12) holds for some constant C also for t ≤ pτ is a consequence of (A0). �
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Proof of Corollary 2.9. For convenience and without loss of generality, we assume that V ≥ 1.
Then, γ(1) <∞. Next, if γ(1) = 0, then γ(X ) = 0. In this case, γ = 0, which is absurd because
γ(ψ) > 0 and ψ > 0. Therefore, γ(1) > 0.

We set π(·) = γ(·)/γ(1) and we have by triangular inequality∥∥∥∥ µMt

µMt1
− π

∥∥∥∥
TV
≤
∥∥∥∥ µMt

µMt1
− π

∥∥∥∥
M(V )

=
eλt

µMt1

∥∥e−λtµMt − πe−λtµMt1
∥∥
M(V )

≤ eλt

µMt1

[∥∥e−λtµMt − γµ(h)
∥∥
M(V )

+
∣∣γ(1)µ(h)− e−λtµMt1

∣∣π(V )
]
.

From (1.2), we can deal with the first term of the right-hand side and∥∥e−λtµMt − γµ(h)
∥∥
M(V )

≤ Cµ(V )e−ωt.

Using this estimate with V ≥ 1, we can also control the second term and∣∣γ(1)µ(h)− e−λtµMt1
∣∣ ≤ Cµ(V )e−ωt. (3.29)

Combining the three last estimates yields∥∥∥∥ µMt

µMt1
− π

∥∥∥∥
M(V )

≤ C eλt

µMt1
µ(V )e−ωt(1 + π(V )). (3.30)

Now on the first hand, Equation (3.29) also gives

e−λtµMt1 ≥ γ(1)µ(h)− Cµ(V )e−ωt

and for any t ≥ t(µ) = 1
ω log

(
2C
γ(1)

µ(V )
µ(h)

)
, we have

e−λtµMt1 ≥ µ(h)γ(1)/2. (3.31)

Plugging (3.31) in (3.30) yields (2.13) when t ≥ t(µ). Otherwise,∥∥∥∥ µMt

µMt1
− π

∥∥∥∥
TV
≤ 1 ≤ e−ωteωt(µ) ≤ Cµ(V )

µ(h)
e−ωt,

which ends the proof. �

3.5. Proof of Theorem 1.1.

Proof of Theorem 1.1 (i). We assume that Assumption A is satisfied by (V, ψ) for a set K and
constants α, β, θ, c, d and a probability ν. Then, from Lemmas 2.5 and 2.6 and Theorem 2.7,
there exist eigenelements (γ, h, λ) such that (2.12) and

β ≤ eλτ ≤ α+ θ, c1d2(ψ/V )qψ ≤ h ≤ V.
We check now that (V, h) satisfies also Assumption A with the same set K and constant α as
(V, ψ) but other constants β′, θ′, c′, d′ and an other probability measure ν′.
The fact (V, ψ) verifies (A0) and that Mth = eλth for any t ≥ 0 ensure that (V, h) satisfies (A0)
too. Moreover h satisfies (A2) with β′ = exp(λτ) ≥ β > α. Recalling that R = supK V/ψ <∞,
we also have

sup
K

ψ

h
≤ Rq

c1d2
.
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Adding that (V, ψ) satisfies (A1) with constants α, θ yields

MτV ≤ αV + θ′1Kh, with θ′ = θ
Rq

c1d2
,

which gives (A1) for (V, h). We use now (A3) and (A2) for (V, ψ) and get for x ∈ K

δxMτ (fh) ≥ cν
(
fh

ψ

)
δxMτψ ≥ cβν

(
fh

ψ

)
ψ(x).

Using again that Mτh = eλτh, we obtain for x ∈ K,

δxMτ (fh) ≥ c′ν′(f)δxMτh,

with

ν′ =
ν
(
· hψ
)

ν
(
h
ψ

) , c′ = cβe−λτν

(
h

ψ

)
inf
K

ψ

h
≥ β

α+ θ

c1d2

Rq+1
> 0.

Finally, (A4) is satisfied since

sup
x∈K

Mnτh(x)

h(x)
= eλnτ = ν′

(
Mnτh

h

)
.

Then, Theorem 2.7 applied to M with functions (V, h), yields (1.2) since µMth = eλth. Adding
that uniqueness is a direct consequence of ω > 0 ends the proof of Theorem 1.1 (i). �

Proof of Theorem 1.1 (ii). Assume that there exist a positive measurable function V, a triplet
(γ, h, λ) ∈M+(V )×B+(V )×R, and constants C,ω > 0 such that (1.1) and (1.2) hold. Without
loss of generality we can suppose that ‖h‖B(V ) = γ(h) = 1. It remains to check that (V, h)
satisfies Assumption A.

Fix R > γ(V ) and τ > 0 such that

e−ωτ/2C (R+ γ(V )) < 1− γ(V )

R
. (3.32)

It ensures that

α := eλτ
(
Ce−ωτ +

γ(V )

R

)
< β := eλτ .

By (1.1), Mh & h and Mτh ≥ βh so that (A0), (A2) and (A4) are satisfied by h with d = 1
and for any probability measure ν.

By (1.2), we have for all x ∈ X

e−λtMtV (x)− h(x)γ(V ) ≤ CV (x)e−ωt.

We define K = {x ∈ X , V (x) ≤ Rh(x)}, which is not empty since ‖h‖B(V ) = 1 and R > γ(V ) ≥
γ(h) = 1. Writing θ = γ(V )eλτ and using h(x) = 1Kch(x)/V (x).V (x) + 1Kh(x), we get

MτV (x) ≤ αV (x) + 1Kθh(x)

for all x ∈ X . Therefore, (A0) and (A1) hold for (V, h) and it remains to prove (A3).
We define the probability measure π by

π = γ(·h)
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and we use the Hahn-Jordan decomposition of the following family of signed measure indexed
by x ∈ X ,

νx =
δxMτ/2(·h)

eλτ/2h(x)
− π = νx+ − νx−.

As h ≤ V , Equation (1.2) with t = τ/2 and µ = δx yields

νx±(1) ≤ νx±(V/h) ≤ ‖νx‖M(V/h) =

∥∥∥∥ δxMτ/2

eλτ/2h(x)
− γ
∥∥∥∥
M(V )

≤ CV (x)

h(x)
e−ωτ/2. (3.33)

For every f ∈ B+(V/h) and x ∈ X we have

δxMτ (hf)

eλτh(x)
=

δxMτ/2

eλτ/2h(x)

(
Mτ/2(hf)

eλτ/2h
h

)
≥ (π − νx−)

(
Mτ/2(hf)

eλτ/2h

)
. (3.34)

Next,

π

(
Mτ/2(hf)

eλτ/2h

)
=
γMτ/2(hf)

eλτ/2
=

eλτ/2γ(hf)

eλτ/2
= π(f) (3.35)

and

νx−

(
Mτ/2(hf)

eλτ/2h

)
=

∫
X

δyMτ/2(hf)

eλτ/2h(y)
νx−(dy) ≤

∫
X

(
π(f) + νy+(f)

)
νx−(dy). (3.36)

Combining (3.34) with (3.35) and (3.36), we get

δxMτ (hf)

eλτh(x)
≥ π(f)(1− νx−(1))−

∫
X
νy+(f)νx−(dy).

The minimality property of the Hahn-Jordan decomposition entails that νx− ≤ π, and (3.33)
ensures that νx−(1) ≤ CR e−ωτ/2 when x ∈ K. We deduce that for all x ∈ K

δxMτ (hf)

eλτh(x)
≥ π(f)(1− CR e−ωτ/2)−

∫
νy+(f)π(dy) =: η(f).

Point (A3) then holds with

ν =
η+(·1K)

η+(1K)
and c = η+(1K).

The positivity of the constant c is guaranteed by (3.32). Indeed, η+(1K) ≥ η(1K) = η(1)−η(1Kc)
while using (3.33),

η(1) ≥ 1− CR e−ωτ/2 −
∫
X
νy+(1)π(dy)

≥ 1− CR e−ωτ/2 − Cπ(V/ψ)e−ωτ/2 = 1− Ce−ωτ/2(R+ γ(V ))

and

η(1Kc) ≤ η
(
V

Rψ

)
≤ π

(
V

Rψ

)
=
γ(V )

R
.

It ends the proof. �
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3.6. Drift condition and irreducibility: proofs of Propositions 2.10 and 2.11.

Proof of Proposition 2.10. Let C > 0 be such that

C−1ψ ≤ ϕ ≤ Cψ.

By assumptions Lψ ≥ bψ and Lϕ ≤ ξϕ so that we have for all t ≥ 0

Mtψ ≥ ψ + b

∫ t

0

Msψ ds and Mtϕ ≤ ϕ+ ξ

∫ t

0

Msϕds,

which yields by Grönwall’s lemma

Mtψ ≥ ebtψ and Mtψ ≤ CMtϕ ≤ Ceξtϕ ≤ C2eξtψ.

Similarly, setting φ = V − ζ
b−aψ, we have

Lφ ≤ aV + ζψ − b ζ

b− a
ψ = aφ,

so by Grönwall’s lemma Mtφ ≤ eatφ and

MtV ≤ eat
(
V − ζ

b− a
ψ
)

+
ζ

b− a
Mtψ ≤ eatV +

C2ζ

b− a
eξtψ.

Since ψ ≤ V, Assumption (A0) is satisfied for any K sublevel set of V/ψ. Now fix τ > 0,

R >
C2ζ

b− a
eξτ

ebτ − eaτ
> 0

and define K = {x ∈ X , V (x) ≤ Rψ(x)}. Adding that ψ ≤ V/R on Kc we get

MτV ≤
(

eaτ +
C2ζ

(b− a)R
eξτ
)
V +

C2ζ

b− a
eξτ1Kψ

and by definition of R

eaτ +
C2ζ

(b− a)R
eξτ < ebτ .

So Assumptions (A1)-(A2) are verified for K = {V ≤ Rψ}, R > C2ζ
b−a

eξτ

ebτ−eaτ
, with the constants

α = eaτ +
C2ζ

(b− a)R
eξτ , β = ebτ and θ =

C2ζ

b− a
eξτ .

It ends the proof. �

Proof of Proposition 2.11. Let ψ : X → (0,∞) and define ν = (#K)−1
∑
x∈K δx the uniform

measure on K, where #K stands for the cardinal of K. We have for all f ≥ 0 and x, y ∈ K,

δxMτ (fψ) ≥ δxMτ ({y})f(y)ψ(y) ≥ cf(y)Mτψ(x).

where

c = min
x,y∈K

ψ(y)δxMτ ({y})
Mτψ(x)

> 0

using the irreducibility condition δxMτ ({y}) > 0. Integrating with respect to ν shows that (A3)
holds and Assumption (A4) is trivially satisfied with d = 1/#K. �
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4. Applications

4.1. Convergence to quasi-stationary distribution. Let (Xt)t≥0 be a càd-làg Markov pro-
cess on the state space X ∪ {∂}, where X is measurable space and ∂ is an absorbing state. In
this section, we apply the results to the (non-conservative) semigroup defined by

Mtf(x) = Ex [f(Xt)1Xt 6=∂ ] ,

where x ∈ X . The semigroup M is defined for any measurable bounded functions f on X . We
consider a positive function V and assume that for any t > 0, there exists Ct > 0 such that for
any x ∈ X , Ex[V (Xt)] ≤ CtV (x). This allows to extend the definition above and ensures that
the semigroup M acts on B(V ) and that we can use the framework of Section 2.
A quasi-stationary distribution (QSD) is a probability law π on X such that

∀t ≥ 0, Pπ(Xt ∈ · |Xt 6= ∂) = π(·).

Theorem 2.7 and Corollary 2.9 directly give existence and uniqueness of a QSD and quantitative
estimates for the convergence. We state them below using the total variation norm for finite
signed measures

‖µ‖TV = ‖µ‖M(1) = |µ|(X ) = sup
‖f‖∞≤1

|µ(f)|.

We recall that P(V ) stands for the set of probability measures which integrate V.

Theorem 4.1. Assume that (Mt)t≥0 satisfies Assumption A with infX V > 0. Then, there exist
a unique quasi-stationary distribution π ∈ P(V ), and λ0 > 0, h ∈ B+(V ), C,w > 0 such that for
all µ ∈ P(V ) and t ≥ 0 ∥∥eλ0tPµ(Xt ∈ ·)− µ(h)π

∥∥
TV ≤ Cµ(V )e−ωt,

and

‖Pµ(Xt ∈ · | Xt 6= ∂)− π‖TV ≤ C
µ(V )

µ(h)
e−ωt.

It extends recent known results, see in particular [21] for various interesting examples and dis-
cussions below for comparisons of statements.

As an application, we consider the simple but interesting case of a continuous time random
walk on integers, with jumps +1 and −1, absorbed in 0. We obtain new and optimal results for
the exponential convergence to quasi-stationary distribution. Let us consider the Markov process
X whose transition rates and generator are given by the linear operator

L f(n) = bn(f(n+ 1)− f(n)) + dn(f(n− 1)− f(n)),

which is defined for any n ∈ N and f : N→ R with

bi = b > 0, di = d > 0 for any i ≥ 2, b1, d1 > 0, b0 = d0 = 0.

This process is a birth and death process which follows a simple random walk before reaching 1.
If d ≥ b, this process is almost surely absorbed in 0. The convergence in law of such processes
conditionally on non-absorption has been studied in many works [69, 68, 72, 52, 1, 38, 49, 75, 44].
The necessary and sufficient condition for ξ−positive recurrence of birth and death processes is
known from the work of Van Doorn [69]. More precisely here, the fact that there exists λ > 0
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such that for any x > 0 and i > 0, e−λtPx(Xt = i) converges to a positive finite limit as t→∞
is given by the following condition

(H) ∆ := (
√
b−
√
d)2 + b1

(√
d/b− 1

)
− d1 > 0.

We notice that b = d is excluded by condition (H) and indeed in this case t 7→ P(Xt 6= 0)
decreases polynomially. Similarly, the case b1 = b and d1 = d is excluded and there is an
additional linear term in the exponential decrease of Px(Xt = i).
Moreover we know from [68] that condition (H) ensures that Px(Xt ∈ ·|Xt 6= 0) converges
to the unique quasi-stationary distribution π for any x > 0. To the best of our knowledge,
under Assumption (H), the speed of convergence of e−λtPx(Xt = i) or Px(Xt = i|Xt 6= 0)
and the extension of the convergence to infinite support masses were unknown, see e.g. [68,
page 695]. For a subset of parameters satisfying (H), [72] obtains the convergence to quasi-
stationary distributions for non-compactly supported initial measures µ such that µ(V ) < ∞.
Using the same Lyapunov functions as in [72] or those defined below, results in [21] allow to
get exponential convergence for a subset of parameters satisfying (H). Our approach allows to
relax these conditions. We obtain below quantitative exponential estimates for the full range of
parameters given by (H), allowing also non-compactly supported initial measures.

More precisely, we set

X = N \ {0} = {1, . . .}, V : n 7→
√
d/b

n
, ψ : n 7→ ηn,

for n ∈ X , where η =
√
d/b−∆/2b1 ∈ (0,

√
d/b).

Corollary 4.2. Under Assumption (H), there exists a unique quasi-stationary distribution π ∈
P(V ), and λ0 > 0, h ∈ B+(V ) and C,w > 0 such that for all µ ∈ P(V ) and t ≥ 0,∥∥eλ0tPµ(Xt ∈ ·)− µ(h)π

∥∥
TV ≤ Cµ(V )e−ωt

and

‖Pµ(Xt ∈ · | Xt 6= 0)− π‖TV ≤ C
µ(V )

µ(h)
e−ωt.

Note that the constants above can be explicitly derived from Lemma 2.5. We also recall
that these estimates hold for non-compactly supported initial laws and that V and ψ are not
eigenelements. As perspectives, we expect that such statement can be generalized to birth and
death processes where bn, dn are constant outside some compact set of N. Finally, we hope that
the proof will help to also study the non-exponential decrease of the non-absorption probability,
in particular for random walks, corresponding to b = b1, d = d1.

Proof of Corollary 4.2. For u ≥ 1, let ϕu : n 7→ un for n ≥ 1 and ϕu(0) = 0. We have

Lϕu(n) = λu(n)ϕu(n),

for any n ∈ N, where
λu(n) = λu = b(u− 1) + d (1/u− 1) (n ≥ 2), λu(1) = b1(u− 1)− d1.

We set

a = inf
u>0

λu = λ√
d/b

= −(
√
d−
√
b)2, ζ = ∆

V (1)

ψ(1)
.

Note that from (H), ζ > 0. Then, setting V (0) = ψ(0) = 0, V = ϕ√
d/b

on N = X ∪ {0} and

L V = aV + ζ1{n=1}ψ ≤ aV + ζψ (4.1)
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on N. Moreover ψ = ϕη and
bψ ≤ Lψ ≤ ξψ (4.2)

on N, where

b = min(λη, λη(1)) = min

(
λη, a+

∆

2

)
> a = inf

u>0
λu, ξ = max(λη, λη(1)).

Using now a classical localization argument, we check that the drift conditions (4.1)-(4.2)
ensure that for any n ≥ 1 and t ≥ 0,

En[V (Xt)] ≤ V (x) +

∫ t

0

En[(aV + ζψ)(Xs)]ds, (4.3)

ψ(x) +

∫ t

0

En[bψ(Xs)]ds ≤ Ex[ψ(Xt)] ≤ ψ(x) +

∫ t

0

En[ξψ(Xs)]ds. (4.4)

Indeed, following [55], for m ≥ 1, we let Tm = inf{t > 0 : Xt ≥ m} and (Xm
t )t≥0 be the Markov

process defined by
Xm
t = Xt1t<Tm .

We extend functions V, ψ on N by setting V (0) = ψ(0) = 0. Using (4.1) and V (0) ≤ V (m), its
strong generator Lm satisfies

LmV ≤ aV + ζψ and Lmψ ≤ ξψ

on Om = {0, 1, . . .m− 1},

Lmψ(m− 1) = Lψ(m− 1)− bψ(m) ≥ bψ(m− 1)− bψ(m) = bψ(m− 1)− bηψ(m− 1)

and Lmψ ≥ bψ on Om−1. First, using LmV ≤ (a+ ζ)V on Om and V (n)→∞ as n→∞, [55,
Theorem 2.1] ensures that limm→∞ Tm =∞ and

En[V (Xt)] ≤ e(a+ζ)tV (n)

for every n ∈ N. Second Lmψ ≤ ξψ on Om and ψ is bounded on Om. Using that Xm coincides
with X on [0, Tm), Fatou’s lemma and Kolmogorov equation give

En[ψ(Xt)] ≤ lim inf
m→∞

Ex[ψ(Xm
t )]

= ψ(n) + lim inf
m→∞

En

[∫ t∧Tm

0

Lmψ(Xs)ds

]
≤ ψ(x) + ξ

∫ t

0

En[ψ(Xs)]ds.

Moreover ψ(Xm
t ) = 1t≤Tmψ(Xt) ≤ ψ(Xt) and Xm

t → Xt as m → ∞. Using Lmψ ≥ bψ −
bηψ1m−1 on Om and bounded convergence twice yields E(

∫ t
0
ψ(Xs)1Xs=m−1ds)→ 0 as m→∞

and

En[ψ(Xt)] = lim
m→∞

Ex[ψ(Xm
t )]

= ψ(n) + lim
m→∞

En

[∫ t∧Tm

0

Lmψ(Xs)ds

]
≥ ψ(x) + b

∫ t

0

En[ψ(Xs)]ds.

Using Fatou’s lemma as above for V ends the proof of (4.3)-(4.4). Considering the generator L
of the semigroup Mtf(x) = E[f(Xt)1Xt 6=0] defined for x ∈ X and f ∈ B(V ) and recalling the
definition of Section 2.4, these inequalities ensure that

LV ≤ aV + ζψ, Lψ ≥ bψ, Lψ ≤ ξψ.
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Finally, the fact that bi, di > 0 for i ≥ 1 ensures δiMt({j}) > 0 for any i, j ∈ X and t > 0 by
irreducibility. Then combining Propositions 2.10 and 2.11 ensures that Assumption A holds
for M with the functions (V, ψ). Applying then Theorem 4.1 ends the proof. �

4.2. The growth-fragmentation equation. In this section we apply our general result to the
so-called growth-fragmentation partial differential equation

∂tut(x) + ∂xut(x) +B(x)ut(x) =

∫ 1

0

B
(x
z

)
ut

(x
z

)℘(dz)

z
, t, x > 0. (4.5)

This nonlocal partial differential equation is complemented with the zero flux boundary condition
ut(0) = 0 for all t > 0 and an initial data u0 = µ. This equation appears in the modeling of
various physical or biological phenomena [53, 63, 3, 67] as well as in telecommunication. The
unknown ut(x) represents the concentration at time t of some “particles” with “size” x > 0, which
can be for instance the size of a cell [28, 41], the length of a fibrillar polymer [33], the window
size in data transmission over the Internet [19, 8], or the time elapsed since the last discharge of
a neuron [61, 16]. Each particle grows with speed 1, and splits with rate B(x) to produce smaller
particles of sizes zx with 0 < z < 1 distributed with respect to the fragmentation kernel ℘.

We assume that B : (0,∞) → [0,∞) is a continuously differentiable increasing function and
℘ is a positive measure on [0, 1] for which there exist z0 ∈ (0, 1), ε ∈ [0, z0] and c0 > 0 such that

℘(dz) ≥ c0
ε
1[z0−ε,z0](z)dz if ε > 0 or ℘ ≥ c0δz0 if ε = 0. (4.6)

For any r ∈ R we denote by ℘r ∈ [0,+∞] the moment of order r of ℘

℘r =

∫ 1

0

zr℘(dz).

Notice that Assumption (4.6) implies that r 7→ ℘r is strictly decreasing. The mass conservation
during the fragmentation process leads to impose

℘1 = 1.

The zero order moment ℘0 represents the mean number of fragments. The conditions above
ensure that ℘0 > 1 and as a consequence the growth-fragmentation equation we consider is not
conservative. The conservative form where ℘1 = 1 is replaced by ℘0 = 1 also appears in some
situations [19, 8, 59, 61, 16]. In this case, the eigenelements are given by h(x) = 1, λ = 0, and
the classical theory of the conservative Harris’ theorem applies [15]. Here we are interested in
the more challenging case of a non-conservative fragmentation kernel.

We can associate to Equation (4.5) a semigroup (Mt)t≥0. We only give here the definition of
this semigroup as well as its main properties which are useful to verify Assumption A, and we
refer to the appendix Section 5 for the proofs. For any f : (0,∞) → R measurable and locally
bounded, we define the family (Mtf)t≥0 as the unique solution to the equation

Mtf(x) = f(x+ t)e−
∫ t
0
B(x+s)ds +

∫ t

0

e−
∫ s
0
B(x+s′)ds′B(x+ s)

∫ 1

0

Mt−sf(z(x+ s))℘(dz) ds.

This semigroup is positive and preserves C1(0,∞). More precisely if f ∈ C1(0,∞) then the
function (t, x) 7→Mtf(x) is continuously differentiable on [0,∞)× (0,∞) and satisfies

∂tMtf(x) = LMtf(x) = MtL f(x)
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where the infinitesimal generator L : C1(0,∞)→ C0(0,∞) is defined by

L f(x) = f ′(x) +B(x)

[ ∫ 1

0

f(zx)℘(dz)− f(x)

]
.

To apply our main result to the semigroup (Mt)t≥0, we choose a real number k > 1 and the
Lyapunov function

V (x) = 1 + xk.

The space B(V ) is invariant under (Mt)t≥0 and for any µ ∈ M(V ) we can define by duality
µMt ∈M(V ). The family (µMt)t≥0 is then the solution to Equation (4.5) with initial data µ, in
a weak sense made precise in the appendix Section 5.

An important phenomenon in the long time behavior of the growth-fragmentation equation
is the property of asynchronous exponential growth [73]. This property refers to a separation of
the variables t and x when time t becomes large: the size repartition of the population stabilizes
and the total mass grows exponentially in time. It is a typical example of application of our
main result, Theorem 1.1. This question attracted a lot of attention in the last decades, see e.g.
[2, 4, 11, 25, 28, 36, 37, 45, 48, 56, 58, 64, 66, 74], references therein, and discussion below for
more details about this literature. As far as we know, these works assume that the fragmentation
rate has at most a polynomial growth. In our statement below, we relax this condition and we
do not assume any upper bound on the division rate. We obtain thus the existence of the
Perron eigentriplet for super-polynomial fragmentation rates. Second, an explicit spectral gap
was known only in the case of a constant division rate [64, 48, 58, 74]. Our method allows to get
it for much more general fragmentation rate. Finally, it guarantees exponential convergence for
measure solutions while only convergence under strong assumptions on the coefficients [25] and
without specific rate was known before.

Theorem 4.3. Under the above assumptions, there exists of a unique triplet (γ, h, λ) ∈M+(V )×
B+(V )× R of eigenelements of M with γ(h) = ‖h‖B(V ) = 1, i.e. satisfying for all t ≥ 0

γMt = eλtγ and Mth = eλth.

Moreover there exist constants C,ω > 0 such that for all µ ∈M(V ) and all t ≥ 0,∥∥e−λtµMt − µ(h)γ
∥∥
M(V )

≤ Ce−ωt‖µ‖M(V ). (4.7)

Remark 4.4. The eigenfunction h is continuously differentiable on (0,∞) and satisfies

L h = λh and (1 + x)1−q(k−1) . h . (1 + x)k with q > 0.

The eigenmeasure γ satisfies, for any f ∈ C1
c (0,∞),

γ(L f) = λγ(f).

Notice that we cannot expect the convergence (4.7) to hold true in M(h) in general. It is
proven that it is wrong when B is bounded for instance [10].

Before proving Theorem 4.3, let us make a brief review of the large and still growing literature
on the asynchronous exponential growth of the growth-fragmentation equation and situate our
result in this literature.
The first results have been obtained for a compact state space, namely a bounded subinterval
of (0,∞), by Heijmans, Diekmann and Thieme [28]. They proved an exponential convergence in
the case of equal mitosis by adopting a semigroup approach and using a spectral result obtained
by Heijmans in [45]. The same kind of method has then been used in [37, 66, 4], still for a
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bounded state space. It is worth noticing that in [4] a h-transform is performed with the right
eigenfunction to define a stochastic semigroup (see also [22] for a similar renormalization).
The first study on the whole state space (0,∞) is due to Perthame and Ryzhik [64] for the
equal mitosis. Similarly to the results mentioned above, the strategy is to first solve the Perron
eigenvalue problem and then prove the (exponential) convergence. This strategy also applies
for more general fragmentation kernels. The eigenvalue problem has been solved in [56, 31]
for general coefficients. Then, the General Relative Entropy technique developed by Michel,
Mischler and Perthame [57] (see also [25] for an extension to measure solutions) guarantees the
convergence, but without specifying any decay rate. The question of obtaining an exponential
rate of convergence once the eigentriplet is known has been treated in several works after [64], by
means of functional inequalities [2, 36], semigroup methods [11], or a combination of both [18, 17].
As we already mentioned, a Krein-Rutman theorem with exponential convergence is proposed
in [58] so that the whole problem is treated at once. Our result is then closer to this approach,
but does not rely on spectral analysis. More recently, the problem was also revisited and solved
by stochastic techniques by Bertoin and Watson [13, 12], relying on a Feynman-Kac formula.
Convergence at exponential speed was also proved by Marguet [51] in a time-inhomogeneous
framework by means of ergodicity techniques.

The end of the section is devoted to the proof of Theorem 4.3. We prove that the drift and
Doeblin conditions are satisfied with the functions (V, ψ) given by

V (x) = 1 + xk, ψ(x) =
1

2
(1 + x),

where we recall that k > 1 and observe that ψ ≤ V . Using Section 2.4, we obtain that Assump-
tion A holds and conclude thanks to Theorem 1.1.

Let x0 ≥ 0 and B > 0 such that for all x ≥ x0,

B(x) ≥ B.
Now define

t0 =
1 + z0 + (1 + ε)x0

1− z0
+

1

2
, t1 =

1− z0

2z0
, τ = t0 + t1, (4.8)

and for all integer n ≥ 0,

yn =
(1 + z0

2z0

)n
+ x0.

Lemma 4.5. (i) Setting ϕ(x) = 1 −
√
x + x, we have ψ ≤ ϕ ≤ 2ψ and there exist ζ > 0 and

a < b < ξ such that
LV ≤ aV + ζψ, Lψ ≥ bψ, Lϕ ≤ ξϕ,

where L is the generator of M in the sense defined in Section 2.4.
(ii) For all n ≥ 0, all x ∈ [0, yn], and all f : (0,∞)→ [0,∞) locally bounded we have

Mτf(x) ≥ e−τB(yn+τ) (c0B)n+1

1− z0

tn1
n!
ν(f)

where ν is the probability measure defined by

ν(f) =

∫ z0(y0+τ)+1

z0(y0+τ)

f(y) dy.

(iii) For all η > 0 there exists cη > 0 such that for all t, x ≥ 0 and y ∈ [ηx, x]

cη ≤
Mtψ(y)

Mtψ(x)
≤ 1.



A NON-CONSERVATIVE HARRIS’ ERGODIC THEOREM 33

(iv) For all n ≥ 0, there exists d > 0 such that

d
Mtψ(x)

ψ(x)
≤ Mtψ(y)

ψ(y)

for all t ≥ 0, x ∈ [0, yn] and y ∈ [z0(y0 + τ), z0(y0 + τ) + 1] = supp ν.

Proof of Lemma 4.5 (i). Since the identity ∂tMt = MtL is valid for all C1 functions and the
semigroup M is positive, we only need to prove that L V ≤ aV + ζψ, Lψ ≥ bψ, Lϕ ≤ ξϕ.
First,

L xr = rxr−1 + (℘r − 1)B(x)xr

for any r ≥ 0. We deduce that

2 Lψ(x) = 1 + (℘0 − 1)B(x) ≥ 0,

so that b = 0 suits. For ϕ we have

Lϕ(x) = 1− 1

2
√
x

+ (℘0 − 1)B(x)− (℘ 1
2
− 1)B(x)

√
x.

Since x 7→ (℘0 − 1)− (℘ 1
2
− 1)
√
x is negative for x >

(
℘0−1
℘1/2−1

)2 and B is increasing we deduce

Lϕ(x) ≤ 1 + (℘0 − 1)B

(( ℘0 − 1

℘ 1
2
− 1

)2
)

=:
ξ

2
≤ ξϕ(x).

For V we have

L V (x) = kxk−1 + (℘0 − 1)B(x) + (℘k − 1)B(x)xk =
[(

(℘k − 1) + (℘0 − 1)x−k
)
B(x) +

k

x

]
︸ ︷︷ ︸
→ l:=(℘k−1) limx→+∞ B(x) when x→+∞

xk.

Since ℘k < 1 and B is increasing, the limit l belongs to [−∞, 0) and we can find x1 > 0 such
that for all x ≥ x1

L V (x) ≤ axk = aV (x)− a,
where a = max{l/2,−1} < 0. For all x ∈ [0, x1] we have

L V (x) ≤ kxk−1
1 + (℘0 − 1)B(x1)

and finally setting ζ = 2(kxk−1
1 + (℘0 − 1)B(x1)− a), we get that for all x ≥ 0

L V (x) ≤ aV (x) +
ζ

2
≤ aV (x) + ζψ(x).

It ends the proof of (i). �

Before proving (ii), let us briefly comment on the definition of t0, t1 and yn. The time t1 and
the sequence yn are chosen in such a way that

y0 > 0, y0 ≥ x0, lim
n→∞

yn = +∞, and z0(yn+1 + t1) ≤ yn.

The choice of the value of t0 appears in the proof of the case n = 0 and the definition of ν.

Since τ is independent of n and yn → +∞ when n → ∞ we can find R and n large enough
so that supp ν ⊂ K ⊂ [0, yn], where K = {x, V (x) ≤ Rψ(x)}, and thus (ii) guarantees that
Assumption (A3) is satisfied with time τ on K. More precisely it suffices to take R and n large
enough so that

1 + (z0(y0 + τ) + 1)k

1 + z0(y0 + τ) + 1
≤ R

2
≤ 1 + ykn

1 + yn
. (4.9)
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Proof of Lemma 4.5 (ii). Let f ≥ 0. We prove by induction on n that for all x ∈ [0, Xn] and all
t ∈ [0, t1] we have

Mt0+tf(x) ≥ e−(t0+t)B(yn+τ) (c0B)n+1

1− z0

tn

n!
ν(f), (4.10)

which yields the desired result by taking t = t1.

We start with the case n = 0. The Duhamel formula

Mtf(x) = f(x+ t)e−
∫ t
0
B(x+s)ds +

∫ t

0

e−
∫ s
0
B(x+s′)ds′B(x+ s)

∫ 1

0

Mt−sf(z(x+ s))℘(dz) ds

ensures, using the positivity of Mt and the growth of B, that for all t, x ≥ 0

Mtf(x) ≥ e−tB(x+t)

∫ t

0

B(x+ s)

∫ 1

0

f(z(x+ s) + t− s)℘(dz) ds.

Thus for t ≥ x0 we have for all x ≥ 0, using Assumption (4.6) for the last inequality,

Mtf(x) ≥ e−tB(x+t)B

∫ t

x0

∫ 1

0

f(z(x+ s) + t− s)℘(dz) ds

≥ e−tB(x+t)B

∫ 1

0

∫ z(x+x0)+t−x0

z(x+t)

f(y) dy
℘(dz)

1− z

≥ e−tB(x+t)B
c0

1− z0

∫ (z0−ε)(x+x0)+t−x0

z0(x+t)

f(y) dy.

We deduce that for t ∈ [t0, t0 + t1] and x ∈ [0, X0]

Mtf(x) ≥ e−tB(x0+τ)B
c0

1− z0

∫ (z0−ε)x0+t0−x0

z0(x0+t0+t1)

f(y) dy.

The time t0 has been defined in such a way that (z0 − ε)x0 + t0 − x0 = z0(x0 + t0 + t1) + 1 so∫ (z0−ε)x0+t0−x0

z0(x0+t0+t1)

f(y) dy = ν(f)

and this finishes the proof of the case n = 0.

Assume now that (4.10) is valid for n and let’s check it for n + 1. By the Duhamel formula,
using that yn ≥ x0 and z0(Xn+1 + t1) ≤ yn, we have for x ∈ [xn, xn+1] and t ∈ [0, t1]

Mt0+tf(x) ≥
∫ t

0

e−
∫ s
0
B(x+s′)ds′B(x+ s)

∫ 1

0

Mt0+t−sf(z(x+ s))℘(dz) ds

≥ B
∫ t

0

e−sB(xn+1+t1)

∫ z0

0

Mt0+t−sf(z(x+ s))℘(dz) ds

≥ Bn+2 cn+1
0

1− z0
ν(f)

∫ t

0

e−sB(xn+1+t1)e−(t0+t−s)B(xn+τ) (t− s)n

n!

∫ z0

0

℘(dz) ds

≥ e−(t0+t)B(yn+1+τ)Bn+2 cn+2
0

1− z0

tn+1

(n+ 1)!
ν(f)

and the proof is complete. �

We now turn to the proof of (iii), which uses the monotonicity results proved in Lemma 5.4,
see the appendix Section 5.
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Proof of Lemma 4.5 (iii). The second inequality readily follows from Lemma 5.4 (ii). For the
first one, we start with a technical result on ℘. Due to the assumption we made on ℘, if we set
z1 > max(z0, 1− c0

(
z0 − ε/2)), we have

% :=

∫ 1

z1

℘(dz) ≤ 1

z1

(
1−

∫ z1

0

z ℘(dz)
)
≤

1− c0
(
z0 − ε/2)

z1
< 1.

Using Lemma 5.4 (ii) and (iii), we deduce that for all t ≥ s ≥ 0 and all x > 0∫ 1

0

Mt−sψ(z(x+ s))℘(dz) ≤
∫ 1

0

Mtψ(zx)℘(dz) ≤ ℘0Mtψ(z1x) + %Mtψ(x).

Now from the Duhamel formula we get, using that t 7→ t e−
∫ t
0
B(s) ds is bounded on [0,∞),

Mtψ(x) = ψ(x+ t)e−
∫ t
0
B(x+s) ds +

∫ t

0

e−
∫ s
0
B(x+s′) ds′B(x+ s)

∫ 1

0

Mt−sψ(z(x+ s))℘(dz)ds

≤ (1 + x+ t)e−
∫ t
0
B(s) ds +

(
1− e−

∫ t
0
B(x+s) ds

)(
℘0Mtψ(z1x) + %Mtψ(x)

)
≤ C0ψ(x) + ℘0Mtψ(z1x) + %Mtψ(x).

Choosing an integer n such that zn1 ≤ η we obtain

Mtψ(x) ≤ C0

1− %

n−1∑
k=0

( ℘0

1− %

)k
ψ(x) +

( ℘0

1− %

)n
Mtψ(ηx) = C1ψ(x) + C2Mtψ(ηx)

and since Mtψ(ηx) ≥ ψ(ηx) ≥ ηψ(x) we obtain for any y ∈ [ηx, x],
Mtψ(y)

Mtψ(x)
≥ Mtψ(ηx)

C1ψ(x) + C2Mtψ(ηx)
≥ η

C1 + C2η
,

which ends the proof. �

Proof of Lemma 4.5 (iv). We apply (iii) with

η =
z0(y0 + τ)

yn

and we obtain that for all x ∈ [0, yn] and y ∈ [z0(y0 + τ), z0(y0 + τ) + 1]

Mtψ(y)

ψ(y)
≥ cη
z0(y0 + τ) + 2

Mtψ(x)

ψ(x)
.

�

We are now in position to prove Theorem 4.3.

Proof of Theorem 4.3 and Remark 4.4. Fix τ defined in (4.8). In Lemma 4.5 (i) we have verified
the assumptions of Proposition 2.10, so we can find a real R > 0 and an integer n ≥ 0 large
enough so that (4.9) and Assumptions (A0)-(A1)-(A2) are satisfied with K = {V ≤ Rψ}. Then,
points (ii) and (iv) in Lemma 4.5 ensure that Assumptions (A3) and (A4) are also satisfied. So
Assumption A is verified for (V, ψ) and by virtue of Theorem 1.1 inequality (4.7) is proved, as
well as the bounds on h in Remark 4.4. It remains to check that h is continuously differentiable
and that h and γ satisfy the eigenvalue equations L h = λh and γL = λγ. By definition of h,
the Duhamel formula gives

h(x)eλt = h(x+ t)e−
∫ t
0
B(x+s)ds +

∫ t

0

e−
∫ s
0
B(x+s′)ds′B(x+ s)

∫ 1

0

eλ(t−s)h(z(x+ s))℘(dz) ds
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and we deduce that for any x > 0 the function t 7→ h(t+ x) is continuous and then continuously
differentiable. Moreover, we have the identity ∂tMth = MtL h and since Mth = eλth we deduce

L h = λh.

For the equation on γ, we start from Proposition 5.3 which ensures that for any f ∈ C1
c (0,∞)

eλtγ(f) = (γMt)(f) = γ(f) +

∫ t

0

(γMs)(L f) ds = γ(f) +
eλt − 1

λ
γ(L f).

Differentiating with respect to t yields the result. �

4.3. Comments and a few perspectives. First and as for Harris conservative semigroup
[40], our proof relies on a (quantitative) contraction method for the discrete time semigroup
(Mnτ )n≥0 = (Mn

τ )n≥0. It has been extended easily to the continuous setting. We can thus
actually state analogous results for a discrete time semigroup (Mn)n∈N by making the following
assumption for a couple of positive functions (V, ψ).

Assumption B. There exist some integers τ, T > 0, real numbers β > α > 0, θ ≥ 0, (c, d) ∈
(0, 1]2, some set K ⊂ X and some probability measure ν on X supported by K such that

(B0) ψ ≤ V on X and V . ψ on K; MkV . V and Mkψ & ψ for k ≤ T on X ,

(B1) MτV ≤ αV + θ1Kψ,

(B2) Mτψ ≥ βψ,

(B3) For all x ∈ K and f ∈ B+(V/ψ),

Mτ (fψ)(x) ≥ c ν(f)Mτψ(x),

(B4) For any integer n,

d sup
x∈K

Mnτψ(x)

ψ(x)
≤ ν

(
Mnτψ

ψ

)
.

The counterpart of Theorem 1.1 becomes

Theorem 4.6. (i) Let (V, ψ) be a couple of measurable functions from X to (0,∞) which sat-
isfies Assumption B. Then, there exists a unique triplet (γ, h, λ) ∈ M+(V ) × B+(V ) × R of
eigenelements of M with γ(h) = ‖h‖B(V ) = 1, i.e. satisfying

γM = λγ and Mh = λh. (4.11)

Moreover, there exists C > 0 and ρ ∈ (0, 1) such that for all n ≥ 0 and µ ∈M(V ),∥∥λ−nµMn − µ(h)γ
∥∥
M(V )

≤ C ‖µ‖M(V ) ρ
−n. (4.12)

(ii) Assume that there exist a positive measurable function V, a triplet (γ, h, λ) ∈ M+(V ) ×
B+(V )×R, and constants C, ρ > 0 such that (4.11) and (4.12) hold. Then, the couple (V, h/‖h‖B(V ))
satisfies Assumption B.

In addition, we recover the various bounds on the eigenevector as in Lemma 2.5 or on the
eigenvalue as in (2.11). We also recover that if infX V > 0 then there exists C > 0 and π ∈ P(V )
such that for all µ ∈ P(V ) and n ≥ 0,∥∥∥∥ µMn

µMn1
− π

∥∥∥∥
TV
≤ Cµ(V )

µ(h)
ρn. (4.13)
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As a consequence, Assumption B gives sufficient conditions to have the existence, uniqueness
and convergence to a quasi-stationary distribution for a Markov chain (Xn)n≥0. Moreover, the
convergence of the Q-process, the description of the domain of attraction and the bounds on the
extinction times can be then obtained by usual procedure, see e.g. [21, 71].

Second, for the sake of simplicity, we have not allowed ψ to vanish in this paper. This excludes
reducible structures. To illustrate this fact, let us consider the case where X = {1, 2} similar to
[9, Example 3.5] where

M =

(
a b
0 c

)
,

for a, b, c > 0. In any case, Theorem 4.6 with X = {2} implies that if µ({1}) = 0 then c−nµMn

tends to δ2. Of course, here it is an equality, but it can be easily generalized into a reducible
example on two subspaces. Now if µ({1}) > 0 then one can use Theorem 4.6 only when c > a.
Indeed, in this case, one can choose ψ to be the right eigenvector:

ψ = (b, c− a) = b1{1} + (c− a)1{2}

and show that, up to a renormalisation, µMn converges to δ2. When c ≤ a, one can not use
Theorem 4.6 and indeed the conclusion is wrong : there is no positive right eigenvector. However,
allowing ψ to vanish enables to treat the case c < a, as in [21, Section 6]. Focusing on initial
measures µ such that µ(ψ) > 0, a large part of our results actually holds when ψ ≥ 0. Indeed
(A0) and (A2) give that if µ(ψ) > 0 then µMtψ > 0 for every t ≥ 0.
Up to our knowledge, the critical case a = b remains a challenging issue. In this case, there is
no spectral gap. Nevertheless, we believe that our approach could be extended to this case by
allowing n-dependent constant d = dn in (A4) to vary with time as in [9, Assumption (H4)].

Finally, we recall that the results obtained here rely on a contraction method. Several exten-
sions to the non-homogeneous setting are expected, in the same vein as [7] for time inhomogeneous
linear PDEs. One can now relax the "coming down from infinity" property imposed by the gener-
alized Doeblin condition of [7]. Similarly, let us recall that the expectation of a branching process
yields the first moment semigroup, which usually drives the extinction of the process (criticality)
and provides its deterministic renormalization (Kesten Stigum theorem). The method of this pa-
per should provide a powerful tool to analyse the first moment semigroup of a branching process
with infinite number of types, including in varying environment, see [5, 6, 51] for some motiva-
tions in population dynamics and queuing systems. We also mention that time inhomogeneity
provides a natural point of view to deal with non-linearity in large population approximations
of systems with interaction. These points should be partially addressed in forthcoming works.

5. Appendix: The growth-fragmentation semigroup

We give here the details of the construction of the growth-fragmentation semigroup and prove
its basic properties. For a function f ∈ Bloc(0,∞), i.e. measurable and locally bounded on
(0,∞), we define the family (Mtf)t≥0 ⊂ Bloc(0,∞) through the Duhamel formula

Mtf(x) = f(x+ t)e−
∫ t
0
B(x+s)ds +

∫ t

0

e−
∫ s
0
B(x+s′)ds′B(x+ s)

∫ 1

0

Mt−sf(z(x+ s))℘(dz) ds.

We first prove that this indeed defines uniquely the family (Mtf)t≥0. Then, we verify that the
associated family (Mt)t≥0 is a semigroup of linear operators, which provides the unique solution
to the growth-fragmentation (4.5) on the space M(V ) with V (x) = 1 + xk, k > 1. Finally we
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provide some useful monotonicity properties for this semigroup, which are consequences of the
monotonicity assumption on B.

Lemma 5.1. For any f ∈ Bloc(0,∞) there exists a unique f̄ ∈ Bloc([0,∞) × (0,∞)) such that
for all t ≥ 0 and x > 0

f̄(t, x) = f(x+ t)e−
∫ t
0
B(x+s)ds +

∫ t

0

e−
∫ s
0
B(x+s′)ds′B(x+ s)

∫ 1

0

f̄(t− s, z(x+ s))℘(dz) ds.

Moreover if f is nonnegative/continuous/continuously differentiable, then so does f̄ . In the latter
case f̄ satisfies the partial differential equation

∂tf̄(t, x) = L f̄(t, x) = ∂xf̄(t, x) +B(x)

[ ∫ 1

0

f̄(t, zx)℘(dz)− f̄(t, x)

]
.

Proof. Let f ∈ Bloc(0,∞) and define on Bloc([0,∞)× (0,∞)) the mapping Γ by

Γg(t, x) = f(x+ t)e−
∫ t
0
B(x+s)ds +

∫ t

0

e−
∫ s
0
B(x+s′)ds′B(x+ s)

∫ 1

0

g(t− s, z(x+ s))℘(dz) ds.

Now for T,A > 0 define the set ΩT,A = {(t, x) ∈ [0, T ] × (0,∞), x + t < A} and denote
by Bb(ΩT,A) the Banach space of bounded measurable functions on ΩT,A, endowed with the
supremum norm ‖ · ‖∞. Clearly Γ induces a mapping B(ΩT,A) → B(ΩT,A), still denoted by Γ.
To build a fixed point of Γ in Bloc([0,∞)× (0,∞)) we prove that it admits a unique fixed point
in any Bb(ΩA,A).

Let A > 0 and T < 1/(℘0B(A)). For any g1, g2 ∈ Bb(ΩT,A) we have

‖Γg1 − Γg2‖∞ ≤ ℘0TB(A)‖g1 − g2‖∞
and Γ is a contraction. The Banach fixed point theorem then guarantees the existence of a
unique fixed point gT,A of Γ in Bb(ΩT,A). The same argument on ΩT,A−T with f being replaced
by gT,A(T, ·) ensures that gT,A can be extended into a unique fixed point g2T,A of Γ on Ω2T,A.
Iterating the procedure we finally get a unique fixed point gA of Γ in B(ΩA,A).

For A′ > A > 0 we have gA′ |ΩA = gA by uniqueness of the fixed point in Bb(ΩA), and
we can define f̄ by setting f̄|ΩA = gA for any A > 0. Clearly the function f̄ thus defined
is the unique fixed point of Γ in Bloc([0,∞) × (0,∞)). Since Γ preserves the closed cone of
nonnegative functions if f is nonnegative, the fixed point f̄ necessarily belongs to this cone when
f is nonnegative. Similarly, the space C([0,∞)× (0,∞)) of continuous functions being a closed
subspace of Bloc([0,∞)× (0,∞)), the fixed point f̄ is continuous when f is so.

Consider now that f is continuously differentiable on (0,∞). The space C1([0,∞)× (0,∞)) is
not closed in Bloc([0,∞)×(0,∞)) for the norm ‖·‖∞. For proving the continuous differentiability
of f̄ we repeat the fixed point argument in

{g ∈ C1(ΩT,A), g(0, ·) = f}

endowed with the norm
‖g‖C1 = ‖g‖∞ + ‖∂tg‖∞ + ‖∂xg‖∞.

Differentiating Γg with respect to t we get

∂tΓg(t, x) = L f(x+ t)e−
∫ t
0
B(x+s)ds +

∫ t

0

e−
∫ s
0
B(x+s′)ds′B(x+ s)

∫ 1

0

∂tg(t− s, z(x+ s))℘(dz) ds
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and differentiating the alternative formulation

Γg(t, x) = f(x+ t)e−
∫ x+t
x

B(y)dy +

∫ x+t

x

e−
∫ y
x
B(y′)dy′B(y)

∫ 1

0

g(t+ x− y, zy)℘(dz) dy

with respect to x we obtain

∂xΓg(t, x) = L f(t, x)e−
∫ x+t
x

B(y)dy +B(x)
(
f(x+ t)e−

∫ x+t
x

B(y)dy −
∫ 1

0

g(t, zx)℘(dz)
)

+B(x)

∫ x+t

x

e−
∫ y
x
B(y′)dy′B(y)

∫ 1

0

g(t+ x− y, zy)℘(dz) dy

+

∫ x+t

x

e−
∫ y
x
B(y′)dy′B(y)

∫ 1

0

∂tg(t+ x− y, zy)℘(dz) dy

=
[
L f(t, x) +B(x)f(x+ t)−B(x)

∫ 1

0

f(zx)℘(dz)
]
e−

∫ x+t
x

B(y)dy

+

∫ x+t

x

e−
∫ y
x
B(y′)dy′

(
B(y)−B(x)

) ∫ 1

0

∂tg(t+ x− y, zy)℘(dz) dy.

On the one hand using the first expression of ∂xΓg(t, x) above we deduce that for g1, g2 ∈
C1(ΩT,A) such that g1(0, ·) = g2(0, ·) = f we have

‖Γg1 − Γg2‖C1 ≤ ℘0TB(A)‖g1 − g2‖∞ + 2℘0TB(A)‖∂tg1 − ∂tg2‖∞ ≤ 2TB(A)‖g1 − g2‖C1 .

Thus Γ is a contraction for T < 1/(2℘0TB(A)) and this guarantees that the fixed point f̄
necessarily belongs to C1([0,∞) × (0,∞)). On the other hand using the second expression of
∂xΓg(t, x) we have

∂tΓg(t, x)− ∂xΓg(t, x) = B(x)

[ ∫ 1

0

g(t, zx)℘(dz)− Γg(t, x)

]
and accordingly the fixed point satisfies ∂tf̄ = L f̄ . �

With Lemma 5.1 at hand we can define for any t ≥ 0 the mappingMt on Bloc(0,∞) by setting

Mtf(x) = f̄(t, x).

Proposition 5.2. The family (Mt)t≥0 defined above is a positive semigroup of linear operators
on Bloc(0,∞). If f ∈ C1(0,∞) then the function (t, x) 7→ Mtf(x) is continuously differentiable
and satisfies

∂tMtf(x) = LMtf(x) = MtL f(x).

Additionally for any k > 1 the space B(V ) with V (x) = 1 + xk is invariant under (Mt)t≥0, and
for all t ≥ 0 the restriction of Mt to B(V ) is a bounded operator.

Proof. The linearity and the semigroup property readily follow from the uniqueness of the fixed
point in Lemma 5.1. The positivity and the stability of C1(0,∞) are direct consequences of
Lemma 5.1, as well as the relation ∂tMtf = LMtf. For getting the second one ∂tMtf = MtL f,
it suffices to remark from the computation of ∂tΓg in the proof of Lemma 5.1 that ∂tMtf is the
unique fixed point of Γ with initial data L f. For the invariance of B(V ) we compute

L V (x) = 1 + kxk−1 + (℘0 − 1)B(x) + (℘k − 1)B(x)xk
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which is bounded on (0,∞) since (℘0 − 1)B(x) + (℘k − 1)B(x)xk ≤ 0 when x ≥
(
℘0−1
1−℘k

) 1
k . We

deduce that there exists C > 0 such that L V ≤ CV and since V ∈ C1(0,∞) we get

MtV (x) = V (x) +

∫ t

0

Ms(L V )(x) ds ≤ eCtV (x).

Finally by positivity of Mt we have for any f ∈ B(V )

|Mtf | ≤Mt|f | ≤ ‖f‖B(V )MtV ≤ eCt‖f‖B(V )V

which yields
‖Mtf‖B(V ) ≤ eCt‖f‖B(V ).

�

Now we define, for t ≥ 0 and µ ∈ M+(V ), the positive measure µMt by setting for any
measurable set A ⊂ (0,∞)

(µMt)(A) = µ(Mt1A).

The axioms of a positive measure are satisfied. Clearly (µMt)(∅) = 0 and (µMt)(A ∪ B) =
(µMt)(A) + (µMt)(B) when A and B are two disjoint measurable sets. If (An)n≥0 is an in-
creasing sequence of measurable sets then by positivity of Mt the sequence (Mt1An)n≥0 is an
increasing sequence of measurable functions bounded byMtV. Passing to the limit in the Duhamel
formula we deduce from the uniqueness of the solution that the pointwise limit of (Mt1An)n≥0

is Mt1A, where A =
⋃
n≥0An. We conclude by dominated or monotone convergence theorem

that (µMt)(A) = limn→∞(µMt)(An). By construction we have (µMt)(f) = µ(Mtf) for any pos-
itive measurable function f, and since B(V ) is invariant under Mt the measure µMt belongs to
M+(V ). Then, for µ ∈M(V ) we define µMt ∈M(V ) as the equivalence class of (µ+Mt, µ−Mt).

Proposition 5.3. The family (Mt)t≥0 defined above is a positive semigroup of bounded linear op-
erators onM(V ). Moreover for any µ ∈M(V ) the family (µMt)t≥0 is solution to Equation (4.5)
in the sense that for all f ∈ C1

c (0,∞) and all t ≥ 0

(µMt)(f) = µ(f) +

∫ t

0

(µMs)(L f) ds.

Proof. Let µ ∈ M(V ) and f ∈ C1
c (0,∞). From Proposition 5.2 we know that ∂tMtf = MtL f

which gives by integration in time

Mtf(x) = f(x) +

∫ t

0

MsL f(x) ds = f(x) +

∫ t

0

Ms(f
′ −Bf)(x) ds+

∫ t

0

MsFf(x) ds

for all x ∈ (0,∞), where we have set

Ff(x) = B(x)

∫ 1

0

f(zx)℘(dz).

Since f ′ − Bf ∈ B(V ) we have |Ms(f
′ − Bf)| ≤ ‖f ′ −Bf‖B(V ) eCsV and Fubini’s theorem

ensures that

µ
(∫ t

0

Ms(f
′ −Bf) ds

)
=

∫ t

0

(µMs)(f
′ −Bf) ds.

The last term deserves a bit more attention since Ff can be not bounded by V. Consider
g ∈ C1

c (0,∞) such that g ≥ |f |. By positivity of Ms and F we have |MsFf | ≤MsF|f | ≤MsFg
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and since g ∈ C1
c (0,∞)

µ±

(∫ t

0

MsFg ds
)

= µ±

(
Mtg − g −

∫ t

0

Ms(g
′ −Bg) ds

)
< +∞.

This guarantees that (s, x) 7→MsFf(x) is (ds× µ)-integrable and Fubini’s theorem yields

µ
(∫ t

0

MsFf ds
)

=

∫ t

0

(µMs)(Ff) ds,

which ends the proof. �

We end this appendix by giving some monotonicity results on (Mt)t≥0, which are useful for
verifying (A4) in Section 4.2. They are valid under the monotonicity assumption we made on
the fragmentation rate B.

Lemma 5.4. (i) For any x > 0, t 7→Mtψ(x) is increasing.
(ii) For any t ≥ 0, x 7→Mtψ(x) is increasing.
(iii) For any T > 0, z ∈ [0, 1], and x ≥ 0, t 7→Mtψ

(
z(x+ T − t)

)
is increasing on [0, T ].

Proof. The point (i) readily follows from ∂tMtψ = Mt(Lψ), since Mt is positive and

2 Lψ(x) = 1 + (℘0 − 1)B(x) ≥ 0.

Let us prove (ii). Define f(t, x) = ∂xMtψ(x) which satisfies

∂tf(t, x) = ∂xf(t, x)−B(x)f(t, x) +B(x)

∫ 1

0

f(t, zx)z℘(dz)

−B′(x)Mtψ(x) +B′(x)

∫ 1

0

Mtψ(zx)℘(dz).

Since ∂tMtψ(x) = LMtψ(x), ∂tMtψ(x) ≥ 0, and B′ ≥ 0, we have

−B′(x)Mtψ(x) +B′(x)

∫ 1

0

Mtψ(zx)℘(dz) =
B′(x)

B(x)

(
∂tMtψ(x)− ∂xMtψ(x)

)
≥ −B

′(x)

B(x)
f(t, x)

and as a consequence

∂tf(t, x) ≥ Af(t, x) := ∂xf(t, x)−
(
B(x) +

B′(x)

B(x)

)
f(t, x) +B(x)

∫ 1

0

f(t, zx)z℘(dz).

Similarly to L the operator A generates a positive semigroup (Ut)t≥0. It is a standard result
that it enjoys the following maximum principle

∂tf(t, x) ≥ Af(t, x) =⇒ f(t, x) ≥ Utf0(x)

where f0 = f(0, ·). Since f(0, x) = ψ′(x) = 1
2 ≥ 0 we deduce from the positivity of Ut that

f(t, x) ≥ 0 for all t, x > 0, and this finishes the proof of (ii).

We turn to the proof of (iii). The case z = 0 corresponds to (ii) and we consider now z ∈ (0, 1].
Setting f(t, x) = Mtψ

(
z(x+ T − t)

)
we have using (ii)

∂xf(t, x) = z ∂xMtψ
(
z(x+ T − t)

)
≥ 0
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and

∂tf(t, x) = (∂tMtψ)
(
z(x+ T − t)

)
− z (∂xMtψ)

(
z(x+ T − t)

)
= (1− z) ∂xMtψ

(
z(x+ T − t)

)
−B

(
z(x+ T − t)

)
Mtψ

(
z(x+ T − t)

)
+B

(
z(x+ T − t)

) ∫ 1

0

Mtψ
(
z′z(x+ T − t)

)
℘(dz′)

=
1− z
z

∂xf(t, x)−B
(
z(x+ T − t)

)
f(t, x)

+B
(
z(x+ T − t)

) ∫ 1

0

f
(
t, z′x− (1− z′)(T − t)

)
℘(dz′). (5.1)

Now define g(t, x) = ∂tf(t, x) and differentiate the above equation with respect to t to get

∂tg(t, x) =
1− z
z

∂xg(t, x)−B
(
z(x+ T − t)

)
g(t, x)

+B
(
z(x+ T − t)

) ∫ 1

0

g
(
t, z′x− (1− z′)(T − t)

)
℘(dz′)

+ zB′
(
z(x+ T − t)

)
f(t, x)− zB′

(
z(x+ T − t)

) ∫ 1

0

f
(
t, z′x− (1− z′)(T − t)

)
℘(dz′)

+B
(
z(x+ T − t)

) ∫ 1

0

(1− z′)∂xf
(
t, z′x− (1− z′)(T − t)

)
℘(dz′).

Using again (5.1) we get

∂tg(t, x) =
1− z
z

∂xg(t, x)−B
(
z(x+ T − t)

)
g(t, x)

+B
(
z(x+ T − t)

) ∫ 1

0

g
(
t, z′x− (1− z′)(T − t)

)
℘(dz′)

+ z
B′

B

(
z(x+ T − t)

)(1− z
z

∂xf(t, x)− g(t, x)
)

+B
(
z(x+ T − t)

) ∫ 1

0

(1− z′)∂xf
(
t, z′x− (1− z′)(T − t)

)
℘(dz′)

and using the positivity of ∂xf, B and B′ we finally obtain

∂tf(t, x) ≥ 1− z
z

∂xg(t, x)−
(
B + z

B′

B

)(
z(x+ T − t)

)
g(t, x)

+B
(
z(x+ T − t)

) ∫ 1

0

g
(
t, z′x− (1− z′)(T − t)

)
℘(dz′).

Since g(0, x) = 1−z
2 + ℘0−1

2 B
(
z(x + T )

)
≥ 0 we deduce from the maximum principle that

g(t, x) ≥ 0. �
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