N

N

Availability-driven NFV Orchestration

Marco Casazza, Mathieu Bouet, Stefano Secci

» To cite this version:

Marco Casazza, Mathieu Bouet, Stefano Secci. Availability-driven NFV Orchestration. Computer
Networks, 2019, 155 (47-61), 10.1016/j.comnet.2019.02.017 . hal-02062779

HAL Id: hal-02062779
https://hal.science/hal-02062779
Submitted on 9 Mar 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02062779
https://hal.archives-ouvertes.fr

Availability-driven NFV Orchestration

Marco Casazza®*, Mathieu Bouet®, Stefano Secci®

4 Universita degli Studi di Milano, Dipartimento di Informatica, Crema, Italy
bCnam, Paris, France
“Thales, France

Abstract

Virtual Network Functions as a Service (VNFaaS) is a promising business whose technical directions consist of providing network
functions as a Service instead of delivering standalone network appliances, leveraging a virtualized environment named NFV
Infrastructure (NFVI) to provide higher scalability and reduce maintenance costs. Operating the NFVI under stringent availability
guarantees is fundamental to ensure the proper functioning of the VNFaaS against software attacks and failures, as well as common
physical device failures. Indeed the availability of a VNFaaS relies on the failure rate of its single components, namely the physical
servers, the hypervisor, the VNF software, and the communication network.

In this paper, we propose a versatile orchestration model able to integrate an elastic VNF protection strategy with the goal to
maximize the availability of an NFVI system serving multiple VNF demands. The elasticity derives from (i) the ability to use VNF
protection only if needed, or (ii) to pass from dedicated protection scheme to shared VNF protection scheme when needed for a
subset of the VNFs, (iii) to integrate traffic split and load-balancing as well as mastership role election in the orchestration decision,
(iv) to adjust the placement of VNF masters and slaves based on the availability of the different system and network components
involved. We propose a VNF orchestration algorithm based on Variable Neighboring Search, able to integrate both protection

schemes in a scalable way and capable to scale, while outperforming standard online policies.

Keywords: High Availability NFV, Virtual Network Functions, NFV Orchestration, Variable Neighborhood Search, Greedy

Heuristic.

1. Background

A recent trend in computer networks and cloud computing
is to virtualize network functions, in order to provide higher
scalability, to reduce maintenance costs, and to increase the reli-
ability of network services. Virtual Network Functions as a Ser-
vice (VNFaaS) is currently under attentive study by telecom-
munication and cloud stakeholders, as a promising business
and technical direction consisting of providing network func-
tions (i.e., firewall, intrusion detection, caching, gateways...)
as a Service instead of delivering standalone network appli-
ances. While legacy network services are usually implemented
by means of highly reliable hardware specifically built for a sin-
gle purpose middlebox, VNFaaS moves such services to a vir-
tualized environment [1], named NFV Infrastructure (NFVI),
based on commercial-off-the-shelf hardware [2].

Services implementing network functions are called Virtual
Network Functions (VNFs). One of the key points differenti-
ating NFVI design from classical Cloud infrastructure design
is the requirement to guarantee high levels of availability to
the service [3], i.e., the probability that the network function
is working at a given time. In other words, a higher availabil-
ity corresponds to a smaller downtime of the system, and it is

*Corresponding author
Email addresses: marco.casazza@unimi.it (Marco Casazza),
mathieu.bouet@thalesgroup.com (Mathieu Bouet),
stefano.secci@cnam. fr (Stefano Secci)

Preprint submitted to Computer Networks

required to satisfy stringent Service Level Agreements (SLA).

While in common IT/cloud systems the expectations in terms of

high availability are in the order of 99,9% availability, telco/NFV
carrier grade systems expectations are in the order of 99,999%

availability, and even beyond for mission/business critical ser-

vices [4].

While failures are tolerated in other contexts, the interrup-
tion of NFVI services is not acceptable, since the failure of
a single VNF has a cascade effect on all the overlying ser-
vices [5]. To achieve high availability, backup VNFs can be
placed into the NFVI, acting as replicas of the running VNFs,
so that when one of the latter goes down, the load is rerouted
to the former. However, not all VNFs are equal ones: the soft-
ware implementing a network function of the server where a
VNF is running may be more prone to errors than others, influ-
encing the availability of the overall infrastructure. Also, client
requests may be routed via different network paths, with differ-
ent availability performance. Therefore to guarantee high levels
of availability it is important not only to increase the number of
VNF replicas placed on an NFVI, but it is also crucial to select
where they are placed and which requests they serve. A level
of flexibility in the VNF placement and protection strategies is
needed, such that VNF protection is adopted only when needed,
that a stronger protection scheme can be adopted to compensate
low component/network availability for some VNFs, and that
no protection may be acceptable for some other VNFs, for a set
of VNFs demanded by different users beyond different network

March 9, 2019

gateways, concurrently. Cluster o= + Cluster}vB-""" Clusters;_*-"""

In this context, we propose and evaluate an NFVI orches- 51|:| |:|S3 I:I I:I s7 V
. L) iss

tration algorithmic framework that is able to offer such a flexi- 55] [Js9:

bility. More precisely, our contribution consists of:

(i) a quantitative probabilistic model to measure the expected
availability of VNF placement; APLO™ AP30

(ii) a formalization of the orchestration problem, with a proof Figure 1: Abstract representation of an NFVI: each server is depicted as a white
of its NP-hardness, along with a linear mathematical pro- box whose height represents the amount of available resources. Clusters are

gramming formulation that can be solved to optimality for connected together to allow synchronization operations. Access network is rep-
instances of limited size: resented by access points connecting clusters to the external network.
b

(iii) a Variable Neighborhood Search (VNS) heuristic, with con-
trollable complexity and hence suitable for both online
and offline orchestration;

to clusters can differ in the availability level, depending on the
type of the connection or the distance from the cluster.

In this article, we assume that the total amount of resources
and network capacities are sufficient to manage the expected
client requests at any time. However assignment decisions may
artificially produce congestion over the servers. We analyze
how to find assignments providing a trade-off between NFVI

The paper is organized as follows: in Section 2 we start by ~ availability and system congestion.

(iv) an extensive multi-facet evaluation, including a simula-
tion campaign, algorithm integration in a Decision Sup-
port System tool and in an OpenStack testbed [6].

quickly defining the optimization framework, the VNF protec- We are given an estimation of the expected client VNF re-
tion strategies and their impact on NFVI operations. In Sec- quests, each characterized by a computing resource demand.
tion 3 we briefly describe previous works on VM/VNF place- An assigned request consumes part of the resources reserved
ment for cloud/NFVI systems. In Section 4 we formally de- by a VNF instance. Indeed the consumed resources must not
scribe the optimization problem and propose a linearization of ~ €xceed the reserved ones.

the problem and a mathematical programming formulation that Requests can be assigned using two different policies:

can solve it to optimality. In Section 5 we describe our heuristic
methodologies, which are then tested in an extensive simula-
tion campaign in Section 7. Section 8 describes how we could
integrate our algorithm in an OpenStack testbed. We briefly

o demand load balancing: a client request is always fully
assigned to a single server, and multiple demands of the
same VNF can be balanced to different servers;

conclude the paper in Section 9. o split demand load balancing: a client request may be split
A preliminary version of the content of this paper was pre- among different servers. Splitting a request also splits
sented at the 2017 IFIP Networking conference [7]. proportionally its demand of computing resources. In-

deed, when a demand is split it relies on the availabilities
of many VNF instances, decreasing the expected avail-
ability of the service, but increasing the chance of finding
a feasible assignment in case of congestion.

2. High Availability NFV Orchestration

In this section we describe the overall VNF orchestration

problem that we address. We also propose a taxonomy of the In the orchestration model, we do not address the VNF chain-
VNF protection strategies which, to the best of our knowledge, ing dimension, and hence the related network embedding prob-
is a unique contribution to the state of the art on NFV orches- lem. Instead, we focus on the effective placement of multiple
tration strategies. VNFs that compete for the highest availability through replica-

tion, in an infrastructure with limited resources.
2.1. Networking context

We consider an NFVI with several geo-distributed datacen- ~ 2-2. VNF protection strategies

ters or clusters (see Fig. 1). Each cluster consists of a set of het- We suppose a multi-failure environment in which VNFs,
erogeneous servers with limited available computing resources. servers, clusters, and networks may fail together. To improve
Several instances of the same VNF type can be placed on the the VNF availability, VNF instances are replicated on the NFVL
NFVI but on different servers. Each VNF instance can be as- We distinguish between master and slave VNFs: the former
signed to a single server allocating some of its computing re- are active VNF instances, while the latter are idle until masters
sources. Indeed each server has a limited amount of computing ~ fail. In case of multiple active master VNFs, one of the load-
resources that cannot be exceeded. balancing policies can be used. Masters entertain with slaves a
A network connects together all servers of the NFVI: we synchronization link, to allow state updates, which is particu-
suppose that the communication links inside a cluster are sig- larly appropriate for stateful VNF configurations'. An example
nificantly more reliable than those between servers in differ-
ent clusters. An access network with multiple access/ gateway A stateful VNF is a VNF that embeds the states needed to its operation

points connects VNFs to users. Links connecting access points within the VNF system. A stateless VNF, instead, externalizes the states so that

of VNF placement with demand load-balancing is depicted in
Fig. 2.

Cluster A """"""""""

51 Es3
N
SZE ,;; s4

Cluster B -----------

E % 57 Y Slave
3 SS@ 59

Master

Cluster C -----------

Figure 2: Abstract representation of VNFs placement on a 3-cluster NFVI. Each
patterned box is a VNF instance. Instances running the same VNF type have
the same pattern. VNFs with a gray background are slaves placed as protection
for the masters. Sets of requests are routed from access points and assigned to
'VNFs running the requested function.

Each master may be protected by many slaves, but each
slave must be placed on a different server than its master and
must be allocated at least the same amount of computing re-
sources. Each master periodically saves and sends its state to
its slaves, e.g. using technologies such as the one presented
in [9], in such a way that the latter have always an updated state
and can consistently restore the computation.

In this paper, we present and compare two different VNF
protection schemes (represented with an example in Fig. 3):

e dedicated VNF protection: a slave protects only one mas-
ter (dedicated slave): in case such a master fails, if the
slave is available it can always restore the master state;

e shared VNF protection: a slave protects at least one mas-
ter (shared slave): when a master fails, a shared slave
can restore its state only if it is available and it is has not
restored another master state yet.

Slgig 53@) - . -

(a) In dedicated protection each

slave protects at most one master. In protect many masters. In this ex-

this example each master has a single ample masters on server S2 have 2

slave. slaves. Slaves on server S1 cannot
protect masters on server S 4 because
they lack of allocated computing re-
sources.

(b) In shared protection a slave can

Figure 3: Example of protection schemes: master VNFs are running on servers
S§2 and S4, while slave ones are running on S'1 and S3. Each link between
VNF instances represents the connection between a master and its slave.

Table 1 gives a summary of the different possible scenarios
we aim to cover with our orchestration framework, depending
on the load-balancing strategy and the VNF protection strat-
egy. Given a set of demands, potentially any of the six possible
configurations could manifest for a given demand, and different
demands could fall under a different scenario.

they can be retrieved from an external database system, ideally a distributed
one [8].

We suppose that if a master is unreachable, a recovery pro-
cess either has already cached the location information of the
slave at network switches, or retrieves it from the control-plane.
In case of multiple slaves, the dedicated slaves are selected first.
If all slaves are unreachable or already restoring another master,
then the service is considered unavailable.

About the shared protection option, we can further differen-
tiate between:

e homogeneous shared protection: a slave VNF can be shared
only by master VNFs of the same VNF type. This im-
plies that both stateful VNFs and stateless VFNs could
be used.

e heterogeneous shared protection: a slave VNF can be
shared by master VNFs of different VNF types. This nec-
essarily implies that a context change process is able to
select which protection VNF from a local file system to
execute, and that to minimize the impact of the recovery
time on VNF operations, stateless VNFs would be highly
desirable.

Fig. 4 is a Venn diagram representation of the solution space.
Feasible solutions with dedicated protection can be reached by
enriching a feasible placement with no protection. Similarly
does for homogeneous shared protection with respect to dedi-
cated protection, and heterogeneous shared protection with re-
spect to homogeneous protection.

Placements
heterogeneous
shared protection

Placements

homogeneous
shared protection

Figure 4: Venn diagram representing the relations between feasible placements
of VNFs for each protection scheme.

It is important to note that, if one seeks high availability,
with the VM booting performance of current hypervisors, ho-
mogeneous shared protection is certainly more appropriate than
the heterogeneous alternative: indeed, running heterogeneous
shared protection implies that the slave VNF is booted on de-
mand, which implies a non negligible switchover time (or mean-
time-to-repair) in the order of seconds, which would drastically
decrease the availability performance. In case of homogeneous
protection, the slave VNF can be kept running so that the han-
dover time can be kept at the ms level (i.e., essentially given
by the re-mapping time), with therefore negligible impact on
the recovery time. Therefore we consider in the following only
homogeneous shared protection.

Table 1: Summary of VNF placement scenarios.

protection scheme

| no protection

dedicated protection

shared protection

one request, one VNF
no slave VNFs

one request, one VNF
slave protects a master

one request, one VNF
slave protects multiple masters

demand
load

balancing

) e]

e el]

one request, multiple VMs
split no slave VNFs

< U
load

balancing

request assignment

one request, multiple VNFs
slave protects a master

L b 1A

one request, multiple VNF
slave protects multiple masters

L e 1

3. Related works

Although there already exist orchestrators that are driven
by optimization algorithms for the placement, such as [10], the
management of cloud computing resources for VM and VNF
placement is still a recent area of research (see [11] for a high-
level comprehensive study). We now present few works in the
literature studying the optimization problems that arise in this
context.

Placement of Virtual Machines. [12] studies the problem of
placing VMs in datacenters minimizing the average latency of
VM-to-VM communications. Such a problem is NP-hard and
falls into the category of Quadratic Assignment Problems. The
authors provide a polynomial time heuristic algorithm solving
the problem in a "divide et impera"” fashion. In [13] the au-
thors deal with the problem of placing VMs in geo-distributed
clouds minimizing the inter-VM communication delays. They
decompose the problem in subproblems that they solve heuristi-
cally. They also prove that, under certain conditions, one of the
subproblems can be solved to optimality in polynomial time.
[14] studies the VM placement problem minimizing the max-
imum ratio of the demand and the capacity across all cuts in
the network, in order to absorb unpredictable traffic bursts. The
authors provide two different heuristics to solve the problem in
reasonable computing time.

Placement of Virtual Network Functions. [15] applies NFV to
LTE mobile core gateways proposing the problem of placing
VNFs in datacenters satisfying all client requests and latency
constraints while minimizing the overall network load. Instead,
in [16] the objective function requires to minimize the total sys-
tem cost, comprising the setup and link costs. [17] introduces
the VNF orchestration problem of placing VNFs and routing
client requests through a chain of VNFs. The authors minimize
the setup costs while satisfying all client demands. They pro-
pose both an Integer Linear Programming model (ILP) and a
heuristic to solve such problem. Also [18] considers the VNF
orchestration problem with VNF switching piece-wise linear
latency function and bit-rate compression and decompression

operations. Two different objective functions are studied: one
minimizing costs and one balancing the network usage. In [19]
replicas of VNFs are placed in the networks to increase load
balancing and minimize the usage of the network. The authors
propose an ILP to solve the optimization problem with optimal-
ity guarantees, a genetic algorithm, and a fast greedy algorithm.
In [20] the authors consider the problem of allocating the mini-
mum quantity of resources to perform the VNF placement in a
two-level hierarchical geo-distributed infrastructure, proposing
both an ILP and a Tabu Search heuristic algorithm. In [21] the
usage of both computing and communication resources are bal-
anced into a bi-objective optimization problem, which is proved
to be NP-hard. The authors, propose an ILP together with a
greedy heuristic: each service chain is sequentially deployed
over network nodes, in such a way that the nodes causing less
resource usage increment are the ones having higher probabil-
ity of being chosen. Such a probability is computed through a
Hidden Markov Model. In [22] the authors take into account
the time-variance of the workload of each function in the place-
ment problem. In such a way the utilization efficiency of re-
sources is improved and costs are minimized. The authors pro-
pose an ILP working for small number of service chains, and
a two-stage heuristic algorithm that first assigns service chains
to physical servers in a greedy fashion starting from the least
correlated chains, and then tries to reduce the number of physi-
cal servers by collecting together requests of the same type and
freeing computing resources from servers.

Placement with availability constraints. In[23] VMs are placed
with a protection guaranteeing k-resiliency, that is at least k
slaves for each VM. The authors propose an integer formulation
that they solve by means of constraint programming. In [24] the
recovery problem of a cloud system is considered where slaves
are usually turned off to reduce energy consumption but can
be turned on in advance to reduce the recovery time. The au-
thors propose a bicriteria approximation algorithm and a greedy
heuristic. In [25] the authors solve a problem where links con-
necting datacenters may fail, and a star connection between
VMs must be found minimizing the probability of failure. The
authors propose an exact and a greedy algorithm to solve both

small and large instances, respectively. Within disaster-resilient
VM placement, [26] proposes a protection scheme in which for
each master a slave is selected on a different datacenter, enforc-
ing also path protection. In [27] the authors solve the prob-
lem of placing slaves for a given set of master VMs without
exceeding neither servers nor link capacities. Their heuristic
approaches decompose the problems in two parts: the first allo-
cating slaves, and the second defining protection relationships.

In a recent work, VNF chaining under path-level and link-
level protection strategies is studied in [28], with a particular
emphasis on the network embedding, excluding the modeling of
different VNF node protection strategies and of the VNF state
synchronization link. In another recent work [29], the authors
model the VM availability by means of a probabilistic approach
and solve the placement problem over a set of servers by means
of a nonlinear mathematical formulation and greedy heuristics.
This is the only work offering a comprehensive estimation of
the availability of the system. However, it considers only the
availability of the servers, while in our problem we address a
more generic scenario: when datacenters are geo-distributed, a
client request shall be assigned to the closest datacenter, since
longer connections may have a higher failure rate. Therefore,
the source of the client requests may affect the placement of
the VNFs on the NFVI, and must be taken into account in the
optimization process and in the estimation of the availability.

In [30, 31] the authors consider the placement of VNF ser-
vice chains guaranteeing resiliency against both single-node and
single-link failure. Three different protection schemes are pro-
posed and compared by solving the corresponding ILPs. In [32]
instead, VNFs are placed in such a way that, for each service
chain, availability and delay SLA constraints are met. Resource
protection is not addressed and availability constraints are met
by assigning more reliable links and network nodes to service
chains requiring higher level of availability. The authors pro-
pose both an ILP model to solve the problem with optimal-
ity guarantees and an efficient greedy heuristic. In [33] a bi-
objective VM placement problem is considered where cost and
availability are balanced. The authors provide a two-phase heuris-
tic that first distributes resources to VMs and then places VMs
to physical servers.

4. Network Orchestration Model

In the following we propose a formal definition to the High
Availability Virtual Network Function Placement Problem (HA-
VNFP), and a mathematical programming formulation.

Clusters and servers. We are given the set of clusters C and the
set of servers S. Each server s belongs to a cluster c;, and we
define as S, C S the set of servers of cluster c. We represent the
usual distinct types of computing resources (CPU, RAM, ...)
of server s € § by the same global amount g, € R, of available
resources.

Virtual Network Functions. A set F of VNF types is given.
Each VNF instance runs on a single server. Each server can
host multiple VNF instances, but at most one master for each

type.

Networks. An inter-cluster network allows synchronization be-
tween clusters, while an access network connects clusters to a
set of access points P. We are given sets L¢ and Lp of logical
links (¢’,¢””) € L¢ connecting clusters ¢’,¢” € C, and logical
links (c, p) € Lp connecting cluster ¢ € C to access point p € P,
respectively.

Client requests. A set of client requests R is given. Each re-
quest ¥ € R is a tuple (f,, P,,d,) of the requested VNF type
fr € F, a subset of available access points P, C P, and the
resources demand d, € R,.

Availability. Taking into account explicit availability in NFVI
design becomes necessary to ensure SLAs [5, 2]. We suppose
that the availabilities of each component (server, cluster, VNF,
link) are given (see Table 2), each corresponding to the proba-
bility that a component is working.

Objective function. All client requests must be assigned to servers
maximizing the availability of the system, which we measure as
the minimum availability among all requests. We consider the
availability as the most important and sole objective: in mis-
sion critical systems other criteria are overshadowed and can be
considered as constraints, such as the available budget or the
amount of computing resources.

4.1. Computational complexity

We now investigate the computational complexity of our
optimization problem starting from the computational effort re-
quired to find a feasible solution. We prove that:

Observation 1. When demand split is allowed and Y, cgr d, <
>ses 4ss HA-VNFP has always a feasible solution that can be
found in polynomial time.

In fact since the requests can be split among servers, the fea-
sibility of an instance can be found applying a Next-Fit greedy
algorithm for the Bin Packing Problem with Item Fragmenta-
tion (BPPIF) [34]: servers can be seen as bins, while requests
as items that must be packed into bins. The algorithm iteratively
packs items to an open bin. When there is not enough residual
capacity, the item is split, the bin is filled and closed, and a new
bin is open packing the rest of the item. When requests can be
split, such algorithm produces a feasible solution for the HA-
VNFP: if a request is assigned to a server, then a master VNF
serving such a request is allocated on that server too. The Next-
Fit algorithm runs in O(|R|) and therefore a feasible solution can
be found in polynomial time.

Observation 2. The feasibility of a HA-VNFP instance without
demand split is a NP-hard problem.

Indeed we can see again the feasibility problem as a Bin
Packing Problem (BPP). However, without split each item must
be fully packed into a single bin. Therefore, finding a feasi-
ble solution is equivalent to the feasibility of a BPP, which is
NP-hard. It follows that for what concerns the computational
complexity of the HA-VNFP, that is the computational effort re-
quired to find the placement having maximum availability, we
have that:

Table 2: Mathematical notation.

C | Set of clusters

S. | Setof servers in cluster ¢ € C

R | Set of requests

Lc | Set of synchronization links

P, | Set of access points for request r € R

S Set of servers

F | Set of VNF types
P | Set of access points
Lp | Set of access links

qs | Capacity of server s € S
¢y | Cluster containing server s € S

d, | Demand of request r € R
fr | VNF type of request r € R

I | Availability of VNF type f € F

a S | Availability of synchronization link (c, ¢’), with
c,c' eC

at | Availability of cluster c € C

S
aS
aff; Availability of access link (c, p), withc € C and p € P

Availability of server s € S

Theorem 1. The HA-VNFP without demand split is NP-hard.

That is, for unsplittable demands, it is N'P-hard finding both
a feasible solution and the optimum solution. It is less straight-
forward to also prove that:

Theorem 2. The HA-VNFP with demand split is NP-hard.

Proof. In fact, let us suppose a simple instance where all com-
ponents (servers, clusters, links, ...) are equal ones and where
Yrerdr = Yses 45, which means that there will be no slaves in
our placement. The problem can be seen again as a BPPIF in
which the objective is to minimize the number of splits of the
item that is split the most: in fact, every time a request is split,
the availability of the system decreases. In such scenarios the
best solution is the one in which no request is split at all - how-
ever, if we could solve such a problem in polynomial time, then
we could solve also the feasibility problem of a BPP in polyno-
mial time, which instead is NP-hard. Therefore, since we can
reduce a feasibility problem of BPP to an instance of BPPIF,
and the latter to an instance of HA-VNFP, the HA-VNFP with
split is NP-hard. O

4.2. Mathematical formulation

In the following we provide a mathematical programming
formulation of HA-VNFP with dedicated protection, starting
from the definition of the set of the solutions: a request assign-
ment w is a pair (s, S) indicating the subset of servers S, € §
running either the master or the slaves of a VNF instance, and
the server s € S, where the master is placed. We also define

Q={(55,)15,SS,s€S,)

as the set of all request assignments. An assignment configura-
tion y (see Fig. 5) is a set of all request assignments w for all the
fragments of a request. We define as I' the set of all assignment
configurations v, that is

F={ye2?|s #s V(s) (", W) ey

Cluster C....w
3 a7 4
s6/ s |[Jso
AP30O
Figure 5: Example of assignment configuration 7y =

{(§2,{S1,52,87}),(55,{S3,55,56})}, where request Rl is split and as-
signed to two different master VNFs on servers S2 and S'5. Both masters have
slaves: the master VNF on server S2 has slaves on servers S1 and S7, while
the one on server S 5 has slaves on servers S3 and S6.

Availability computation. We compute the NFVI availability
for a request r by means of a probabilistic approach [35, 36].
Given a cluster and a set of access points, a*»(c, P) is the func-
tion computing the probability that at least one of the access
links is working: a**(c,P) = 1 — [Tper(1 - afl’,’). Given a VNF
and a set of servers, a® (f, S) is the function computing the prob-
ability that at least one instance of VNF is working: a® (f,S) =
1-[1,es(1-ak-a%). Given arequest r and a request assignment
w = (5,8 p), a(r,w) is the function computing the probability
that at least one of the instances of w is working:

a(rnw)y=1-[(1-a"(c,,P,)-af -a*(f..S,NS)

availability of the cluster containing master

[T a-d*@r)-af-d -a.5,050]
ceC\{cs

] availability of cluster containing only slaves

When a request r is split, we compute its availability a(r, y) as
the probability that all of its parts succeed:

atry) = || atr). (1

(s;w)ey

We remark that such formula is nonlinear and produces an Inte-

ger Nonlinear Programming formulation which cannot be solved
by common integer solvers like CPLEX. Therefore we propose

a Mixed Integer Programming (MIP) linearization of such non-

linear formulation in which for each assignment configuration

v € I' we have a binary variable stating if such configuration is

selected in the solution.

Variables. The following variables are needed:

X,s : fraction of request r assigned to server s
1, if y is active for request r
o = { 0, otherwise
uyg : resources consumed by VNF f on s
Vs : Tesources consumed by slave on server s’

Amin - minimum availability

Model. HA-VNFP can be modeled as follows:

max ﬂmin (2)
s.t. Z Xy = 1 VreR (3)
seS
Xy = DL 2y <0 VreRseS @
yell
A(s,w)ey
Zd,-x,s—ufsso VfeFseS (5
reR
fr=r
ufs +4s- Z Zry = Visy <G5 YreR,s, s es (6)
yel
A(s,w)eyls’ ew
Dl D vpes < g VseS (7
feF s'eS
Z Zry <l1 YreR (8)
yel'
D () 2y = Ain 2 0 VreR (9)
yell

Constraints (3) and (4) ensure that each request is fully as-
signed and selects an assignment configuration, respectively.
Constraints (5) and (6) set the allocated resources of masters
and slaves, respectively. Constraints (7) ensure that servers ca-
pacities are not exceeded. Constraints (8) impose that at most
one assignment configuration is selected for each request. Con-
straints (9) compute the minimum availability. It is worth not-
ing that, in practice, an additional constraint can be added to
set an upper bound to the minimum availability, hence avoid-
ing near-full usage of the computing capacity. Our formulation
can model both the HA-VNFP with and without split: in fact
by simply setting |y| = 1 for each configuration y we forbid
configurations splitting a request.

4.3. Modeling shared protection

Shared protection cannot be integrated in our mathemati-
cal programming formulation: in fact, the computation of the
availability of a given placement using shared protection is al-
ready challenging and requires advanced methodologies such as
Markov Chains or Bayesian Networks, which unfortunately run
in exponential time. Therefore we chose to provide a method-
ology to obtain both lower and upper bounds to the availability
of a VNF placement with shared protection.

Let us be given a placement of VNFs, such that for each
selected request assignment w = (5,5), we can split the set

S, \ {s} in two sets: the set S » of dedicated slaves, and the set
S ;; of shared slaves. Let us be given also a function ageq(r, w)
computing the availability of a placement using shared protec-
tion.

Observation 3. Given a request assignment w = (s,S) and a
request r € R, it holds that

a(r, (5,8 p \' S) < dsharea(r,) < a(r, w)

In fact, when a master fails, we may have two extreme
cases with regard to shared slaves: in the worst case all shared
slaves are already restoring the state of others protected mas-
ters, while in the best case all shared slaves are available. In
the worst case, the only servers available for protection are the
ones in S P which however are dedicated slaves. Therefore, the
availability in the worst case is at least the availability of the
dedicated protection scenario with dedicated slaves only, and
a(r, (S, Sp \ S;)) < ashared(r» w)

Similarly, in the best case each server in §, can be cho-
sen to restore the master state, as they are all dedicated slaves.
Therefore, in this case the availability is at most the availability
of the same request assignment with all slaves and dedicated
protection, and dgpgreq(r, W) < a(r, w).

Since the availability of an assignment configuration is given
by the product of all its request assignments, it follows that:

Proposition 1. The availability of a placement computed using
dedicated slaves only is a lower bound to the availability of the
same placement with shared protection.

Proposition 2. The availability of a placement computed using
all slaves in a dedicated protection fashion is an upper bound to
the availability of the same placement with shared protection.

5. Resolution algorithms

Solving HA-VNFP as a MIP using an integer solver works
only for small NFVI, since the number of variables grows ex-
ponentially in the number of servers. Therefore we propose
two different heuristic approaches for HA-VNFP: the first is an
adaptation of well-known greedy policies for the BPP that will
serve as comparison, while the second is a Variable Neighbor-
hood Search heuristic using different algorithmic operators to
explore the neighborhood of a starting point.

5.1. Greedy heuristics

Most of the heuristics for the placement of VMs or VNFs
are based on a greedy approach, and BPP heuristics are often
exploited to obtain suitable algorithms for the placement, such
as in [37]. We also exploit BPP heuristics to obtain three dif-
ferent greedy approaches for the HA-VNFP: Best Availability,
Best Fit, and First Fit greedy heuristics. The algorithm, re-
ported in Algorithm 1, starts from an empty initial placement
and for each request r it looks for a server having enough resid-
ual capacity to satisfy the demand d,. If such a server is found,
then the request is assigned to it, otherwise the algorithm fails
without finding a feasible solution. However, we can observe
that:

Observation 4. When Y,.cpd, < Y s s and split is allowed,
our greedy heuristic always finds a feasible solution.

In fact we can always split a request between two servers,
as stated also in Observation 1.

The selection of the server is performed by the procedure
SELECTSERVER(S , d, split) which discards the servers without suf-
ficient resources to satisfy demand d, and selects a server de-
pending on the chosen policy:

e best fit: the server whose capacity best fits the demand;
e first fit: the first server found;
e best availability: the server with the highest availability.

While the first two policies are well-know for the BPP, the third
one is designed for the HA-VNFP.

Master VNFs are placed during the assignment of the re-
quests. Then, in a similar way, the algorithm places additional
slaves: for each master the algorithm looks for a server having
enough capacity for a slave still using SELECTSERVER procedure.
After a server is found, the slave is placed. Such a procedure is
repeated until no additional slave is placed.

Although we described demand load balancing and split de-
mand load balancing as two different policies, it is easy to mix
them in our algorithms by simply setting the parameter split of
procedure SELECTSERVER(S , d, split) to true or false depending
on whether the corresponding VNF can be split or not, respec-
tively.

Algorithm 1 Greedy heuristic procedure

1: function GREEDY(R, S, split)
2: placement « 0

3: forallreR|d. >0do > Assignment of requests
4 if 95 «SELECTSERVER(d,, S, split) then

5: create VNF f, if it does not exists in placement
6 assign request r to server § in placement
7

8

9

demand d, is decreased

else

: return infeasible
10: end if
11: end for
12: do > Add slaves
13: for all VNFs v € placement do
14: S « servers of S without v and its slaves
15: if 3§ «SELECTSERVER(d,, S, FALS E) then
16: create slave of VNF v on server § in placement
17: end if
18: end for

19: while slaves are found
20: return placement
21: end function

5.2. Variable Neighborhood Search

The Variable Neighborhood Search (VNS) is a meta-heuristic
that systematically changes the neighborhood within the local
search algorithm, in order to escape from local optima. In other
words, it starts from an initial solution, applies a local search

algorithm until it improves, and then changes the type of local
search algorithm applied to change the neighborhood. Our VNS
algorithm explores 4 different neighborhoods and it is initial-
ized with several starting points, each obtained using a different
greedy algorithm.

Algorithm 2 Variable Neighborhood Search
1: function vNs(R, S, split)
2: startingPoints — {BESTAVAILABILITY(R, S, split),
BESTFIT(R, S, split), FIRSTFIT(R, S, splif) }
3: operators < {vnfSwap, slaveS wap, requestSwap,
requestMove}

4: bestPlacement < 0
5. for all placement € starting Points do
6: do
7: for all op € operators do
3 placement « apply op to placement
9 if placement improves bestPlacement then
10: bestPlacement < placement
11: break
12: end if
13: end for
14: while improving bestPlacement
15: end for

16: return bestPlacement
17: end function

The main logic of our VNS algorithm is sketched in Al-
gorithm 2: we generate 3 starting points by using the greedy
heuristics of Section 5.1 and we explore their neighborhood for
a placement improving the availability. If no improvement can
be found, the algorithm switches the neighborhood.

Indeed applying local search is time expensive, but we can
observe that a max-min objective function divides the requests
in two sets: a set of requests having an availability equal to
the objective function and another set having a better availabil-
ity. We refer to the former as the set of the worst requests,
since they are the ones whose improvement will also improve
the availability of the entire solution. To reduce the comput-
ing time and focus our algorithm we found to be profitable to
restrict the explored neighborhood to the worst requests only.
Also, after applying each operator we look for new slaves, as
in the greedy procedure Algorithm 1. Given two feasible place-
ments, there is an improvement if one has a higher availability,
or the same availability but fewer worst requests.

In the following we describe the neighborhoods of our VNS.

VNF's swap. The first neighborhood consists of swapping VNFs
(see Fig. 6): given a VNF, we swap it with a subset of VNFs de-
ployed on a different server. If the placement is improved, then
we store the result as the best local change.

In general our operator is O(21S1) but we found profitable
to set an upper bound of 1 to the cardinality of the set of swapped
VNFs, obtaining a O(|F| - |S|) operator.

Slave VNFs swap. We explore the neighborhood where a slave
VNF is removed to free resources for an additional slave of
a different master VNF (see Fig. 7). The complexity of this
operator is O(|F| - |S1).

&% &

Figure 6: Example of VNFs swap neighborhood: VNFs on server S2 and S 3
are swapped. If a VNF is a master, then all its assigned requests are redirected
to the new server.

S].SZ S3Eﬁ@ 5152953 S4Q
VZZ4 REa :> vZZ4 vz
AN AN

R3 R4 R3 R4

Figure 7: Example of slave VNFs swap neighborhood: a slave is removed from
the placement in order to free resources for a slave of a different master VNF.

Requests swap. We also explore the neighborhood where re-
quests are swapped (see Fig. 8): given a request we consider a
subset of requests assigned to a different server and then swap
the former with the latter. Similarly to the swap of VNFs, the
complexity of this operator is O(2'R'). However, by setting an
upper bound of 1 to the cardinality of the swapped requests set
we obtain a O(|R|) operator.

SE SZQ S3E3Q :> Sl SZQ S3gﬂ
/_\RB/(RTél \3 RT4

Figure 8: Example of requests swap neighborhood: requests R2 and R3 are
swapped changing the respective servers. When swapping a request, a new
VNF instance is created if none existed on the new server.

Request move. In the last exploration we consider the neigh-
bors where a request is simply moved to a different server (see
Fig. 9). The complexity of this operator is O(|S|).

In principle, even if all the operators are polynomial time
our VNS algorithm is not. However, an upper bound k to the
number of iterations can be set, obtaining a O(k - |R| - |S] -
max{|R|, |F| - |S]}) heuristic. Also, in the following we show
that our VNS requires small computing time for NFVI of lim-
ited size and it can be parameterized to end within a time limit,
making it suitable for both online and offline planning.

5.3. Shared protection extension

We now show how to obtain a placement with shared pro-
tection starting from one with dedicated protection. The algo-
rithm, sketched in Algorithm 3, gets a placement with dedicated
protection as input. Such a placement can be found with any of
the previously presented methodologies. For each master VNF,
the algorithm searches for already deployed slaves that could
share the protection. If a slave has reserved enough resources,
then it shares the protection with the selected master.

This procedure can be applied to any placement with ded-
icated protection, and it can also be applied at any temporary
solution of the VNS algorithms.

In case a Common Cause Failure (CCF) distribution for the
network elements is given, i.e., grouping sets of elements in

Sls2gs3m :> SlSZQS3EﬁQ
S A A

R3 R4 R3 R4

Figure 9: Example of request move neighborhood: request R2 is moved and
assigned to a different server.

Algorithm 3 Sharing protection algorithm

1: function To_sHARED(placement)
2. for all master VNF v € placement do
3 for all slave VNF V' € placement do
4 if v > v then
5: V' is shared and protects v in placement
6 end if
7 end for
8. end for
9: return placement
10: end function

shared failure risk groups associated with a CCF probability,
then Algorithm 3 can be easily extended so as to allow protec-
tion resource sharing only if a certain CCF threshold is satisfied,
or by prioritizing protection sharing to least CCF master-slave
associations, or a mix of these two search strategies.

6. Generalization for arbitrary topologies

We now show that when we are given a methodology to
measure the availability of a VNF placement, our VNS algo-
rithm can work as a black box having no knowledge of the
underlying NFVI. In fact, NFVI orchestrators are expected to
operate with an over-the-top approach with respect to the under-
lay network, moving requests and VNFs between servers, with-
out changing the underlay NFVI network topology. Potentially,
our orchestration algorithm could work on any NFVI network
topology as the measure of the availability could be considered
as an external tool, as depicted in Fig. 10. The combination of

TOPOLOGY VNS VNF PLACEMENT

\/T —> |VNS LOOP| —3 EH

(TOPOLOGY, PLACEMENT)| AVAILABILITY

MEASURE
AVAILABILITY

Figure 10: Illustration of our VNS algorithm used as a black box to optimize
any NFVI: our VNS receives the description of the NFVI and a methodology
to compute the availability of a placement on such an NFVI, producing a VNF
placement.

our VNS orchestration algorithm and generic methodologies to
provide the availability of a topology, such as [38], could lead to
a generic optimization tool for VNF placement on any network.

To prove that our VNS algorithm is flexible enough to pro-
vide a high level of availability also on different topologies, we
now propose a methodology to transform the hierarchical topol-
ogy represented in Fig. 11 to a flat topology as the one depicted
in Fig. 1 to measure its availability.

APO” AP30

Figure 11: Example of hierarchical topology with 2 layers of clusters.

The transformation process is simple: to obtain a flat topol-
ogy suitable to apply the VNS algorithm, we need to compute
only the availability of the paths connecting the clusters of level
2 to the access points. Instead, the availability of the synchro-
nization links between clusters of the same level is equal to 0,
since those clusters have no link in the hierarchical topology. In
addition to the notation defined in Section 4, let C” C C be the
subset of all clusters at i-th level of the topology. For each pair
of cluster ¢ € C® and access point p € P, the availability of the
access link (c, p) is the probability that at least one path going
from c to p succeeds, that is

L L,
[]a-ds-az).

c’eC)

L,
acp =

In the following we will use this methodology to simulate our
optimization process also on a hierarchical topology.

7. Simulation

We evaluate empirically the quality of our methodologies:
the greedy heuristic using three different policies (best fit, first
fit, and best availability), the VNS algorithm, and the mathe-
matical programming formulation as a MIP. However we could
run our MIP only on small instances with 3 or 4 servers and 50
requests. For what concerns load balancing policies, because
of Eq. (1) splitting demands reduces the availability. Therefore,
we first run the algorithms using the demand load balancing
policy, and allowing split only if the former fails to assign all
the requests. In fact, due to Observation 1, splitting requests
always allows a feasible placement. However, in our simula-
tion we never recurred to split demand load balancing policy,
because all algorithms were able to assign all requests for any
instance of our dataset. All methodologies are implemented
in C++, while CPLEX 12.6.3 [39] is used to solve the MIP.
The simulations have been conducted on Intel Core i7-6700K
CPU at 4.00GHz with 32 GB RAM. We also produced a graph-
ical DSS tool integrating the VNS and the greed algorithms
(in python) working on arbitrary 2-hop topologies and made
it available in [6].

7.1. Dataset generation

We generated a random dataset consisting of instances that
differ for the number of requests, total amount of computing

10

resources, and availabilities of the network components. We set
the number of VNF types provided by our NFVIto |F| = 5. We
assumed an NFVI with 3 clusters (|C| = 3) and 3 access points
(IP| = 3). Each request has a random demand d, € [1,10],
while each server has a random capacity g, € [75,125]. The
availabilities of all the components of our NFVI are selected
between {0.9995,0.9999, 0.99995, 0.99999} as in [40, 29, 41].
We generated 30 instances for each combination of:

e number of requests |R| = {50, 100, 200, 300, 400, 500};
e number of access points for each request |P,| € {1, 2, 3}.

The number of servers depends on the number of requests,
the total amount of the demands, and the random capacities: we
generated a set of servers such that their capacities are enough
to serve all the demands Q = Y g qs = D.,erd,. Note that
such condition guarantees the feasibility only when splitting re-
quests is allowed. Servers are randomly distributed among all
the clusters, in such a way that for each pair of clusters ¢ and
¢’ we have |S. — S| < 1. Under these conditions we obtained
instances with around 3 servers when |R| = 50 and 28 servers
when |R| = 500.

7.2. Comparison on small instances

We first evaluate the quality of our VNS heuristic against
the solutions obtained by the MIP solver and the greedy heuris-
tics. We set a time limit of two hours to the MIP solver, which
was enough to obtain optimal or near optimal solution for all
instances. In order to study how the NFVI behaves on differ-
ent levels of congestion, we let its computing resources to grow
from an initial value of Q = } g g5, to 3 - O, with a step of
0.25 - Q. Our algorithms assigned all requests without splits.

In Fig. 12(a) we show the average computing time of the
algorithms: while the MIP hits several times the time limit,
computing times are negligible for all the heuristics, and VNS
can be considered as a good alternative for online orchestration
when the set of the requests is small. The optimization prob-
lem seems harder when the amount of computing resources is
scarce: in fact, the average computing time of the MIP is closer
to the time limit when the overall capacity is less than 2 - Q. In-
stead, with higher quantities of resources the MIP always finds
the optimal solution within the time limit.

In Fig. 12(b) we show that the results of our VNS heuristic
are close to the MIP ones, while there is a significant gap be-
tween the latter and the greedy heuristic ones. In fact, both the
MIP and the VNS succeed in finding solutions with an avail-
ability of three nines even with scarce resources. Eventually all
the algorithms reach an high level of availability when comput-
ing resources are doubled.

In Fig. 13 we show the variation of the availability when the
number of access points for each request increases: in Fig. 13(a),
Fig. 13(b), and Fig. 13(c) we report the average availability
when requests can be routed to the NFVI using 1, 2, and 3 ac-
cess points, respectively. The path protection obtained by using
more than one access point substantially increases the level of
the availability. However, having more than 2 access points
does not provide additional benefits.

B best availability B best fit | first fit @ VNS o MP 1.000000 7_6,—;'/“ D3
1le+04 -
T i 0.999891 -
1e+03 0.999782
& 2
L T 0.999673
£ o)
g 1le+02 .§ o
o % 0.999564 —
f=
£ 1S
3 3
g— E 0.999455
O le+01- £
© €
[0.999346
(=] [}
© j=2)
g s
Z 1e+00+ @ 0.999237 O best availability
< o best fit
0.999128 A first fit
1e-01 VNS
0.999020 % MIP
0.998911 - &
le-02 T T T T T
1Q 1.25Q 15Q 175Q 2Q 225Q 25Q 2.75Q 3Q 10 15Q 20 25Q 3Q

Server computing resources

(a) Average computing time (vertical axis in log. scale).

Server computing resources

(b) Average minimum availability.

Figure 12: Results for instances with 50 requests.

1.000000 k& 1.000000 i 1.000000 i
"

0.999869 0.999902 -| 0.999902

0.999737 0.999804 | 0.999804
2 2 2
S 0.999606 S 0.999707 4 S 0.999707 -
s = k<]
T K] o T o
2 0.999474 4 o = 0.999609 -| z 0.999609
5 § g
£ 0.999343 £ 0.999511 £ 0.999511
£ £ £
£ 0.999212 £ 0.999413 £ 0.999413
[=2] = j=2]
g 8 o g ﬂ
€ 0.999080 A O best availability © 0.999315 A O best availability ¢ 0.999315 A O best availability
< o best fit < o best fit < o best fit

0.998949 A first fit 0.999218 A first fit 0.999218 A first fit

VNS VNS VNS
0.998817 / MIP 0.999120 MiP 0.999120 - 4 MIP
D/" o o
0.998686 | &° 0.999022 - & 0.999022 - &
T T T T T T T T T T T T T T T T
1Q 15Q 2Q 25Q 3Q 1Q 15Q 2Q 25Q 3Q 1Q 15Q 2Q 25Q 3Q

Server computing resources

(a) 1 access point for request.

Server computing resources

(b) 2 access points for request.

Server computing resources

(c) 3 access points for request.

Figure 13: Average minimum availabilities for instances with 50 requests and different number of access points for each request.

7.3. Scaling up the number of requests

In a second round of experiments, we evaluated how our
VNS algorithm behaves when scaling up the number of re-
quests. However, when the number of servers increases its is
not possible to use the MIP. Therefore, in the following analy-
sis we compare the results of our VNS algorithm to the greedy
ones only. In addition, since our VNS algorithm has not polyno-
mial time complexity, we include in the comparison the results
obtained by setting a time limit of 10s at the exploration of each
starting solution.

We can first observe in Fig. 14(a) that the computing time
of the VNS algorithm grows exponentially when the number
of requests increases. Indeed setting a time limit reduces the
overall computing time, which is always less than a minute.

In Fig. 14(b) we show that on average there is always a
substantial gap between the results obtained by our VNS al-
gorithms and the greedy heuristics. We can also observe that
on average the VNS time limit does not penalize substantially

11

the results. Therefore our VNS algorithm with time limit can
reduce computing times with minimal loss in availability.

In Figures 15 and 16, we show the results on instances hav-
ing from 100 to 500 requests. We observe that the greedy
heuristics progressively loose in quality of the solutions, and
the gap from the VNS algorithms increases with both the num-
ber of the requests and the computing resources.

Finally in Fig. 17 we show only the results concerning the
VNS algorithm without time limit and how it behaves when
both the number of requests and the overall capacity increase.
We can observe that the quality of the solutions provided by
our algorithm is not affected by the increasing of the size of
the instances. On average, our VNS algorithm always provides
placements with an availability of three nines even when re-
sources are scarce, and it reaches four nines availability when
the capacity is doubled.

1e+037 | m pest availabilty ® best fit m first fit = UNS2s O VNS 10s oWws] 1.000000 -| ‘ % % # #
1e+02+ 0.999870 /
0.999741 - T /é
. 1le+01- ? /
2 5 0.999611
2 s |
E 1e+00- £ 0.000482 - /
S 1e-01+ £ 0.999352 +
8 £
© 1S
o 0.999223
& 1e-02- S
g s ¥
z @ 0.999093 O best availability
le-037 < o best fit
0.998964 | A first fit
+ VNS 2s
1e-04 0.998834 - VNS 10s
° /A/A VNS
0.998705 -| B
1e-05 T T T T T
|R|]= 100 IR|= 200 IR|= 300 |R|= 400 IR|= 500 10 150Q 20 250Q 30
Number of requests Server computing resources
(a) Average computing time (vertical axis in log. scale). (b) Average minimum availability.
Figure 14: Results for instances with up to 500 requests.
. ‘ best_availability ‘ first_fit $ vns10
Algorithm)
- best_fit - vns E vns2
1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 -
S, 0.9995- 0.9995- 0.9995 - 0.9995 - 0.9995 -
E
g 0.9990 - 0.9990 - 0.9990 - 0.9990 - 0.9990 -
g
0.9985- 0.9985- 0.9985 - 0.9985 - 0.9985 -
0.9980 - 0.9980 - 0.9980 - 0.9980 - 0.9980 -
' ' ' ' '
100 200 300 400 500

Number of requests

Figure 15: Distribution of availabilities for instances with up to 500 requests.

12

Availability

Availability

. - best_availability - first_fit $ vns10
Algorithm - best_fit E vns E vns2

1.0000 -

— L TT
0.9995 1 0.9995 - 0.9995 -
0.9990- H-— 0.9990 - 0.9990 - l
0.9985 - - 1 0.9985- 0.9985 -
0.9980 - I 0.9980 - I 0.9980 - I
1Q 1.25Q 15Q
1.00000 - 1.00000 - 1.00000 -
0.99975 - 0.99975 - 0.99975 -
0.99950 - 0.99950 - 0.99950 -
0.99925 - 0.99925 - 0.99925 -
0.99900 - . 0.99900 - . 0.99900 - .
2.25Q 25Q 2.75Q

0.9996 -

0.9992 -

0.9988 -

0.9984 -

0.9999995 -

0.9999990 -

0.9999985 -

Server computing resources

Figure 16: Distribution of availabilities for instances with up to 500 requests.

1.00000 -

0.99975 -

0.99925 -

0.99900 -

0.99875 -

1.0000000 -
0.9999995 -
0.9999990 -

"
"

2.25Q

I 100 B8 300 E5 50
Requests B 200 E5 400 E5 500

— 1.00000 -

0.99975 -

U el 0o00-

0.99925 -

L 0.99900 -

1.25Q 150Q

1.0000000 -

0.9999996 -

0.9999992 -

25Q 2.75Q

1.0000- - 1.0000 -
0.9995 - 0.9995 -
0.9990 - 0.9990 -
0.9985 - 0.9985 -
0.9980- -—L 0.9980 -
]]
1.75Q 2Q
1.00000 -
0.99975 -
0.99950 -
0.99925 -
0.99900 -
]
3Q
1.0000 - 1.0000- =
0.9998 -
0.9998 -
0.9996 -
0.9996 -
0.9994 -
-4 0.9994- L
]]
1.75Q 2Q
1.0000000 -
0.9999996 -
0.9999992 -

Server computing resources

3Q

Figure 17: Distribution of availabilities for instances with up to 500 requests for VNS algorithm only.

13

7.4. Shared vs dedicated protection

Given the results of both greedy and VNS algorithms, we
applied the sharing protection algorithm in Algorithm 3 to ob-
tain placements with shared protection, and then we computed
the upper bound to their availability. In Fig. 18 we show the
potential availability that can be reached with shared protec-
tion: results confirm that when shared protection is enabled,
VNS algorithm still provides better solutions than the greedy
algorithms. However, shared protection allows also greedy al-
gorithms to provide, on average, solutions with at least an avail-
ability of 99.9%.

Also, in Fig. 19 we show the failure probability reduction,
i.e., an availability gain: the ratio between the increase in avail-
ability of a solution using shared protection and the probability
of failure of the same solution but without shared protection.
In other words, it answers the question “how much can we re-
duce the probability of a failure using shared protection?”, and
we can observe that greedy algorithms are the ones that benefit
the most from a shared protection scenario, up to 45% failure
probability reduction.

7.5. Flat vs hierarchical topologies

In order to test the flexibility of our algorithms, we com-
pared the availability reached by our VNS algorithm with dif-
ferent topologies and settings. Besides the flat topology, we
simulated a 2-layer topology like the one depicted in Fig. 11,
with 4 access clusters and 2 core clusters. Each access clus-
ter has exactly one server, while core clusters have potentially
many servers. The difference between the access cluster servers
and the core cluster ones is that the latter have higher availabil-
ities and twice as many computing resources than the former.
The number of servers still depends on the overall demand, with
up to 18 servers for instances with 500 requests.

For what concerns link availabilities for the 2-layer topol-
ogy case, we simulated two different settings: in the first one,
that we call Hierarchical, each link availability is randomly se-
lected between the values {0.9995,0.9999, 0.99995, 0.99999}.
In the second setting instead, we distinguish between access
clusters to simulate a case with fixed access clusters (e.g., at-
tached or close to a classical fixed base station) and a case with
deployable access clusters (e.g., in a vehicle as envisioned in
forthcoming LTE-based or 5G public-safety networks): the
first ones are close to core clusters but far from the access points,
and therefore their links connecting to core clusters have an
availability set to 0.99999, while the ones connecting to the
access points have an availability set to 0.9995. Instead, de-
ployable clusters behave in the opposite way: the availability is
set to 0.9995 for links connecting to core clusters and to 0.9995
for the ones connecting to the access points. We call this second
setting Hierarchical asymmetric.

We transform both hierarchical topologies to a flat one us-
ing the generalization proposed in Section 6, and compared the
results to observe how our VNS algorithm behaves.

In Fig. 20 we can observe that on average, the availabilities
provided by both flat and hierarchical topologies are similar,
although when the number of requests increases the hierarchical
topology offers on average a higher lever of availability.

14

In Fig. 21 we still show the availability reached by the three
topologies when the server capacity increases: still their be-
haviours are similar, however when there is a surplus of com-
puting resources, the flat topology outperforms the hierarchical
ones.

Also, in both simulations the hierarchical topologies behave
almost the same, showing that topologies with deployable sta-
tions can offer an equivalently high level of availability as fixed-
station alternatives.

7.6. Network capacity

In our last run of simulation, we tested how the network
capacity influences the availability of the placement obtained
by our algorithms.

We assume to have a link between each pair of servers, each
link having limited capacity. We also assume that to synchro-
nize a master and each of its slaves, the capacity of the links
connecting the corresponding servers is consumed.

We estimate the network capacity and the network consump-
tion to be proportional to values ¢, and d,, respectively. In fact,
such values represent the computing resources (CPU, RAM, ...)
available on servers and required by client requests. Thus it is
reasonable to assume that, for example, saving the state of a
VNF using a higher quantity of RAM will consist of a higher
usage of the network.

We first set a link capacity equal to g ¢s/IS|, i.e., the
average servers’ bit-rate processing resource capacity, for each
link, and then we run our algorithms reducing such capacity to
90%, 75%, 50%, 25%, and 10%.

In Fig. 22 we show the average availability with different
link capacities, and we can observe that all algorithms are af-
fected by the reduction of the link capacity, but the VNS algo-
rithm is the only one that guarantees an average availability of
three nines in all scenarios.

8. Integration in OpenStack

In the frame of the FED4PMR French collaborative project
public demonstrator on future public-safety networks — making
use of edge computing to virtualize application servers and core
network functions — we built a demonstration testbed composed
of multiple OpenStack? clusters, each with one or two compute
nodes. The OpenStack nodes are equipped with a Tacker NFV
orchestrator module? allowing us to exploit the placement algo-
rithms to deploy VNFs on the compute nodes.

We produced a video tutorial published in [6], where we
also release the VNS algorithm and the online algorithms ex-
ecutable, integrated in a Graphical User Interface (GUI) used
to interact with the NFVI orchestration platform. We provide
in the following a complementary description of the integration
and corresponding operational steps.

The OpenStack clusters are configured to be accessible from
the outside (by default only local users can deploy VMs on the

2OpenStack opensource project: https: //www.openstack. org.
3Tacker orchestrator: https://wiki.openstack.org/wiki/Tacker.

https://www.openstack.org
https://wiki.openstack.org/wiki/Tacker

Availability

Failure probability reduction

Availability

‘ best_availability ‘ first_fit E vns10

Algorithm
9 B best_it

E vns $ vns2

1.0000 - 1.0000 - 1.0000 - 1.0000 - 1.0000 -
0.9995 - 0.9995 - 0.9995 - 0.9995 - 0.9995 -
0.9990- 0.9990- 0.9990 - 0.9990 - 0.9990 -
0.9985 - 0.9985- 0.9985 - 0.9985 - 0.9985 -
0.9980- 0.9980- 0.9980 - 0.9980 - 0.9980 -
Ll Ll Ll Ll
100 200 300 400
Number of requests
Figure 18: Upper bound to the availability obtained by our heuristics when shared protection is enabled.
I best_availability B first_fit B vns10
Algorithm _
- best_fit E vns $ vns2
100 - 100- 100 - 100 - 100 -
75- 75- 75- 75- 75-
50- 50- 50 - 50 - 50~
25- 25- 25- 25- 25-
O L Ll O L Ll O L Ll 0 L Ll 0 L 1
100 200 300 400 500
Number of requests
Figure 19: Potential failure probability reduction when shared protection is enabled (in percentage).
TOpOlOgy - Flat - Hierarchical - Hierarchical asymmetric
0.9999 - 0.9999 - 0.9999 - 0.9999 -
0.9998 - i
0.9995- 0.9998 - 0.9998 - 0-9998
0.9997 -
. 7-
- 0.9997- 0.9997 - 0:999
0.9990 - 0.9996 -
0.9995 - 099987
—1 ' 0.9996 0.9996 -
0.9985 - T 0.9994- - 0.9995 -

1
100

Ll
200

Ll
300

Ll
400

1
500

Number of requests

Figure 20: Availability of flat and hierarchical topologies when the number of requests increases.

15

0.9993 -

0.9990-

0.9987 -

0.9984 -

1.0000 -

Availability

0.9999 -

0.9998 -

0.9997 -

0.999742

0.999644

0.999546 -

0.999448

0.999350

0.999252

0.999154

Average availability

0.999056

0.998958

0.998860

0.998762

Topology - Flat - Hierarchical - Hierarchical asymmetric

1.0000 -

- — 1.0000- =
0.9998 - 0.9999 -
0.9996 - 0.9998 -
1. [
== 0.9994- 0.9997 -
1.75Q 2Q
1.00000 - =—
0.99995 -
0.99990 -
0.99985 -
0.99980 -
275Q 30

Server computing resources

Figure 21: Availability of flat and hierarchical topologies when the server capacity increases.

D/D
/

[m]

0.9995 = 1.0000 -
0.9996 - 0.9998 -
0.9994 - 0.9996 -
099921 0.9994 -
0.9990 -
0.9992 -
1
1Q
—_— __ 1.0000- 1.00000 -
0.99995 -
0.9999 -
0.99990 -
L, 09998~ 0.99985 -
0.99980 -
_1l 09997-
225Q 250Q
o
O vns D/
o best_fit
A first_fit
best_availability

T T
10% 25% 50%

Network link capacity

75%

Figure 22: Average availability when the network link capacity decreases.

90%

nodes). Tacker has multiple VNF Descriptors (VNFD) in its
catalog and the OpenStack clusters are registered as Virtual In-
frastructure Managers (VIMs).

The VNF placement requests are gathered from the opera-
tor in the NFVI system by using the NFV Orchestrator CLI; this
registers a list of VNFs wished to be deployed, as well as two
key indicators: 1) the availability target needed to be achieved
and 2) the penalty occurred if this target is not reached. Af-
ter adding one or more request, the operator will commit the
request. This has two main effects: first, the NFV Orchestra-
tor will gather up to date information on the nodes (e.g., avail-
able resources, availability) from the OpenStack clusters; more-
over, Tacker is not yet able to provide this information from the
VIMs, so the NFV Orchestrator has to get them directly at the
source. Then, the NFV Orchestrator will send this information
as well as the placement requests to the placement server (using
an HTTP POST in YAML format). Finally, it will start a REST
server to wait for the response.

The GUI of the placement server can display the topology
of the clusters based on the information provided by the NFV
Orchestrator API. There, the operator selects which algorithm
best suits their needs. When ready, the placement server pushes
the response to the NFV Orchestrator API (via an HTTP POST
in YAML).

The NFV Orchestrator parses the response which contains
the assignment for each VNF, the specific server (or servers if
the algorithm decided that a master and one or more slave had
to be launched) of a cluster where it should be deployed. This
is passed on to Tacker which will transmit the order to deploy

the VNF to the correct OpenStack cluster.

9. Conclusion

In this paper we defined an availability-driven NFV orches-
tration problem and related resolution approaches. We pro-
posed VNF protection strategies, ranging from dedicated VNF
protection to shared heterogeneous VNF protection, and pro-
vided quantitative models based on a probabilistic approach to
offer estimations of the availability of an NFV Infrastructure.

We modeled the optimization problem arising within this
context, proving that it is N'P-hard and providing an integer
linear formulation. We designed and evaluated heuristics based
on both greedy and Variable Neighborhood approaches. By ex-
tensive simulations we proved that our VNS algorithm solves
instances with a realistic size, and it finds nearly optimal solu-
tions while being orders of magnitude faster than a MIP.

We highlighted the substantial gap between the availabil-
ity obtained using classic greedy policies, and the one obtained
with a more advanced VNS algorithm, when the NFV infras-
tructure is under computing congestion. We showed that our
VNS approach allows to obtain high level of availability even
when the computing time is limited, proving that even few iter-
ations of local search substantially improve the solution quality.
We also showed that simpler greedy heuristics can benefit from
our shared protection scheme, although the VNS algorithm al-
ways improves their results. Finally, we highlighted the flexi-
bility of our VNS algorithm, proving that it works with poten-
tially any topology, if the latter is provided with a methodology
to estimate its availability.

Acknowledgments

This article is based upon work from COST Action CA15127
("Resilient communication services protecting end-user appli-
cations from disaster-based failures - RECODIS") supported
by COST (European Cooperation in Science and Technology).
This work was funded by the Reflexion (contract no. ANR-14-
CE28-0019) and the FED4PMR projects. We thank K. Phemius
from Thales Communication & Security for his effort in the in-
tegration and testing of our framework in OpenStack, and M.
Tornatore and P. Fouilhoux for their insightful comments.

[1] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
F. Huici, ClickOS and the art of network function virtualization, in:
USENIX NSDI 2014.

J. Mo, B. Khasnabish, NFV Reliability using COTS hardware.

R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, R. Boutaba,
Network function virtualization: State-of-the-art and research challenges,
IEEE Communications Surveys Tutorials 18 (1) (2016) 236-262.
Delivering High Availability in Carrier Grade NFV Infrastructures,
VMWare Technical White Paper.

URL https://www.vmware.com/files/pdf/techpaper/
vmware-vcloud-nfv-high-availability.pdf

ETSI, ETSI GS NFV-REL 003 V1.1.1 Network Functions Virtualisation
(NFV); reliability; report on models and features for end-to-end reliabil-
ity, Tech. rep.

HA-NFV simulator software [online].

URL http://ha-nfv.roc.cnam.fr

[2]
[3]

[4]

[5]

[6]

17

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

M. Casazza, P. Fouilhoux, M. Bouet, S. Secci, Securing virtual network
function placement with high availability guarantees, in: Proc. of IFIP
Networking 2017, 2017, pp. 1-9.

B. Han, V. Gopalakrishnan, G. Kathirvel, A. Shaikh, On the Resiliency
of Virtual Network Functions, IEEE Communications Magazine 55 (7)
(2017) 152-157.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, A. Warfield,
Remus: High availability via asynchronous virtual machine replication,
in: USENIX NSDI 2008.

J. F. Riera, J. Batallé, J. Bonnet, M. Dias, M. McGrath, G. Petralia,
F. Liberati, A. Giuseppi, A. Pietrabissa, A. Ceselli, A. Petrini, M. Trubian,
P. Papadimitrou, D. Dietrich, A. Ramos, J. Melidn, G. Xilouris, A. Kour-
tis, T. Kourtis, E. K. Markakis, TeNOR: Steps towards an orchestration
platform for multi-PoP NFV deployment, in: IEEE NetSoft 2016.

B. Jennings, R. Stadler, Resource management in clouds: Survey and
research challenges, J. Network and Systems Management 23 (3) (2015)
567-619.

X. Meng, V. Pappas, L. Zhang, Improving the scalability of data center
networks with traffic-aware virtual machine placement, in: IEEE INFO-
COM 2010.

M. Alicherry, T. V. Lakshman, Network aware resource allocation in dis-
tributed clouds, in: IEEE INFOCOM 2012.

O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, E. Silvera,
A stable network-aware vim placement for cloud systems, in: IEEE/ACM
CCGrid 2012.

A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, K. Hoffmann, Apply-
ing NFV and SDN to LTE mobile core gateways, the functions placement
problem, in: Proc. 4th Workshop on All Things Cellular: Operations,
Applications, and Challenges, 2014.

R. Cohen, L. Lewin-Eytan, J. S. Naor, D. Raz, Near optimal placement of
virtual network functions, in: IEEE INFOCOM 2015.

M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, L. P. Gaspary,
Piecing together the NFV provisioning puzzle: Efficient placement and
chaining of virtual network functions, in: IEEE/IFIP IM 2015.

B. Addis, D. Belabed, M. Bouet, S. Secci, Virtual network functions
placement and routing optimization, in: IEEE CloudNet 2015.

F. Carpio, S. Dhahri, A. Jukan, Vnf placement with replication for load
balancing in nfv networks, in: 2017 IEEE International Conference on
Communications (ICC), 2017, pp. 1-6.

M. Abu-Lebdeh, D. Naboulsi, R. Glitho, C. W. Tchouati, Nfv orchestrator
placement for geo-distributed systems, in: 2017 IEEE 16th International
Symposium on Network Computing and Applications (NCA), 2017, pp.
1-5.

X. Song, X. Zhang, S. Yu, S. Jiao, Z. Xu, Resource-efficient virtual net-
work function placement in operator networks, in:. GLOBECOM 2017 -
2017 IEEE Global Communications Conference, 2017, pp. 1-7.

D. Li, P. Hong, K. Xue, J. Pei, Virtual network function placement con-
sidering resource optimization and sfc requests in cloud datacenter, IEEE
Transactions on Parallel and Distributed Systems (2018) 1-1.

E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, D. H.
Lorenz, Guaranteeing High Availability Goals for Virtual Machine Place-
ment, in: ICDCS 2011.

A. Israel, D. Raz, Cost aware fault recovery in clouds, in: IEEE/IFIP IM
2013.

Y. Zhu, Y. Liang, Q. Zhang, X. Wang, P. Palacharla, M. Sekiya, Reli-
able resource allocation for optically interconnected distributed clouds,
in: IEEE ICC 2014.

R. S. Couto, S. Secci, M. E. M. Campista, L. H. M. Costa, Server place-
ment with shared backups for disaster-resilient clouds, Computer Net-
works 93, Part 3 (2015) 423-434.

H. A. Alameddine, S. Ayoubi, C. Assi, Protection plan design for cloud
tenants with bandwidth guarantees, in: DRCN 2016.

A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, A. Pattavina, Protec-
tion strategies for virtual network functions placement and service chains
provisioning, Networks 70 (4) (2017) 373-387.

S. Yang, P. Wieder, R. Yahyapour, Reliable virtual machine placement in
distributed clouds, in: RNDM 2016.

A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, A. Pattavina, Virtual net-
work function placement for resilient service chain provisioning, in: 2016
8th International Workshop on Resilient Networks Design and Modeling
(RNDM), 2016, pp. 245-252.

https://www.vmware.com/files/pdf/techpaper/vmware-vcloud-nfv-high-availability.pdf
https://www.vmware.com/files/pdf/techpaper/vmware-vcloud-nfv-high-availability.pdf
https://www.vmware.com/files/pdf/techpaper/vmware-vcloud-nfv-high-availability.pdf
https://www.vmware.com/files/pdf/techpaper/vmware-vcloud-nfv-high-availability.pdf
http://ha-nfv.roc.cnam.fr
http://ha-nfv.roc.cnam.fr

[31]

(32]

[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]

A. Hmaity, M. Savi, F. Musumeci, M. Tornatore, A. Pattavina, Protec-
tion strategies for virtual network functions placement and service chains
provisioning, Networks 70 (4) 373-387.

P. Vizarreta, M. Condoluci, C. M. Machuca, T. Mahmoodi, W. Kellerer,
Qos-driven function placement reducing expenditures in nfv deploy-
ments, in: 2017 IEEE International Conference on Communications
(ICC), 2017, pp. 1-7.

L. Yala, P. A. Frangoudis, G. Lucarelli, A. Ksentini, Balancing between
cost and availability for cdnaas resource placement, in. GLOBECOM
2017 - 2017 IEEE Global Communications Conference, 2017, pp. 1-7.
N. Menakerman, R. Rom, Bin packing with item fragmentation, in: Al-
gorithms and Data Structures: 7th Int. Workshop, 2001.

A. Birolini, Reliability and Availability of Repairable Systems, 2004, pp.
160-258.

IEC, Analysis techniques for dependability — Reliability block diagram
method.

P. Silva, C. Perez, F. Desprez, Efficient heuristics for placing large-scale
distributed applications on multiple clouds, in: IEEE/ACM CCGrid 2016.
S. Ktari, S. Secci, D. Lavaux, Bayesian diagnosis and reliability analysis
of private mobile radio networks, in: 2017 IEEE Symposium on Comput-
ers and Communications (ISCC), 2017, pp. 1245-1250.

IBM, CPLEX user’s manual - version 12 release 6.

P. Gill, N. Jain, N. Nagappan, Understanding network failures in data
centers: Measurement, analysis, and implications.

Q. Zhang, M. F. Zhani, M. Jabri, R. Boutaba, Venice: Reliable virtual
data center embedding in clouds, in: IEEE INFOCOM 2014.

18

	Background
	High Availability NFV Orchestration
	Networking context
	VNF protection strategies

	Related works
	Network Orchestration Model
	Computational complexity
	Mathematical formulation
	Modeling shared protection

	Resolution algorithms
	Greedy heuristics
	Variable Neighborhood Search
	Shared protection extension

	Generalization for arbitrary topologies
	Simulation
	Dataset generation
	Comparison on small instances
	Scaling up the number of requests
	Shared vs dedicated protection
	Flat vs hierarchical topologies
	Network capacity

	Integration in OpenStack
	Conclusion

