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Abstract

The goal of this work is to explain an unexpected feature of the expanding level sets of
the solutions of a system where a half plane, in which reaction-diffusion phenomena take
place, exchanges mass with a line having a large diffusion of its own. The system was
proposed by H. Berestycki, L. Rossi and the second author [4] as a model of enhancement
of biological invasions by a line of fast diffusion. It was observed numerically by A.-C.
Coulon [7] that the leading edge of the front, rather than being located on the line, was
in the lower half plane.
We explain this behaviour for a free boundary problem much related to the system
for which the simulations were made. We construct travelling waves for this problem,
analyse their free boundary near the line, and prove that it has the behaviour predicted
by the numerical simulations.

1 Introduction

1.1 Model and question

Consider the cylinder Σ = {(x, y) ∈ R× (−L, 0)}. We look for a real c > 0, a function u(x),
defined for x ∈ R, a function v(x, y) defined in Σ, and a curve Γ ⊂ Σ such that

(1.1)



−d∆v + c∂xv = 0 (x, y) ∈ {v > 0}
|∇v| = 1 ((x, y) ∈ Γ := Σ ∩ ∂{v > 0}

−Duxx + c∂xu+ 1/µu− v = 0 for x ∈ R, y = 0
vy = µu− v for x ∈ R, y = 0 and v(x, 0) > 0

uy(x,−L) = 0
u(−∞) = 1/µ, u(+∞) = 0, v(−∞, y) = 1, v(+∞, y) = 0.
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In (1.1), the real numbers µ, d,D are fixed positive constants, and the problem inside Σ is a
well-known free boundary problem. We will also consider then the following more compact
problem, with unknowns (c,Γ, u), the function u being this time defined in Σ, solving

(1.2)



−d∆u+ c∂xu = 0 (x, y) ∈ {u > 0}
|∇u| = 1 ((x, y) ∈ Γ := Σ ∩ ∂{u > 0}

−Duxx + c∂xu+ 1/µuy = 0 for x ∈ R, y = 0
uy(x,−L) = 0
u(−∞, y) = 1, u(+∞, y) = 0.

In both problems (1.1) and (1.2), we will see that vx ≤ 0 (resp. ux ≤ 0) inside Σ, and that
the free boundary Γ inside Σ will be an analytic curve. Assume that Γ intersects the line
{y = 0}, say at (x, y) = (0, 0). We ask for the behaviour of ϕ near y = 0.

1.2 Motivation

Our starting point is the system proposed by H. Berestycki, L. Rossi and the second author
to model the speed-up of biological invasions by lines of fast diffusion in [4]. In this model,
the two-dimensional lower half-plane ("‘the field"’), in which reaction-diffusion phenomena
occur, interacts with the x axis ("‘the road") which has a much faster diffusion D of its own.
It will sometimes be useful to assume D ≥ d, but not always. Call u(t, x) the density of
individuals on the road, and v(t, x, y) the density of individuals in the field. The road yields
the fraction µu to the field, and retrieves the fraction νv in exchange; the converse process
occurs for the field. The system for u and v is

(1.3)
∂tu−D∂xxu = νv(t, x, 0)− µu x ∈ R

∂tv −∆v = f(v) (x, y) ∈ R× R−
∂yv(t, x, 0) = µu(t, x, t)− νv(t, x, 0) x ∈ R.

Here f is the usual logistic term, f(v) = v− v2. A model involving only the unknown u can
be obtained by forcing the (biologically reasonable) equality φ(x) = ψ(x, 0); in other words

we do the (formal) limit δ → 0 of ν = µ =
1

δ
. Still arguing in a formal way, we obtain u = v

on the road, and the exchange term is simply vy. Thus, we obtain

(1.4) ∂tv −D∂xxv + vy(t, x, 0) = 0 x ∈ R
∂tv −∆v = f(v) (x, y) ∈ R× R−

From now on, as is rather intuitively clear from the biological modelling, we will call (1.1)
the two-species model, whereas problem (1.2) will be tge single-species model. For the time
being, let us only argue on system (1.3). The first question is how the stable state (ν/µ, 1)
invades the unstable state (0, 0). In [5] it is computed with ot→+∞(1) precision: for each
direction e in the field, the level sets of v move with a velocity w∗(e) which, quite surprisingly,
does not obey the Huygens principle. The next step is to describe the asymptotic level sets
with Ot→+∞(1) precision; for this purpose numerical simulations were carried out by A.-C.
Coulon, the simulations, which are part of a larger program of her thesis [7]. The above
figures account for some of her results; the parameters are

f(v) = v − v2, D = 10, u(0, x) = 1[−1,1](x), v(0, x, y) ≡ 0.
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The top figure represents the levels set 0.5 of v at times 10, 20, 30, 40; the bottom figure
represents the shape of v(40, x, y).

 

We have found these figures surprising, all the more as they are quite robust with respect
to all the parameters. Indeed, a naive intuition would suggest that the leading edge of the
invasion is located on the road, especially for large D. Such is manifestly not the case, the
leading edge appears to be located in the field, at a distance to the road which seems to
remain more or less constant in time. A heuristic explanation is the following: the term
v(t, x, 0) − µu(t, x) acts as an effective reaction term for u; given that everything suggests
that the invasion is driven by the road, especially for the large values of D. The immediate
consequence is that vy(t, x, 0) < 0, so the function v increases in the vicinity of the road,
hence the observed behaviour. The goal of this paper is to find a mathematically rigorous
account of it.
Working directly on (1.3) or (1.4) to explain the above simulations appeared to be a difficult
task. To circumvent the difficulty, we choose here to work on a limiting model, which will
keep the main features of (1.3) or (1.4), this is why we have come up with (1.1) and (1.2).
This system is indeed a limiting model of (1.3), let us explain why. Before that, we consider
a permanent regime (∂tu, ∂tv) = (0, 0) of (1.3), it is logical to think that it will take the form
of a travelling wave

(1.5) (u(t, x), v(t, x, y)) = (φ(x+ ct), ψ(x+ ct, y)), c > 0.

It is proved in [9] that travelling waves are indeed attracting for (1.2) (and, more interestingly,
the paper describes how the convergence occurs when D is very large). We have consider a
propagation from right to left, thus the couple (φ, ψ) is an orbit of the following system

(1.6)
−D∂xxφ+ cφx = νψ(x, 0)− µφ x ∈ R
−∆ψ + cψx = f(ψ) (x, y) ∈ Σ
∂yψ(x, 0) = µφ(x)− νψ(x, 0) x ∈ R

where we have omitted the Neumann condition for short. As for model (1.4), the corre-
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sponding system is (we look for v(t, x, y) under the form ψ(x+ ct, y)):

(1.7) −D∂xxψ + cφx + ψy = 0 x ∈ R
−∆ψ + cψx = f(ψ) (x, y) ∈ Σ

A free boundary problem is obtained (once again in a formal way) in the limit ε → 0 of a
sequence of solutions (uε, vε) to (1.6) with f = fε, an approximation of the Dirac mass δψ=1;
if Γ is the unknown boundary ∂({ψ = 1}), and if we set u = 1/µ− φ, v := 1− ψ, we obtain
(1.1). To retrieve (1.2), it suffices to set u := 1− ψ in (1.7).
The question is therefore whether, and how, the free boundary Γ meets the fixed boundary
{y = 0}. For the two unknowns problem (1.1), the scaling - both inside the domain and at
the vicinity of the hitting point - is Lipschitz, which allows the use of a large body of existing
ideas. On the other hand, Model (1.2) is not of the standard type, because the characteristic
scales around the free boundary are different inside Σ and on the fixed boundary are different:
in the latter it is y ∼ x2.

1.3 Results

Before studying free boundary Γ of Problem (1.2) near the origin, we first should make sure
that it has a solution. Cleary, the issue is what happens in the vicinity of the axis {y = 0},
therefore we start from a situation for which travelling waves are known to exist.

Theorem 1.1 System (1.2) has a solution (c,Γ, u, v). We have c > 0 and ∂xu ≤ 0 (and
< 0 to the left of Γ). The function v is globally Lipschitz: |∇v| ≤ C for some universal
C (therefore u is C1,1 on the line). The free boundary Γ is a graph (ϕ(y), y), and also an
analytic curve in {y < 0}. Moreover it intersects the x-axis, so we may choose ϕ(0) = 0.

Remark 1. Uniqueness (up to translations) of (c,Γ, u, v) is probably true. The only issue
is to examine the behaviour of two solutions whose contact point lies at the intersection of
the x axis and their respective free boundaries. This will not be pursued here.
Next, we study the free boundary in a neighbourhood of the origin.

Theorem 1.2 The free boundary Γ hits the line {y = 0} at a point where u > 0. We may
assume that the hitting point is (0, 0). Moreover, in a neighbourhood of (0, 0) Γ is a graph
in the x variable y = ψ(x), x < 0,, and there is γ > 0 such that:

(1.8) ψ(x) = γx+ ox→0+(x).

Let us turn to the model with one species.

Theorem 1.3 Assume D ≥ d. System (1.2) has a solution (c,Γ, u). We have c > 0 and
∂xu ≤ 0 (and < 0 to the left of Γ). The function u is globally Lipschitz: |∇u| ≤ C for
some universal C. The free boundary Γ is a graph (ϕ(y), y), and also an analytic curve in
{y < 0}. Moreover it intersects the x-axis, so we may choose ϕ(0) = 0.

Remark 2. We do not know whether the assumption D ≥ d is indispensable, or just
technical. In any case, it is consistent with our goal to study phenomena driven by a large
diffusion on the road. In [4], the significant threshold is D = 2d, this is where the velocity
of the wave for (1.2) exceeds that of the plane Fisher-KPP wave.

Theorem 1.4 Assume D ≥ d. In a neighbourhood of (0, 0) Γ is a graph in the x variable:

(1.9) y = ψ(x), x < 0, with ψ(x) = − x2

2D
+ ox→0+(x2).
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1.4 Discussion, organisation of the paper

We first notice, as far as the two species is concerned, an interesting loss of boundary
condition between the reaction-diffusion system (1.6) and the free boundary problem (1.2),
to the right of the right of the free boundary. In other words, in this area, the road does
not exchange individuals anymore with the field. Thus there is an asymptotic decoupling
between the value of u and the value of v at the free boundary, and accounts quite well for the
numerical simulations. Let us revert to the old unknowns φ and ψ, which denote respectively
the density of individuals on the road and in the field. At the intersection between the
invasion front and the road, the density of individuals is at its maximum, whereas the road
keeps feeding the field with individuals, as is stated by the exchange condition

ψy ∼ µφ− ψ ∼ µu(0, 0) > 0.

Therefore, the invasion front in the field can only go further, which explains that its leading
edge is not located on the road. This explains the simulations in [7].
Next, we observe a different behaviour for the one species model. A heuristic reason is
that the model is trying to accomodate both the exchange condition and the free boundary
condition, and this is only done at the expense of a breakdown of the homogeneity near the
road. The resulting sitation is the interaction of an obstacle problem on the road and a
solution of the one phase problem in the field. This observation will be investigated further
in a subsequent work.
The last remark concerns the derivation of the one species model from the two species model,

in the limit of infinite exchange terms µ = ν =
1

δ
. This passage is done in a rigorous way

in [8] in the framework of a reaction-diffusion system; it would probably be possible to do
it, such a task would probably be not entirely trivial. We postpone this matter to a future
work, as it would not really add more to the understanding of the question at stake here.

The paper is organised as follows. In Section 2, we construct a solution to system (1.1).
This is done by a classical approximation by a family of semilinear equations where the
nonlinearityfε(u) converges, in the measure sense, to δ∂u>0 . The idea, as well as the inspi-
ration for the proof, is taken from [2]. In Section 3, we study the free boundary of the two
species model, the main argument will be a Liouville type theorem for a special class of
global solutions. In Section 4, we construct the travelling wave, and the main part of the
analysis is the gradient bound for u. Finally, in Section 5, we prove Theorem 1.4. The chief
argument in all these (at times technical) considerations is that the free boundary condition
creates such a rigidity that, unless the solutions behave as they are expected to behave, basic
properties such as, for instance, the positivity of u, will not hold true.

2 The travelling wave in the two species model

Let us consider a smooth function ϕ(u), defined on R+, positive on [0, 1), zero outside, and
such that

(2.1)
∫ +∞

0

uϕ(u)du =
1

2d
.

Consider the sequence of reaction terms

(2.2) fε(u) =
u

ε2
ϕ(
u

ε
),
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We will obtain a solution to (1.1) as the limit, as ε→ 0, of a sequence (ce, uε, vε)ε of solutions
of

(2.3)



−d∆v + c∂xv + fε(v) = 0 (x, y) ∈ Σ

−Duxx + c∂xu+ 1/µu− v = 0 for x ∈ R, y = 0
vy = µu− v for x ∈ R, y = 0

vy(x,−L) = 0

v(−∞, y) = 1, v(+∞, y) = 0, u(−∞) = 1/µ, u(+∞) = 0.

This is by no means a new idea. Such reaction terms, which date back to Zeldovich [11] have
been quite useful to study asymptotic models in flame propagation, that we will not quote
here because of their abundance. The first rigorous passage from the reaction-diffusion equa-
tion to the free boundary problem is done in the context of 1D travelling waves, by Berestycki,
Nicolaenko and Scheurer [3]. In several space dimensions, it was done by Berestycki, Niren-
brg and the first author [2], a work that we will much use here. Let us briefly recall why
a limiting solution (c, u, v) to (2.3) will develop a free boundary. For this, we consider the
simple one-dimensional problem

(2.4) −du′′ + cu′ + fε(u) = 0 on R)
u(−∞) = 0, u(+∞) = 1.

Standard arguments show that, for a solution (cε, uε) to (2.4), we have cε > 0 and u′ε < 0.
We may always assume that uε(0) = ε, so, for x < 0 we have uε(x) = 1− (1− ε)ecx. As for
x > 0 we set

ξ =
x

ε
, uε(x) = εpε(

x

ε
).

The function pε solves

−dp′′ + εcεp
′ + pϕ(p) = 0 on R+, p(0) = 1, p(+∞) = 0.

Once again, standard arguments show that the term εcεp
′ may be neglected, so that multi-

plication by p′ and integration over R+ yields

d
(p′ε)

2(0)

2
=

∫ +∞

0

pϕ(p)dp =
1

2d
.

Scaling back, we obtain uε(0) ∼ 1, matching derivatives yields c = 1. The limit (c, u) of
(uε, cε) satisfies therefore

−du′′ + cu′ = 0 on R−, d[u′](0) = 1.

This is the one-dimensional version of the problem inside Σ; here, Γ is the point x = 0.
Let us come back to (2.3). For every ε > 0, (2.3) has (Dietrich [8], Theorem 1) a unique

solution (cε, uε) such that cε > 0, 0 < uε < 1 and ∂xuε, ∂xvε < 0; we will show that, up to a
subsequence, (cε, uε) converges, as ε→ 0, to a solution of (1.2).

2.1 Basic bounds

The first task is to show that the travelling wave velocity is uniformly bounded from above,
that is
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Proposition 2.1 There is K > 0 independent of ε such that cε ≤ K.

Proof. We may, even if it means translating uε, assume the normalisation condition

(2.5) min
[−L,0]

vε(0, y) = ε.

Therefore, fε(u) ≡ 0 on R− × [−L, 0], and uε solves a purely linear equation. If

ρ ≤ min(
1

D
,

1

d
)c,

then
(u(x), v(x, y)) :=

(
1− (1− ε)eρx

)
(
1

µ
, 1)

is a subsolution to (1.2) on R−, thus u(x, y) ≥ u(x) on R−. Choosing ρ the be the above
minimum, we obtain

∂xv(0, ye) ≤ −(1− ε) min(
1

D
,

1

d
)c,

where yε is a point in [−L, 0] where the minimum in (2.5) is attained.
On the right half of Σ, another simple sub-solution to (1.2) is

(uε(x), vε(x, y)) = εp(
x

ε
)(

1

µ
, 1),

with
−p′′ + pϕ(p) = 0 for ξ > 0, p(0) = 1, p(+∞) = 0.

Because it is convex, it is a sub-solution to the equation for v, and because it is decreasing
it is also a sub-solution of the equation inside the right half of Σ. The exchange condition
for v is automatically satisfied. The classical sliding argument (slide (uε, vε) until the two
components exceeds (uε, vε), then slide back until one of the two components reaches a
contact point) yields (uε, vε) ≥ (uε, vε). Thus

∂xvε(0, yε) ≥ v′ε(0) = p′(0) = −
√

2.

This implies

(1− ε) min(
1

D
,

1

d
)c ≤

√
2,

the sought for bound. �

The next step is a uniform gradient bound on vε. Notice that uε, that satisfies a linear ODE
with bounded right handside, thus is uniformly C1,1 at this stage.

Proposition 2.2 There is M > 0 universal such that |∇vε| ≤M in Σ.

In the sequel we will, for convenience, drop the subscript ε for cε, uε and vε. The first
ingredient is a gradient bound in {v ≤ ε}, away from the road.

Lemma 2.3 Consider λ ∈ (0, 1) and a point (x0, x0) ∈ Σ such that u(x0, y0) = λε. Assume
that y0 ≤ −2ε. Then we have

0 ≤ u(x, y) ≤ Cε, (x, y) ∈ Bε(x0, y0),

and
|∇u(x0, y0)| ≤ C,

for some universal C > 0.
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Proof. Notice, following [2], that the case y0 close to −L is not really an issue, because
one may, thanks to the Neumann condition at y = −L, extend the function u evenly in y to
R× (−2L, 0). This said, we do the classical Lipschitz scaling

(2.6) v(x0 + εξ, εζ) = εp(ξ, ζ), (ξ, ζ) ∈ B2(0),

and p solves
−d∆p+ εc∂ξp+ pϕ(p) = 0 (ξ, ζ) ∈ B2(0), p(0, 0) = λ.

Then ([2] again), from the Harnack inequality, p is universally controlled in B1(0), hence
∇u(x0, y0) = ∇p(0, 0) is universally controlled. �

Lemma 2.4 Consider λ ∈ (0, 1), y0 ∈ [−ε, 0] and x0 ∈ R such that

u(x0, y0) = λε.

Then we have
0 ≤ u(x, y) ≤ Cελ, (x, y) ∈ Bε(x0, y0), y ≤ 0,

for some C > 0 that depends neither on ε, nor λ.

Proof. Recall that u and v are bounded independently of ε. We redo the scaling (2.6),
leaving u untouched. The only thing that has to be examined is the Neumann condition for
p, which reads

(2.7) pζ(ξ, 0) + εp(ξ, ζ) = u(x0 + εξ, 0).

We make the slight abuse of notations consisting in denoting by u(ξ, ζ) the function u(x0 +
εξ, y0 + εζ), this function is clearly C1,α uniformly in ε. We may indeed subtract from p any
suitable harmonic function V satisfying the Neumann condition (2.7), thus V is uniformly
C2,α in B3/4. We then apply the argument of Lemma 2.4 to v − V . �
These two lemmas lead to an effortless
Proof of Proposition 2.2. Let Γε be the curve {v = ε}. The function vy is bounded on
Γε, as well as on ∂Σ\Γε, moreover it satisfies −∆yy + c∂xvy = 0 to the left of Γε, thus it
is bounded everywhere. The same argument applies to vx, but for this quantity we use the
Robin condition d∂yvx + vx = ux (recall that ux is uniformly bounded) and the Neumann
conditon for vx at the bottom of Σ. �

2.2 Convergence of the approximating sequence

The last ingredient that we need is a uniform lower bound on the travelling vave velocity.
In this proposition we put the subscripts ε back in.

Proposition 2.5 There is c0 > 0 such that cε ≥ c0.

Proof. We start with the following identity

(2.8) cε =
1

L+ dµ

∫
Σ

fε(vε)dxdy,

obtained by integrating the system for (uε, vε) over Σ. We may normalise vε so that

vε(0,−
L

4
) = ε.

8



From [2], the family of measures

σε = 1BL/4(0,−
L

4
)fε(vε)dxdy

converges (possibly up to a subsequence), in the measure sense, to the image of the Lebesgue

measure on a locally BV graph {h(y), y)}. Thus the sequence
(

(L+dµ)cε

)
ε

converges, still

up to a subsequence, to a limit that is larger than the length of Γ inside BL/4(0,−L
4

), a
positive number. �

Putting everything together, we may give the
Proof of Theorem 1.1. Possibly up to a subsequence, the sequence (uε, vε)ε converges,
uniformly in Σ, as well as inH1

loc(Σ) weakly, to a function (u(x), v(x, y)) that is both Lipschitz
and in H1

loc(Σ). Notice that u is much smoother, it is C2,1. Let us repeat here that the family
of measures (fε(vε)dxdy)ε converges ([2] again), in every set of the form R×K (K a compact
subset of [−L, 0)), to the length measure of a graph

Γ = {(h(y), y) − L ≤ y < 0}.

For every δ ∈ (0,
L

4
), identity (2.8) implies

(2.9)
∫
R×[−L,−δ]

fε(u)dxdy ≤ (L+ dµ)cε.

Passing to the limit ε→ 0 yields

(2.10)
∫ −δ
−L

√
1 + (h′(y))2dy ≤ (L+ dµ)c.

Thus the function h belongs to BV ([−L, 0)), thus can be extended by continuity to y = 0.
We may always assume h(0) = 0. It remains to prove that ∂{u > 0} is analytic. Let us set

Fε(v) =

∫ v

0

fε(v)dv,

we claim that, for every ε > 0, vε is a local minimiser of the energy∫
e−cεx

(
1

2
|∇v|2 + Fε(v)

)
dxdy.

More precisely, for every ball B whose closure is included in Σ, then vε minimises the energy

(2.11) Jε(φ,B) =

∫
B

e−cεx
(

1

2
|∇φ|2 + Fε(φ)

)
,

over all functions φ ∈ H1(B) whose trace on ∂B is vε. This is easily seen from the mono-
tonicity of vε in x, and a sliding argument. On the other hand we use the two following
facts, taken from [2]: first, the family (vε)ε is compact in H1

loc(Σ), (ii). there is a uniform
nondegeneracy property:

vε(x, y) ≥ kd

(
(x, y), {vε ∈ (aε, bε)}

)
.
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This implies that, for every ball B inside Σ we have:

lim
ε→0

Jε(vε, B) =

∫
B

e−cx

2
|∇v|2dxdy +

∫
{v>0}∩B

e−cxdxdy := J(v,B).

On the other hand, for every φ ∈ H1(B) whose trace on B is v, consider φε ∈ H1(B),
whose trace on B is vε, and such that the family (φε)ε converges to φ in H1(B). We have
Jε(vε, B) ≤ Jε(φ,B), which implies, sending ε → 0: J(v,B) ≤ J(φ,B). Thus, v is a
local minimiser of J . However, J is of the type of functionals treated in [1]: its results are
applicable, which imples the analyticity of ∂{v > 0} inside Σ.
Finally, because v is Lipschitz, and because of the uniform convergence of (vε)ε to v, we have
v(x, 0) = 0 if x > 0. �
Remark. The above argument also explains the loss of the exchange condition for v to the
right of the free boundary, simply because the free boundary is forced to hit the road. There
is a boundary layer in which the condition v = 0, located on a curve very close to the road,
eventually overcomes the exchange condition in the limit ε→ 0.

3 The two species model: the free boundary near (0,0)

The main feature of Model (1.1) is that the equation inside Σ, together with the free boundary
conditions, can be studied in the neighbourhood of a free boundary point up to the top of
Σ via Lipschitz rescalings: (x, y) = δ(ξ, ζ). This will enable us to show, in a relatively easy
way, the linear behaviour of the free boundary in the vicinity of the road. Let us first state
a rigidity result in 2 space dimensions.

Theorem 3.1 Pick λ ∈ [0, 1). Let u(x, y) solve

(3.1)

∆u = 0 (x, y) ∈ R× R− ∩ {u > 0}
|∇u| = 1 (x, y) ∈ ∂{u > 0},

uy(x, 0) = λ if x < 0,
u(x, 0) = 0 if x > 0.

Also assume that ∂xu ≤ 0. Then we have:

∂{u > 0} = {y = −
√

1− λ2

λ
x, x < 0},

and

u(x, y) =

(√
1− λ2x+ λy

)+

.

Proof. Let Ω be the positivity set of u, identify R2 with the complex plane and set

f(z) = uy(x, y) + iux(x, y), z = x+ iy.

Then f is analytic in Ω, let us assume that it is a nonconstant function. It is open from Ω
onto its image, and maps Γ onto (a portion of) the unit circle, that we call γ1, whereas it
maps the negative x axis onto (a portion of) the vertical line {ImZ = λ}, that we call γ2.
From its connectedness, γ1 ∪ γ2 (but not only) enclose f(Ω). And, because ∂xu ≤ 0, f(Ω)
is bounded by γ1 ∪ γ2 ∪ γ3, where γ3 is a non void, possibly very irregular curve. One of its
end points is on γ1 - call it z1; thus γ1 is the segment [z1,

√
1− λ2 + iλ] - and the other on
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γ2 - call it z2. It stays in the upper half of the complex plane, and is constructed as follows:
for each ray D starting from

√
1− λ2 + iλ, and not meeting γ1 ∪ γ2, let ZD be the furthest

point from
√

1− λ2 + iλ in f(Ω): the set of all such ZD’s determines γ3. Two cases are to
be considered.
Case 1. γ3 has points strictly above the horizontal axis. Let D be a ray starting from√

1− λ2 + iλ, and let Z0 be the furthest point in D ∩ γ3. If Z0 has a pre-image by f , we
have a contradiction because f is open. If Z0 has no pre-image, this means the existence of
a sequence (zn)n such that

lim
n→+∞

|zn| = 0 or lim
n→+∞

|zn| = +∞,

and such that lim
n→+∞

f(zn) = Z0. The sequence of locally uniformly bounded functions

(3.2) fn(z) = f(
z

|zn|
) if |zn| → 0,

or

(3.3) fn(z) = f(z|zn|) if |zn| → +∞,

converges, up to a subsequence, uniformly locally to an analytic function f∞(z), by Montel’s
theorem. The function f∞ takes the value Z0, but it is also nonconstant analytic, in a possibly
different positivity set Ω∞. However, by definition, Z0 is still the furthest point between D
and f∞(Ω∞), and the openness of f∞ yields the contradiction. Thus f is constant, and so is
∇u.
Case 2. γ3 meets the horizontal axis. Let µ ∈ [0, 1] belong to γ3. Similarly as above, there
is a sequence (zn)n whose modulus goes to 0 or +∞, such that lim

n→+∞
f(zn) = µ. Let fn

be defined as in (3.2) or (3.3), and let f∞ be one of its limits. From nondegeneracy (i.e.
linear growth from each point of the free boundary, which is, in this case, inherited from its
analyticity) there is a nontrivial solution u∞ of (3.1), and a point (x0, y0) in the positivity
set of u∞ such that

∂xu∞(x0, y0) = 0.

Because ∂xu∞ ≤ 0, it is zero everywhere. The only possibility for Γ∞ is that it is horizontal,
a contradiction to the fact that it has to meet the x axis. �

In particular, we have, for λ = 0:

∂{u > 0} = {y = 0}, u(x, y) = y−.

The same argument as in Theorem 3.1 yields the following

Corollary 3.2 Pick λ ∈ [0, 1], and consider a solution (ϕ(y), u(x, y)), with ϕ(y) < 0 and
∂xu ≤ 0, of

(3.4)
∆u = 0, u > 0 (x < ϕ(y))
|∇u| = 1 (x = ϕ(y)),

uy(x, 0) = λ (x ∈ R).

Then ϕ is constant negative, and λ = 1.
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The consequence of these rigidity properties for 2D global solutions is the
Proof of Theorem 1.2. Let (c, u, v,Γ) the solution of (1.1). We claim that Γ hits the road
at a point that we may assume, by translational invariance, to be (0, 0). Let us prove that
u(x0) > 0. Indeed, assume the contrary and that u(x0) = 0. Consider a Lipschitz blow up
of v around (x0, 0):

(3.5) vδ(ξ, ζ) =
v(δξ, δζ)

δ
.

Call Γδ its free boundary, let us first show that, as δ → 0, it does not collapse on the x axis.
In other words, we want to show the existence of ρ0 > 0 such that, if Γδ is the positivity set
of uδ within B1(0), then

Bρ0(−1,−2ρ0) ⊂ Ωδ.

Assume that it is not the case, then we have lim
δ→0

vδ(ξ, 0) = 0, uniformly in every compact in ξ,
just because v is Lipschitz. And so, by the exchange condition, we have lim

δ→0
∂yvδ(−1, 0) = 0.

On the other hand, let ζδ be the smallest ζ < 0 such that (−1, ζ) ∈ Γδ. Clearly, ζδ tends to
0 as δ → 0. Rescale vδ with |ζδ|, taking (−1, ζδ) as the origin. That is, we set

vδ(ξ, ζ) = |ζδ|Vδ
(
ξ + 1

|ζδ|
,
ζ − ζδ
|ζδ|

)
.

(A subsequence of) the sequence (Vδ)δ will converge, as δ → 0, to a solution V∞ of (3.4),
with λ = 0, something that Corollary 3.2 excludes. As δ → 0, (a subsequence of) (vδ)δ
converges locally uniformly to a global solution V∞ of (3.1), with λ = 0. By Theorem 3.1,
we have V∞(ξ, ζ) = ξ−. Thus, the equation for u in a neighbourhood of x = x0 is

−Du′′ + cu′ + µu ∼ x0 − x x < 0
u(0) = u′(0) = 0.

This implies u(x) ∼ x3

6D
for x < 0, close to 0. Thus u(x) < 0 in a neighbourhood of 0, a

contradiction with the positivity of u. So, u(0) > 0, let us set

λ = µu(0) > 0.

Let us come back to the blow up (3.5). Each converging subsequence as a solution of (3.1)
as a limit, which is unique by virtue of Theorem 3.1. So, the whole blow-up converges to

V∞(x) =

(
λy −

√
1− λ2x

)+

,

which implies, coming back to the solution (c, u, v,Γ) of (1.1), that Γ has slope γ =

√
1− λ2

λ
at (0, 0). This proves Theorem 1.2. �
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4 The travelling wave of the single species model

We will, as in Section 2, construct a solution to (1.2) as the limit, as ε → 0, of a sequence
(ce, uε)ε of solutions of

(4.1)



−d∆u+ c∂xu+ fε(u) = 0 (x, y) ∈ Σ

−Duxx + c∂xu+ 1/µuy = 0 for x ∈ R, y = 0
uy(x,−L) = 0

u(−∞, y) = 1, u(+∞, y) = 0.

the function fε being as in (2.2). For every ε > 0, (4.1) has (Dietrich [8] once again) a
unique solution (cε, uε) such that cε > 0, 0 < uε < 1 and ∂xuε < 0; we will show that, up to
a subsequence, (cε, uε) converges, as ε→ 0, to a solution of (1.2). Our first task is to show
that cε is uniformly bounded from above, that is:

Proposition 4.1 There is K > 0 independent of ε such that cε ≤ K.

Proof. Similar to that of Proposition 2.1. In R− × [−L, 0], we work with the sub-solution

u(x) := 1− (1− ε)eρx

with
ρ ≤ min(

1

D
,

1

d
)c,

whereas, to the right of Σ, we work with

uε(x) = εp(
x

ε
),

with
−p′′ + pϕ(p) = 0 for ξ > 0, p(0) = 1, p(+∞) = 0.

Because it is convex, it is a sub-solution to the Wentzell boundary condition on R+, and
because it is decreasing it is also a sub-solution of the equation inside the right half of Σ. �
The next step is a uniform gradient bound on uε:

Theorem 4.2 Assume D ≥ d. There is M > 0 universal such that ‖∇uε‖∞ ≤M .

This does not result from the application of known theorems, and will be rather involved.
So, we first assume that it holds, and finish the construction of the travelling wave of (1.2).

4.1 Construction of a solution to the one species model, given The-
orem 4.2

Let us first state the equivalent of Proposition 2.5

Proposition 4.3 There is c0 > 0 such that cε ≥ c0.
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Proof of Theorem 1.3. Arguing as in the proof of Theorem 1.1, we obtain a solution u
to (1.2), at least for the free boundary problem inside, with a free boundary (h(y), y) that
meets the top of Σ at a point that we may assume to be 0. So, we have u(x, 0) = 0 if x > 0.
To the left of Γ ∩ Σ we have u > 0. We infer that u(x, 0) > 0 if x < 0. Indeed, assume
u(x, 0) = 0 for x < x̄ < 0, and u(x, 0) > 0 if x > x̄. As a consequence of the definition of Γ,
there is r ∈ (0, |x̄|) such that

u > 0 in Br(x̄− r, 0) ∩ {y < 0}.

Let us come back to uε, the situation is the following:

(4.2)

−d∆uε + cε∂xuε = 0 x̄− r ≤ x ≤ x̄, −r < y < 0
−D∂xxuε + cε∂xuε + ∂yuε = 0, x̄− r ≤ x ≤ x̄

uε(x, 0) = oε→0(1), x̄− r ≤ x ≤ x̄
uε(x, y) ≥ λr|y| for some λr > 0,

the last inequality being valid because of the Hopf Lemma for u applied at every point of
the road between (x̄− r, 0) and (x̄, 0) on the one hand, and the fact, on the other hand, that
the convergence of uε to u is better than uniform in {x̄ − r ≤ x ≤ x̄, −r ≤ y ≤ 0} - the
Schauder estimates being valid in this area. As a consequence we have

(4.3) ∂yuε(x, 0) ≤ −λr for x̄− r ≤ x ≤ x̄, −r ≤ y < 0.

Because ux(x̄−r, 0) = 0 we have uε(x̄−r, 0) = oε→0(1). Integration of the Wentzell condition
for uε between x̄ − r and x̄, and taking (4.3) into account we obtain, when ε > 0 is small
enough:

uε(x̄, 0) < 0,

a contradiction.
Let us finally show that u solves the full free boundary problem (1.2). From identity (2.8)
and the boundedness of the sequence (cε)ε we obtain that (fε(uε)dxdy)ε converges (still up
to a subsequence) to the length measure on Γ, plus a possible finite measure on the boundary
R×{y = 0}. We note that u(x, 0) is at least C1,1: indeed, ∂yuε is uniformly bounded, due to
Theorem 4.2. Thus ∂xxuε(., 0) is also uniformly bounded, a property that passes on to ∂xxu.
So, the contribution of the limiting measure on R × {y = 0} is nonexistent, which proves
that the Wentzell condition is satisfied both a.e. and in the distributional sense. The rest of
the system is proved to be solved just as in Theorem 1.1. �

4.2 Gradient bound in the region u ∼ ε

The scheme of the proof is still, roughly, that of the Lipschitz bound in [2]. However, here,
the vicinity of the road requires a special treatment and this is where we will, eventually,
need D ≥ d. In the sequel we will, for convenience, drop the subscript ε for cε and uε. First,
recall the gradient bound in {u ≤ ε}, away from the road.

Lemma 4.4 Consider λ ∈ (0, 1) and a point (x0, y0) ∈ Σ such that

u(x0, y0) = λε.

Assume that y0 ≤ −2ε. Then we have

0 ≤ u(x, y) ≤ Cε, (x, y) ∈ Bε(x0, y0),

and |∇u(x0, y0)| ≤ C, for some universal C > 0.
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Proof. Set

(4.4) p(ξ, ζ) = εu(x0 + εξ, y0 + εζ),

and apply [2]. �
The main part of the task is therefore to bound ∇u at distance less than ε from the road.
Let us start with the most extreme case, i.e. a point on the road.

Lemma 4.5 Consider λ ∈ (0, 1) and x0 ∈ R such that

u(x0, 0) = λε.

Then we have
0 ≤ u(x, y) ≤ Cελ, (x, y) ∈ Bε(x0, y0), y ≤ 0,

for some C > 0 that depends neither on ε, nor λ.

Proof. This looks, at first sight, like an innocent repetition of the previous lemma. However
one quickly realises that the Lipschitz scaling yields the boundary condition

−Dpξξ + εcpξ + ε/µpζ = 0,

so that half of the Wentzell condition is lost when one sets ε = 0. Of course this yields that
p is linear on the road, hence constant in order to keep its positivity. However it does not
prevent large gradients in y: assume for definiteness that λ = 1; if p(−1, 0) = M >> 1, then

q(ξ, ζ) =
p(ξ, ζ)

M
,

and q solves
−∆q + qϕ(Mq) = 0

inside the cylinder, while keeping the condition qξξ = 0. So, it is an asymptotic global
solution for infinite M , which implies that one cannot hope for a uniform bound for p in this
setting.
So, this time we use the mixed Lipschitz-quadratic scaling

(4.5) u(x0 +
√
εξ, εζ) = ελp(ξ, ζ), (ξ, ζ) ∈ B2(0), ζ < 0

and p solves

(4.6)


−dεpξξ − dpζζ +

√
εc∂ξp+ pϕ( p

λ
) = 0 (ξ, ζ) ∈ ∩{ζ < 0}

−Dpξξ +
√
εc∂ξp+ 1/µpζ = 0 for −2 < ξ < 2, ζ = 0

p(0, 0) = λ.

We claim that p(0,−1) is universally bounded, both with respect to λ and ε. Call Mλ,ε this
quantity, we have

p(ξ,−1) ≥Mλ,ε for ξ ≤ 0.

Assume that a subsequence of (Mλ,ε)λ,ε (that we still relabel (Mλ,ε)λ,ε) with ε → 0, grows
to infinity. We claim the existence of ξλ,ε < 0, going to 0 as ε→ 0, such that

(4.7) p(ξλ,ε, ) ≥ kMλ,ε,
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for some universal k > 0. If such is not the case, then there is ξ0 < 0 universal such that

lim
ε→0

p(ξ, 0)

Mλ,ε

= 0, uniformly in ξ ∈ [ξ0, 0].

This entails the existence of a constant γ0 > 0, universal, such that

(4.8) pζ(ξ, 0) ≤ −γ0Mλ,ε, ξ ∈ [ξ0 +
√
ε,−
√
ε].

Indeed, we have p(ξ, ζ) ≥ p(ξ, ζ), where

−dεp
ξξ
− dp

ζζ
+
√
ε

3/2
cp
ξ

+ p = 0 (ξ ∈ (ξ0, 0)× (−1, 0))

p(ξ, 0) = p(ξ, 0), p(ξ,−1) = Mλε (ξ ∈ (ξ0, 0))
p(0, ζ) = p(ξ0, ζ) = 0 (ζ ∈ (−1, 0)).

Rescaling in ξ - so as to recover a fully elliptic equation for p - yields that p
ζ
(ξ, 0) satisfies

an estimate of the type (4.8).

Now, from Rolle’s theorem, there is ξ′λ,ε ∈ (
ξ0

2
,
ξ0

4
) such that pξ(ξ′λ,ε, 0) = o(Mλ,ε) (recall that

p is an o(Mλ,ε) on (ξ0 + ε,−ε)). So we have, on (
3ξ0

4
, ξ′λ,ε):

Dpξξ(ξ, 0)− εcpξ(ξ, 0) ≤ −γ0Mλ,ε

µ
, pξ(ξ

′
ε,λ, 0) = o(Mλ,ε), p(ξ

′
ε,λ(ξ

′
ε,λ, 0) = o(Mλ,ε).

Integration of this very simple differential inequality between ξ′ε,λ and
3ξ0

4
yields

p(
3ξ0

4
, 0) = o(Mλ,ε)−

1

2
γ0Mε,λ(

3ξ0

4
− ξ′λ,ε)2 ≤ O(1)− 9ξ2

0

16
< 0,

a contradiction.
So, we have found ξε,λ, going to 0 as ε → 0, such that (4.7) holds. Thus there exists
ξ′′ε,λ ∈ (ξ′ε,λ, 0) such that

p(ξ′′ε,λ, 0) ∈ (1, 2), lim
ε→0

pξ(ξ
′′
ε,λ0) := aλ,ε = −∞.

Now we notice that pζ(ξ, 0) is less than some universal C > 0, for ξ ∈ (ξ′′ε,λ,+∞): indeed,
set

p̃(ξ) =

{
p(ξ′′ε,λ, 0) if ξ ≤ ξ′′ε,λ,
p(ξ, 0) if ξ ≥ ξ′′ε,λ,

so that p̃(ξ) ≤ C universal on (ξ′′ε,λ, 1). We have p(ξ, ζ) ≤ q(ξ, ζ) where

−dεq
ξξ
− dq

ζζ
+
√
ε

3/2
cq
ξ

+ q = 0 (ξ ∈ (−1, 1)× (−1, 0))

q(ξ, 0) = p̃(ξ), p(ξ,−1) = 0 (ξ ∈ (−1, 1))
p(±1, ζ) = 0 (ζ ∈ (−1, 0)),

which satisfies
q
ζ
(ξ, 0) ≤ C, C > 0 universal.

So we have this time
Dpξξ(ξ, 0)− εcpξ(ξ, 0) ≤ −C on (ξ′′ε,λ, 1),
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while
pξ(ξ

′′
ε,λ, 0) ∈ (0, 2], p(ξ′ε,λ(ξ

′
ε,λ, 0) = aλ,ε → −∞.

Again, integration of the differential inequality on (ξ′′ε,λ, 1) yields the existence of ξ′′′ε,λ ≥ ξ′′ε,λ
such that p(ξ′′′ε,λ, ) < 0, a contradiction. Thus our claim that p(0,−1) is universally bounded
is proved.
It remains to see that p(0, ζ) is universally bounded for ζ ∈ [−1, 0]. First, notice that we
have in fact proved that

p(ξ,−1) is universally bounded for −1 ≤ ξ ≤ 1.

We have also proved that

pζ(ξ,−1) ≤ C, C > 0 universal.

This remark in hand we may repeat the above argument, replacing −1 by ζ. �
Instructed by Lemma 4.5, we may now bound u in an ε-vicinity of the road.

Lemma 4.6 Consider λ ∈ (0, 1) and (x0, y0) ∈ R× (−ε, 0) such that

u(x0, y0) = λε.

Then we have
0 ≤ u(x, y) ≤ Cελ, (x, y) ∈ B2ε(x0, y0), y ≤ 0,

for some C > 0 that depends neither on ε, nor on λ.

Proof. We start again the mixed scaling (4.5), so that p solves (4.6). Set

y0 = εζ0, thus u(x0, y0) = εp(0, ζ0) = ελ.

The only thing that we have to prove is that p(0, 0) is universally bounded from above and
below. The case

lim
ε→0

p(0, 0)

p(0, ζ0)
= 0

amounts to the previous lemma, so it only remains to exclude the case

(4.9) lim
ε→0

p(0, 0)

p(0, ζ0)
= +∞.

This time it will be more useful to work in the Lipschitz scaling (4.4). Set

Mε,λ =
p(0, 0)

p(0, ζ0)
, q(ξ, ζ) =

p(ξ, ζ)

Mε,λ

,

so that q solves

−d∆q + εc∂ξq + qϕ(Mε,λq) = 0 (ξ, ζ) ∈ B2(0), q(0, 0) = 1.

Now, notice the very simple bound for ∇q: The supremum of fε being of order ε, the elliptic
estimates [10] for the original Wentzell problem (4.1) yield

‖D2u‖W 2,p(B∩Σ̄) ≤
Cp
ε
,
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where B is any closed ball of radius 1, and Cp depends on p but not on ε. Hence we have

(4.10) ‖∇u‖∞ ≤
C

ε
,

C > 0 universal. Hence the condition for q on the road becomes

Dqξξ = εcqξ + ε/µqζ =
O(1)

Mε,λ

= o(1).

This implies, in order to keep the positivity of q, that qξ(0, 0) is universally bounded; as a
result, there is γ0 > 0 universal, and ξ0 > 0 universal as well, such that

γ0 ≤ q(ξ, 0) ≤ 1

γ0

, ξ ∈ (−ξ0, ξ0).

Thus q(ξ, ζ ≥ q(ξ, ζ) with

−d∆q + εcq
ξ

+ q = 0 ((ξ, ζ) ∈ (−ξ0, ξ0)× (−1, 0))

q(ξ, 0) = γ0, q(ξ,−1) = 0 (ξ ∈ (−ξ0, ξ0))
q(±ξ0, ζ) = 0 (ζ ∈ (−1, 0))

and the strong maximum principle implies the existence of a universal γ′0 > 0 such that
q(0, ζ0) ≥ γ′0, a contradiction. �
Putting Lemmas 4.5 and 4.6 together, we obtain the gradient bound in the region where
fε(u) is active:

Corollary 4.7 There is M > 0 universal such that |∇u(x, y)| ≤M if u(x, y) ≤ ε.

Proof. Consider λ ∈ (0, 1) and a point (x0, x0) ∈ Σ such that u(x0, y0) = λε. By Lemma
4.4, it is sufficient to assume y0 ≥ −2ε. From Lemmas 4.5 and 4.6 we have, in the Lipschitz
scaling (4.4):

0 ≤ p(ξ, ζ) ≤ C, (ξ, ζ) ∈ B2(0) ∩ ζ < 0.

The Wentzell condition reads once again

pξξ(ξ, 0) = o(1), −2 ≤ ξ ≤ 2,

so that pξ(ξ, 0) = o(1), for −2 ≤ ξ ≤ 0. in order to keep the positivity of p. Extend p(ξ, 0) in
a C1,1 fashion inside [−2, 2]× [−2, 0], call p̃(ξ, ζ) this extension. Then p− p̃ solves an elliptic
equation with bounded right handisde inside [−2, 2] × [−2, 0], while satisfying a Dirichlet
condition on the road segment (−2, 2). Hence, the classical local elliptic estimates yield

‖p‖Lr(B1(0)∩{ζ<0}) ≤ Cr, Cp > 0 depending only on r.

This implies, in turn, the uniform boundedness of |∇p(0, ζ0)|, hence the corollary. �

4.3 The gradient bound away from the region u ∼ ε

Let us mention from the outright that it is the sole place where we will need D ≥ d. Once
again, we do not know if it is essential.
Proof Theorem 4.2. We set

Ωε = Σ\{u ≤ ε}.
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Because ∂xu < 0, the set {u ≤ ε} sits on the right of a smooth graph

Γε = {(hε(y), y), y ∈ [−L, 0]},

where hε is a smooth function (whose derivatives may nonetheless blow up as ε → 0). We
may assume hε(0) = 0, and we set xε = hε(−L); we have thus

∂Ωε = (−∞, 0)× {0} ∪ Γε ∪ (−∞, xε)× {−L}.

Let us first bound uy from above. On Γε we have uy ≤ C. On (−∞, xε) × {−L} we have
uy = 0. So, let us find a differential inequality for uy on (−∞, 0)× {0}. In Ωε we have

−Duxx + cux = D(−uxx +
c

d
ux) + (1− D

d
)cux

= Duyy + (1− D

d
)cux

≥ Duyy,

simply because c > 0, ux < 0 and D ≥ d. This inequality carries over to the boundary
(−∞, xε)× {0} to yield D∂yuy + uy ≤ 0. We also have −D∆uy + c∂xuy = 0 in Ωε, therefore
uy can only assume a positive maximum on Γε, where it is uniformly bounded from above.
If not, it is bounded from above by 0.
Let us now bound ux from below. We now know that uy ≤ C, so, using ux < 0 we write

uxx(x, 0)− cux(x, 0) ≤ C (x < 0)
ux(0, 0) = O(1) because of Cororllary 4.7

Integrating this inequality backward, and using Proposition 4.3, we obtain ux(x, 0) ≥ −C,
C > 0 universal. On (−∞, xε)× {0} we have ∂yux = 0, and ux bounded on Γε. Thus, ux is
bounded from below in Ωε.
Finally, we may bound uy from below: now that we know the boundedness of ux, the Wentzell
condition becomes

D∂yuy(x, 0) + uy(x, 0) = O(1).

On Γε, uy is still bounded, while it still satisfies the Dirichlet condition on (−∞, xε). The
lower bound follows from the maximum principle. �

5 The free boundary near (0, 0) in the single species model

For the reader’s convenience, we recall the system solved by (c,Γ, u):

(5.1)



−d∆u+ c∂xu = 0 (x, y) ∈ {u > 0}
uν = 0 ((x, y) ∈ Γ

−Duxx + c∂xu+ 1/µuy = 0 for x ∈ R, y = 0
uy(x,−L) = 0

u(−∞, y) = 1, u(+∞, y) = 0.

Let us first explain the heuristics of Theorem 1.4. The starting point is a very simple global
asymptotic solution, in the limit ε→ 0 of the parabolic scaling:

(5.2) u(x, y) = εv(
x√
ε
,
y

ε
),
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in other words, the following situation:
             −𝐷𝑣 + 𝑐𝑣 + 𝑣 = 0                                                     

                                                                                        = 0 

                                                                                     ()                                                               

                                                                                                

                                                [𝑣] = 0,   √2𝑣
2 + 𝑣

2 = 1                                                         

    −2𝑣 − 𝑣 +  𝑐𝑣 = 0                                     𝑣 = 0                                                                                                                                                            

                                          

                                                                                                                                                         

Setting ε = 0 yields vζζ ≡ 0, hence v(ξ, 0) ≡ 1 for ξ < 0. So, we have v(ξ, 0) =
ξ2

2D
and

v(ξ, ζ) =

(
ζ +

ξ2

2D

)
+

,

hence the free boundary has the form (1.9). So, we are going to make this rigorous in the
remaining of the section.
We may assume that Γ meets the axis {y = 0} at the point (0,0), and start the proof of
Theorem 1.2. If X̄ = (x̄, ȳ) ∈ Σ is a free boundary point, and δ > 0 is small enough so that
B2δ(X̄) ⊂ Σ, rescale u at scale δ:

(5.3) x− x̄ = δξ, y − ȳ = δζ, u(x, y) = δuδ(ξ, ζ).

Let Γδ be the rescaled free boundary. As is familiar we have

(5.4)
−d∆uδ + δc∂ξuδ = 0 (B2(0))

|∇uδ| = 1 (Γδ)
u(0) = 0.

The uniform gradient bound comes from Theorem 1.1. We may therefore safely forget about
uε, and concentrate on the solution u(x, y) of (1.2). And so, in the sequel, we will use the
letter ε for any small parameter, without any further reference to the approximate solution
constructed in the preceding section.
This section more or less follows the organisation of Section 3: first, we will state a (more
standard) rigidity property adapted to the needs of the asymptotic situations that we will
encounter. We will then prove theorem 1.4.

5.1 Another 2D rigidity result

The following proposition is a consequence of the 2D monotonicity formula.

Proposition 5.1 Consider a solution u(x, y) of

(5.5)
∆u = 0, ({u > 0})
|∇u| = 1 (∂{u > 0}),

u(x, 0) = 0 (x ∈ R).

Assume that ∂{u > 0} meets the x-axis at the point (0,0), which s the only point where it
may not be analytic. Then u(x, y) = y−.
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Proof. It is based on [6], Theorem 12.1. Set

u1(x, y) = u(x, y), u2(x, y) = u(x,−y).

The functions u1 and u2 are harmonic in disjoint domains, and have a common zero line:
the axis {y = 0}. Thus ([6], Theorem 12.1) the quantity

1

R4

∫
BR(0)

|∇u1|2dxdy
∫
BR(0)

|∇u2|2dxdy

is increasing in R. As a consequence, the quantity

Ju(R) =
1

R2

∫
BR(0)

|∇u|2dxdy

is also increasing in R. Because of the gradient bound and nondegeneracy, the quantities
lim
R→0

Ju(R) and lim
R→+∞

Ju(R) exist and are nonzero. Notice that Ju is invariant under Lipschitz
scaling, that is

Ju(R) =

∫
B1(0)

|∇uR|2dxdy = JuR(1), uR(x, y) =
1

R
u(Rx,Ry).

The analyticity of the free boundary entails enough compactness to infer that the family
(uR)R converges in H1(B1(0)), as R→ 0 (resp. R→ +∞), possibly up to a subsequence, to
a limit u− (resp. u+). Another application of Theorem 12.1 of [6] to u± yields

Ju±(r) = Constant, hence J ′u±(r) = 0.

Hence we have
lim
R→0

J ′u(R) = 0, lim
R→+∞

J ′u(R) = 0.

Following the proof of the theorem, we have that limR→0 J
′
u(R) (resp. limR→+∞ J

′
u(R)) is

proportional to ∫
∂B1(0)

|∇u−|2dxdy∫
B1(0)

|∇u−|2dxdy
− 2

(
resp.

∫
∂B1(0)

|∇u+|2dxdy∫
B1(0)

|∇u+|2dxdy
− 2

)
.

However, still following the proof of the theorem, we find out that the above quantities are
zero if and only if

u±(y) = y−;

actually u± have to be proportional to y−, but the free boundary relation imposes the
proportionality coefficient. Thus J has the same limits at 0 and +∞, thus J is constant.
Thus J ′(R) ≡ 0, and u(x, y) = y−. This proves the proposition. �

5.2 Analysis of the free boundary

The first step is to show that the Lipschitz scale inside breaks down as the free boundary
approaches the horizontal axis, and becomes flatter and flatter.

21



Lemma 5.2 There is C > 0 universal such that, for ε > 0 small enough, we have

Γ ∩Bε(0) ⊂ (−ε, 0]× (−Cε2, 0].

Proof. Assume the lemma to be false, that is, there is a sequence (xε, δε) with

Γ ∩ ∂Bε(0) = {(xε, δε)},

with

(5.6) lim
ε→0

xε
√
δε = 0.

Drop the subscript ε and scale with δ as in (5.3), with X̄ = (0, 0). The Wentzell condition
implies that

uδ(ξ, 0) = O(δξ2)→δ→0 0.

The situation implies the existence of X̄δ in B1(0)∩{uδ > 0} whose distance to Γδ, as well as
to {y = 0, }, is universally controlled from below. From nondegeneracy, uδ(X̄δ) is universally
controlled from below. We send δ to 0 and use the compactness of (uδ)δ provided by the
uniform gradient bound: we recover a function u∞(ξ, ζ), as well as an asymptotic smooth
(possibly outside the origin) free boundary Γ∞. Call Ω∞ the area limited by {ζ = 0} and
Γ∞, we have

(5.7) −∆u∞ = 0 in Ω∞, u∞ = 0 on ∂Ω∞.

nondegeneracy implies that u∞(ξ,−1) is uniformly controlled from below, which implies in
turn

uζ(ξ, 0) ≤ −2q

for some universal q. Returning to uδ we obtain the same kind of bound: for every ρ > 0,
there is qρ > 0 such that

∂ζuδ(ξ, ζ) ≤ −qρ for small δ, −ξδ < ξ ≤ −ρ.

We have, because of (5.6):
lim
δ→0

ξδ = +∞.

The Wentzell condition at {ζ = 0} implies

−D∂ξξuδ + δc∂ξuδ ≥ qδ(1(−ξδ,−ρ) − C1(−ρ,0)), uδ(0, 0) = ∂ξuδ(0, 0) = 0.

Integration of this inequality yields (this is by now a routine argument) yields

uδ(−ξδ, 0) ≤ −qρ
3
δ < 0,

the sought for contradiction. This proves the lemma. �

The next lemma shows that, if the free boundary wiggles before reaching the point (0,0),
it does so in a controlled fashion.

Lemma 5.3 For every ε > 0, let ζ±ε be defined as

ζ−ε = inf{ζ ∈ R+ : (−ε, ζ) ∈ Γ}, ζ+
ε = sup{ζ ∈ R+ : (−ε, ζ) ∈ Γ}

There is q ∈ (0, 1), universal, such that

|ζ−ε | ≥ q|ζ+
ε |.
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Proof. Do the Lipschitz scaling (5.3) with X̄ = (−ε, 0) and δ = ζ+
ε . Assume that, for a

sequence δn → 0 we have:

lim
n→+∞

inf{ζ > 0 : (0,−ζ) ∈ Γδn} = 0.

This implies immediately

lim
n→+∞

uδn(ξ, 0) = 0, ξ ≥ 0, lim
n→+∞

∂ξuδn(0, 0) = 0.

By compactness, we obtain a nontrivial limiting couple (Γ∞, u∞) which solves the free bound-
ary problem in R × R−, and such that (0, 0) ∈ Γ∞. For ξ < 0 we have ∂ξξu∞(ξ, 0) = 0,
therefore u∞(ξ, 0) ≡ 0 for ξ ∈ R. This is against Proposition 5.1. �

Lemma 5.3 will trigger an obvious analogy between the equation for y and the obstacle
problem, in the sense that u behaves in a quadratic fashion in the vicinity of the point where
the inside free boundary hits the axis {y = 0}. This is expressed in the next proposition.

Proposition 5.4 For someC > 0, we have, for x ∈ [−1, 0]:
x2

C
≤ u(x, 0) ≤ Cx2.

Proof. Of course, it is enough to prove the result for small x. Consider any sequence (εn)n
going to 0, without loss of generality we may shift the origin from −εn to 0. Let us set

δn := ζ+
εn .

We wish to prove that u(−εn, 0) is of the order δn; because of the gradient bound it is
certainly an O(δn). Let us prove the converse, i.e. that

δn = O

(
u(−εn, 0)

)
.

Assume this is not true. Do, as in the preceding situation, the Lipschitz scaling (5.3) with
δ = δn. Let (Γn, un) be the scaled versions of u and Γ. Send n → +∞, we recover an
unbounded analytic curve Γ∞ = {h∞(ζ), ζ}, lying strictly below {ζ = 0}, and a positive
harmonic function u∞, defined above Γ∞, satisfying the free boundary relation on Γ. This
is impossible, due once again to Proposition 5.1. The same proposition will imply

∂ζu∞(0, 0) = 1,

so that, for the unscaled function u(x, y), there is q > 0, universal, such that uy(x, 0) ≥ q
for x <∈ (−εn, 0) as soon as n is large enough, except perhaps in an o(εn)-neighbourhood
of 0. So, by scaling, we have uy(x, 0) ≥ q as x < 0 is small enough. Integration of the
Wentzell boundary condition yields the quadratic nondegeneracy of u on the road, in a small
neighbourhood of 0. �
The last ingredient that we need is that, at each point of the free boundary near (0, 0), the
normal is almost vertical.

Lemma 5.5 There is δ0 > 0 such that, if x ∈ (−δ0, 0), there is a unique y = k(x) such that
(x, y) ∈ Γ. For y ∈ (−δ0, 0), let ν(x) = (ν1(x), ν2(x)) be the outward normal to Ω at the
point (x, k(x)). Then we have, for some C > 0:

(5.8) −Cx2 ≤ k(x) ≤ −x
2

C

Moreover we have:
lim
x→0

ν1(x) = 0, lim
x→0

ν2(x) = −1.
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Proof. For every ε small, let δε be the smallest δ such that

(−ε,−δ) ∈ Γ,

from Lemma 5.3 the largest δ such that this property holds is also of the order δε. We do
the Lipschitz scaling with

X̄ = (−ε, 0), δ = δε.

Let uε be the rescaled function, and send ε to 0. From the above lemmas we obtain a couple
(Γ∞, u∞) where Γ∞ is a union of analytic curves, one above the other, trapped in a bounded
strip of the form R × (−M, 0), and u∞ solves the free boundary problem in the set Ω∞
between Γ∞ and {ζ = 0}. Moreover, the top part of ∂Ω∞ is a straight line, and there is
q > 0 such that

u∞(ξ, 0) = q.

We also know that ∂ξu∞ ≤ 0, therefore it has two limits u±∞(ζ) as ζ → ±∞. Hence these
limits are non trivial, and they also solve the free boundary problem. So, an easy computation
yield

u±∞(ζ) = (q + ζ)+, ζ < 0.

Thus we have
u∞(ξ, ζ) = (q + ζ)+, Γ∞ = {ζ = −q}.

Thus, the whole family (uε)ε converges to (q + ζ)+. This also implies that, for ξ ∈ (−1, 1),
the uniqueness of ζ such that (ξ, ζ) ∈ Γ. Hence Γε is an analytic graph (ξ, kε(ξ)) with (k′ε)ε
bounded from Lemma 5.3. Hence we have

lim
ε→0

kε(x) = −q, lim
ε→0

k′ε(x) = 0 uniformly in ξ ∈ (−1, 1).

This implies the convergence of the normals, as stated in the lemma. �
Proof of Theorem 1.2. We finally revert to the Lipschitz-parabolic scaling, and set:

(5.9) x =
√
εξ, y = εζ, uε(ξ, ζ) =

1

ε
u(
√
εξ, εζ).

Let Γε be, once again, the free boundary of uε. It is enough to prove that, for small ε > 0,
the only ζ < 0 such that (−1, ζ) ∈ Γε, then we have

ζ = − 1

2D
.

Pick any small δ ∈ (0, 2). From Lemma 5.5, for −2 ≤ ξ ≤ −δ, there is a unique ζε(ξ) ≤ 0
such that

(ξ, ζε(ξ)) ∈ Γε.

From Lemma 5.5 we have

lim
ε→0

∂ζuε(ξ, ζε(ξ)) = lim
ε→0

∂yu(
√
εξ, εζε(ξ)) = 1.

From the proof of the same lemma we have

lim
ε→0

∂ζuε(ξ, 0) = 1.

The Wentzell condition for uε is

D∂ξξuε − εc∂ξuε = ∂ζuε ∼ε→0 1 for ξ ≤ −δ,
uε(0, 0) = ∂ξuε(0, 0) = 0.
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Integrating this relation and taking the boundedness of ∂ζuε into account yields

lim
ε→0

uε(−1, 0) = − 1

2D
.

And, from the proof of Lemma 5.5, we have

lim
ε→0

uε(−1, ζ) = (ζ +
1

2D
)+.

This implies the result. �

Remark 5.6 The gradient bounds, as well as the upper and lower bounds on c, do not

depend on L. In the proof of Theorem 1.2, the convergence of uε to (ζ +
1

2D
)+ is uniform

in L ≥ 1.
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