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Abstract

In this paper, a highly performing model order reduction technique called
Proper Generalized Decomposition (PGD) is applied to the numerical mod-
eling of highly transient non-linear thermal phenomena associated with ad-
ditive manufacturing (AM) powder bed fabrication (PBF) processes. The
manufacturing process allows for unprecedented design freedom but fabri-
cated parts often suffer from lower quality mechanical properties associated
with the fast transients and high temperature gradients during the localized
melting-solidification process. For this reason, an accurate numerical model
for the thermal evolutions is a major necessity. This work focuses on provid-
ing a low-cost/high accuracy prediction of the high gradient thermal field oc-
curring in a material under the action of a concentrated moving laser source,
while accounting for phase changes, material non-linearities and time and
space-dependent boundary conditions. An extensive numerical simulation
campaign shows that the use of PGD in this context enables a remarkable
reduction in the total number of global matrix inversions (5 times less or
better) compared to standard techniques when simulating realistic AM PBF
scenarios.

Keywords: AM Process Simulation, Powder Bed Fabrication, Reduced
Order Modeling, Proper Generalized Decomposition

1. Introduction1

Since their inception, selective laser melting (SLM) and electron beam2

melting (EBM) powder bed fabrication (PBF), as prime examples in addi-3
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tive manufacturing (AM), proved to be a paradigm shift for manufacturing4

processes. They consist in selective melting of superposed layers of metal5

powder using a machine-controlled moving high energy source. Due to their6

nature, these processes allow unprecedented freedom in designing, personal-7

ization and optimization of mechanical parts. Moreover, they are particularly8

suited for software-hardware integration when the desired geometry is con-9

ceived with a Computer Assisted Design (CAD) tool and directly produced10

by an automated process, removing many of the intermediate steps between11

the designer’s vision and the physical world.12

Effective numerical methods capable of predicting final characteristics of13

the part, spotting critical points during the process and helping the design14

process itself are often invaluable in gaining insight in the process. Since15

SLM and EBM encompass complex multiphysics (thermal, mechanical, phase16

change, metallurgic) and pose a gigantic multi-scale problem in both space17

and time, special consideration is required in numerical analysis (see [1, 2,18

3])including fast executing AM-specialized approaches (see [4]).19

This work focuses on the highly non-linear thermal phenomena occurring20

in the immediate proximity of the fast moving heat source where temper-21

ature evolution rates, phase changes and thermal gradients are the most22

intense, all happening on a very small scale (see [5]). The goal is to provide23

a lower-cost / high accuracy simulation of this important region. To provide24

this solution, a technique belonging to Reduced Order Model (ROM) fam-25

ily (see [6, 7, 8, 9, 10, 11]) called Proper Generalized Decomposition (PGD)26

(see [12, 13, 14, 15, 16, 17]) has been adapted for this problem to consider27

temperature-dependent material properties and latent heat associated with28

phase change. Heating is accomplished via a laser model that moves rapidly29

along the path while heat removal is modeled via temperature dependent30

thermal conductivity and rapidly evolving Neumann boundary conditions.31

This model order reduction technique allows computing a reduced base for32

each variable without solving the full eigenvalue problem. In order to prop-33

erly keep into account the non-linearities and the boundary condition of34

highly transient thermal evolutions, a dedicated PGD algorithm and method-35

ology have been developed, representing the main contributions of this work.36

Thanks to it, computational cost is significantly reduced and variable separa-37

tion is achieved enabling a highly meaningful reduced basis. Benchmarking38

against the full transient finite element solutions are performed. For the39

purpose of benchmarking, a linear finite element full integration formulation40

was chosen. An in-depth study on PGD controls (number of modes, number41
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of iterations, etc.) and on how they can be best selected for efficient com-42

putations is included and accuracy and performance findings are carefully43

tabulated.44

2. Problem description45

For the purpose of this study, a patch of material of unit thickness is46

subjected to intense heating from a heat source moving over its surface (see47

Figure 1). While the heating is three-dimensional in nature and the build

Figure 1: Problem under study

48

direction involves a very important heat transport mechanism, for simplicity,49

we have modeled it as a 2D problem in the xy plane (all units are modified50

accordingly). Despite this simplification, all core non-linearities associated51

with additive manufacturing heat transfer computations including material52

properties, high temperature gradients and high heating and cooling rates are53

included and therefore the setup serves the core purpose of the paper. The54

patch is a square region of given length (L) made of Ti-6Al-4V, a popular55

Titanium-based alloy used widely in powder bed fabrication additive manu-56

facturing (see [18]). The material definition includes temperature-dependent57

properties (such as the density (ρ), the heat capacity (Cp) and the thermal58

conductivity (k)); the heat source is a laser beam with prescribed power59

density input (P ) in the form of a Gaussian distribution initially centered60

at point (X0, Y0) relative to a (O, x, y) coordinate system aligned with the61

plate edges with origin at the lower left corner of the plate. The heat source62

is moving over the patch in the negative x-direction with a given speed (υ).63

The patch loses heat to the surrounding environment at temperature (Tenv)64

through its surface according to a film condition with heat transfer coeffi-65

cient (h). In addition heat is also lost through its boundaries according to a66
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prescribed outward flux (qout(x, y, t)), where t denotes the time. The values67

of all these parameters are subject to change depending on the particular68

test scenario presented in the Results and Discussion section.69

This problem can be formulated as a boundary value problem governed70

by a parabolic partial differential equation (PDE) for the scalar temperature71

field T (x, y, t), with material non-linearities and a non-linear varying source,72

in a 2D domain Ω = [0, L] × [0, L] over a time interval I = [0, tend], with73

prescribed Neumann boundary conditions and uniform initial conditions. In74

its most general form, the boundary value problem is formulated as follows:75 
∂(ρCp(T )T (x,y,t))

∂t
+∇ · (−k(T )∇T (x, y, t)) = Qin(x, y, t)−Qout(T ) in Ω× I

−k(T )∇T (x, y, t) · nout = qout(x, y, t) on ∂Ω× I
T (x, y, 0) = T0 in Ω

(1)
where76  Qin(x, y, t) = 2P

πR2
0

exp
(
−2
R2

0
((x− x0(t))2 + (y − y0(t))2)

)
Qout(T ) = h (T − Tenv)

. (2)

Here nout represents the outer unit normal to the domain boundary, T077

represents the prescribed uniform initial temperature field, R0 represents a78

characteristic radius for the Gaussian distribution and79 {
x0(t) = X0 + fx(t)

y0(t) = Y0 + fy(t)
(3)

represent the prescribed energy source motion. A description of the Gaussian80

source model can be found in [19].81

3. Methods and Algorithms82

Since the PGD results are compared to Finite Element Method (FEM)83

results (both in terms of accuracy and performance), the FEM and PGD84

methods will be described in parallel, for each new simulation capability85

added in order to solve the proposed problem.86

We start by describing the linear case, then move to comprehensive non-87

linear cases, including temperature-dependent properties and latent heat as-88

sociated with phase changes, fast moving time-dependent heat sources and89

temperature-dependent Neumann boundary conditions.90
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3.1. Linear case91

The FEM and PGD approaches are first briefly reviewed in the context of92

a linear problem (parameters such as ρ, Cp and k are considered independent93

of the temperature) with zero Neumann boundary conditions (insulated)94

and a stationary and temperature independent heat source. Consequently,95

qout = Qout = fx = fy = 0 ∀t ∈ I, and Qin is independent of time:96

Qin(x, y) =
2P

πR2
0

exp

(
−2

R2
0

((x−X0)2 + (y − Y0)2)

)
. (4)

So, for the linear problem, Equation (1) can be reformulated as:97 
ρCp

∂T
∂t
− k∇2T = Qin(x, y) in Ω× I

k∇T · nout = 0 on ∂Ω× I
T (x, y, 0) = T0 in Ω

. (5)

The problem is solved by classical FEM (see [20]). A backward-Euler98

finite difference scheme is used for implicit time integration in an incremental99

approach.100

For PGD, the temperature field is assumed to be decomposable in the101

form of a finite sum of products between space and time functions:102

T (x, y, t) ≈
Nmod∑
i=1

Φi(x, y)λi(t) (6)

where Nmod is the number of products, determined based on a convergence103

criterion. The space functions are discretized according to Φi(x, y) ≈ N(x, y)Φi,104

where Φi represents the ith nodal solution vector and N(x, y) represents a set105

of interpolation functions. In a way, this is similar to the FEM approach,106

where the solution field is discretized as T (x, y, t) ≈ N(x, y)T(t), with T(t)107

representing the solution vector at the nodes of the FEM mesh.108

The nodal solution vector is thus expressed as a separated representation109

of the form T(t) ≈
∑Nmod

i=1 Φiλi(t), where the vectors Φi can be viewed as110

“basis vectors” and the time functions λi(t) can be viewed as coefficients111

in a linear combination analogous to FEM-based eigenmode superposition.112

Alternatively, each couple (Φi, λi(t)) can be viewed as a “mode” in this113

superposition. This terminology will be used in the Results and Discussion114

section.115
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In contrast to usual methods (which include FEM eigenmode analysis and116

other order reduction methods such as the Proper Orthogonal Decomposition117

- POD method), in which the projection basis is known a priori, the PGD118

basis vectors and time functions are both unknown and will be computed on119

the fly, for the particular problem at hand.120

The basis is progressively enriched by the addition, at stage n < Nmod, of121

a new couple (Φn, λn(t)) which can be viewed as a correction to the previous122

result Tn−1(t):123

Tn(t) =
n∑
i=1

Φiλi(t) =
n−1∑
i=1

Φiλi(t) + Φnλn(t) = Tn−1(t) + Φnλn(t). (7)

The basis computation proceeds in successive stages. At each stage there124

are two steps (see [15]):125

• An enrichment step: a new couple consisting of a basis vector and a126

time function (Φn, λn(t)) is computed;127

• An update step: all time functions are recomputed.128

PGD Enrichment step (addition of a new couple)129

Assuming that the first n−1 couples (Φi, λi(t))i=1,...,n−1 have been previ-130

ously obtained, the current approximation of the field is written in the form131

Tn(t) = Tn−1(t) + Φnλn(t), with the new couple (Φn, λn(t)) unknown.132

The new couple (Φn, λn(t)) is obtained by applying an alternating direc-133

tions fixed point iterations method , which is the standard choice for PGD134

algorithms (see [15]). In contrast with the FEM, the time marching incre-135

ment has less influence on convergence. Other factors, such as a bad choice136

of the initialization function (for example a null function) can have a more137

detrimental effect.138

The process starts with the initialization of the time function λ
(0)
n (t). This139

choice is arbitrary, since several functions can result in converged results.140

We opted for using a linear time function. This was determined on physical141

grounds, based on the fact that in the absence of transients the solution of142

the boundary value problem with constant source and no Neumann boundary143

conditions behaves as an unbounded growth of the temperature field.144

After the initialization, the fixed-point iterations consist in computing145

in sequence: Φ
(1)
n and λ

(1)
n (t) (first iteration), then Φ

(2)
n and λ

(2)
n (t) (second146

iteration), etc., until convergence to the couple (Φn, λn(t)).147
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At the kth iteration, consistently with the basic premise of separation of148

variables, one thus solves in sequence:149

• A space problem for Φ
(k)
n (with λ

(k−1)
n (t) known);150

• A time problem for λ
(k)
n (t) (with Φ

(k)
n known).151

Space problem152

Assuming that λ
(k−1)
n (t) is known, one obtains Φ

(k)
n by assuming that153

Tn(t) = Tn−1(t) + Φ
(k)
n λ

(k−1)
n (t) and by choosing a test function for the weak154

formulation of the problem in the form T∗(t) = Φ∗λ
(k−1)
n (t).155

Based on the work of Nouy (see [15]) and Néron (see [16]), by employing156

the virtual work machinery, the space problem is then given by the equation:157 (∫
I

λ(k−1)
n (t)λ̇(k−1)

n (t) dt M +

∫
I

λ(k−1)
n

2
(t) dt K

)
Φ(k)
n =∫

I

λ(k−1)
n (t)FQin dt−

n−1∑
i=1

(∫
I

λ(k−1)
n (t)λ̇i(t) dt M +

∫
I

λ(k−1)
n (t)λi(t) dt K

)
Φi

(8)

where158 
M =

∫
Ω
NT (x, y)ρCpN(x, y) dS

K =
∫

Ω
(∇N)T (x, y)k∇N(x, y) dS

FQin =
∫

Ω
NT (x, y)Qin(x, y) dS

. (9)

Letting:159 {
ai =

∫
I
λ

(k−1)
n (t)λ̇i(t) dt

bi =
∫
I
λ

(k−1)
n (t)λi(t) dt

(10)

for i = 1, . . . , n− 1 and160 
a =

∫
I
λ

(k−1)
n (t)λ̇

(k−1)
n (t) dt

b =
∫
I
λ

(k−1)
n

2
(t) dt

c =
∫
I
λ

(k−1)
n (t)FQin dt−

∑n−1
i=1 (aiM + biK)Φi

(11)

this problem takes the form:161

(aM + bK)Φ(k)
n = c. (12)

7



Time problem162

Assuming that Φ
(k)
n is known, one obtains λ

(k)
n (t) by assuming that Tn(t) =163

Tn−1(t) + Φ
(k)
n (t)λ

(k)
n (t) and by choosing a test function for the weak formu-164

lation of the problem in the form T∗(t) = Φ
(k)
n λ∗(t).165

Based again on the work of Nouy (see [15]) and Ladevèze (see [21]), the166

time problem is then given by the equation:167

Φ(k)
n

TMΦ(k)
n λ̇(k)

n (t) + Φ(k)
n

TKΦ(k)
n λ(k)

n (t) =

Φ(k)
n

T
FQin −

n−1∑
i=1

(Φ(k)
n

TMΦi λ̇i(t) + Φ(k)
n

TKΦi λi(t)).
(13)

Letting:168  ai
′ = Φ

(k)
n

T
MΦi

bi
′ = Φ

(k)
n

T
KΦi

(14)

for i = 1, . . . , n− 1 and169 
a′ = Φ

(k)
n

T
MΦ

(k)
n

b′ = Φ
(k)
n

T
KΦ

(k)
n

c′(t) = Φ
(k)
n

T
FQin −

∑n−1
i=1 (ai

′λ̇i(t) + bi
′λi(t))

(15)

this problem takes the form:170

a′λ̇(k)
n (t) + b′λ(k)

n (t) = c′(t). (16)

This standard ordinary differential equation in time is solved here for171

λ
(k)
n (t) by numerical integration in time making use of Backward-Euler finite172

difference scheme with large time increments.173

Convergence criterion174

The new couple (Φn, λn(t)) is obtained after convergence of the fixed point175

iterations for the sequence Φ
(k)
n , λ

(k)
n (t), based on the relative error criterion176

chosen as:177

ε =
2
∫
I

(λ
(k)
n (t)− λ(k−1)

n (t))
2
dt∫

I
(λ

(k)
n (t) + λ

(k−1)
n (t))

2
dt

< tolPGD (17)
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where tolPGD is a small tolerance. The optimal value of tolPGD is case-178

dependent. On one hand, a small tolerance will lead to few PDG modes at179

the price of many fixed point iterations. On the other hand, a large value of180

tolPGD will need fewer fixed point iterations but more PDG couples in order181

to reach convergence. An in-depth analysis of this behavior will be presented182

in Section 4.183

PGD Update step (re-computation of all time functions)184

Based again on [15], once the new couple (Φn, λn(t)) has been computed,185

all time functions {λi(t)}i=1,...,n are updated based on all currently known186

space vectors {Φi}i=1,...,n by requiring that:187

n∑
i=1

ΦT
j MΦi λ̇i(t) +

n∑
i=1

ΦT
j KΦi λi(t) = Φj

TFQin for j=1,...,n . (18)

Letting:188 
a′j,i = Φj

TMΦi

b′j,i = Φj
TKΦi

c′j = Φj
TFQin

(19)

this problem takes the form:189

n∑
i=1

a′j,iλ̇i(t) +
n∑
i=1

b′j,iλi(t) = c′j for j=1,...,n . (20)

This coupled ordinary differential equations system in time is solved for190

{λ1(t), ..., λn(t)} by numerical integration making use of Backward-Euler fi-191

nite difference scheme with large time increments over the entire time interval192

I = [0, tend]. For the purpose of this study, the interval I was always dis-193

cretized via 100 equally sized increments.194

3.2. Extension to the non-linear case - non-linear materials195

The extension of the FEM and PGD approaches to the non-linear case is196

briefly described next. PDG has seen applications in non-linear cases, mainly197

by the use of linearization schemes or of asymptotic numerical methods as in198

[22], [23] and [24] . Nevertheless, the PGD algorithm and methodology pro-199

posed in this section are an original adaptation of PGD for highly transient200

thermal evolution. The material parameters ρ, Cp and k are now assumed201
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to be prescribed functions of the temperature. Since the capacitance ma-202

trix depends on the product ρCP (T ), it becomes a function of temperature203

M(T ). Likewise, since the conductivity matrix depends on k(T ), it becomes204

a function of temperature K(T ).205

For the FEM, the equation becomes:206

M(T )Ṫ(t) + K(T )T(t) = FQin , (21)

which is solved incrementally using implicit time integration with Backward-207

Euler finite differences and Newton iterations (where a small tolerance TolFEM208

must be used) at each time increment. More details can be found in [20].209

For the PGD, the non-linearities are taken into account at each stage by210

using all the known information about the current content of the solution.211

The computation of each new couple (Φn, λn(t)) takes place again in two212

steps.213

PGD Enrichment step214

This step proceeds again by fixed point iterations.215

Since216

Tn(t) =
n∑
i=1

Φiλi(t) = Tn−1(t) + Φnλn(t), (22)

where Tn−1(t) is not known for the first couple, one proceeds by using all217

the available information at each iteration.218

To compute the first couple (Φ1, λ1(t)), the temperature field T (x, y, t)219

is initialized to T0 and used to compute initial values for the capacitance220

and conductivity matrices M(0)
0 = M(ρCp(T0)) and K(0)

0 = K(k(T0)). These221

matrices are then used to compute the first iterate {Φ(1)
1 , λ

(1)
1 (t)}. After each222

new iteration, these matrices are updated with the temperature field of the223

current iteration.224

Thus, after the kth iteration, yielding (Φ
(k)
1 , λ

(k)
1 (t)), the matrices are up-225

dated according to226 {
M(k)

0 (t) = M(ρCp(Φ
(k)
1 λ

(k)
1 (t)))

K(k)
0 (t) = K(k(Φ

(k)
1 λ

(k)
1 (t)))

(23)

and used to compute the next iterate (Φ
(k+1)
1 , λ

(k+1)
1 (t)). This process con-227

tinues until convergence of the first pair.228
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To compute the other couples {(Φi, λi(t))}i=2,...,n−1, the temperature vec-229

tor is replaced by the sum of the products of the currently known terms230

and the capacitance and conductivity matrices are pre-computed once based231

on all previous information and then stored. Thus, for the computation of232

the nth pair (Φn, λn(t)), T(t) is replaced by the known quantity Tn−1(t) =233 ∑n−1
i=1 Φiλi(t), where all the time functions have been updated, and the ca-234

pacitance and conductivity matrices are updated via:235 {
Mn−1(t) = M(ρCp(Tn−1(t)))

Kn−1(t) = K(k(Tn−1(t)))
. (24)

Aside from the special treatment for the first couple, the process is repet-236

itive.237

After initializing the process for the nth couple (Φn, λn(t)) with an arbi-238

trary time function λ
(0)
n (t), each iteration consists of solving in sequence:239

• A space problem for Φ
(k)
n (with λ

(k−1)
n (t) known). Letting:240 {

Ai =
∫
I
λ

(k−1)
n (t)Mn−1(t)λ̇i(t) dt

Bi =
∫
I
λ

(k−1)
n (t)Kn−1(t)λi(t) dt

(25)

for i = 1, . . . , n− 1 and241 
A =

∫
I
λ

(k−1)
n (t)Mn−1(t)λ̇

(k−1)
n (t) dt

B =
∫
I
λ

(k−1)
n

2
(t)Kn−1(t) dt,

c =
∫
I
λ

(k−1)
n (t)FQin dt−

∑n−1
i=1 ([Ai] + [Bi])Φi

(26)

the space problem takes the form:242

(A + B)Φ(k)
n = c; (27)

• A time problem for λ
(k)
n (t) (with Φ

(k)
n known). Letting:243  ai

′(t) = Φ
(k)
n

T
Mn−1(t)Φi

bi
′(t) = Φ

(k)
n

T
Kn−1(t)Φi

(28)
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for i = 1, . . . , n− 1 and244 
a′(t) = Φ

(k)
n

T
Mn−1(t)Φ

(k)
n

b′(t) = Φ
(k)
n

T
Kn−1(t)Φ

(k)
n

c′(t) = Φ
(k)
n

T
FQin −

∑n−1
i=1 (ai

′(t)λ̇i(t) + bi
′(t)λi(t))

(29)

the time problem takes the form:245

a′(t)λ̇(k)
n (t) + b′(t)λ(k)

n (t) = c′(t). (30)

PGD Update step246

This step re-computes all time functions. The capacitance and conductiv-247

ity matrices are first updated in terms of all current information {(Φi, λi(t))}i=1,...,n,248

by assuming that Tn(t) =
∑n

i=1 Φiλi(t) according to:249 {
Mn(t) = M(ρCp(Tn(t)))

Kn(t) = K(k(Tn(t)))
. (31)

Letting:250 
a′j,i(t) = Φj

TMn(t)Φi

b′j,i(t) = Φj
TKn(t)Φi

c′j = Φj
TFQin

(32)

the update problem takes the form:251

n∑
i=1

a′j,i(t)λ̇i(t) +
n∑
i=1

b′j,i(t)λi(t) = c′j for j=1,...,n . (33)

3.3. Extension to phase change by latent heat capacity, time- and temperature-252

dependent source, time and space-dependent boundary conditions253

The next step is to build a model that includes the latent change of254

phase of the patch material located in the close vicinity of the laser source255

which is now allowed to move inside the patch. Realistic Neumann boundary256

conditions at the patch edges and a convective heat loss throughout the patch257

surface are also taken into account.258

In SLM processes, phase changes from raw materials (e.g. powder) to259

liquid followed by solidification occur at very high speed (10−6 − 10−3 s).260
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Upon melting, the local internal energy increases significantly while the tem-261

perature typically increases over a small range between TS (solidus) and TL262

(liquidus). Upon solidification, the opposite takes place: a large amount of263

energy is conducted/convected/radiated away from the “action” zone while264

temperatures decrease over the same range between liquidus and solidus.265

These high temperature cooling/heating rates and large temperature gradi-266

ents are the dominant factors in determining at microstructural level grain267

morphologies and are the primary driver behind metallurgical phase transfor-268

mations upon solidification. These have a direct influence on the mechanical269

properties of the finished product, and therefore it is critical to capture rea-270

sonably well these highly transient events (see [19] ).271

The change in internal energy as function of temperature can then be272

interpreted as a rather very non-linear specific heat relationship given by273

Cp(T ) = dU/dT as illustrated in Figure 2. Only for the sake of simplifying274

the illustration of this relationship, we have considered that otherwise the275

specific heat is independent of temperature outside of range TL−TS, a premise276

that is not considered in the results shown in the following section.277

If the source is time-dependent, i.e. the laser source is no longer station-278

ary, the the right-hand side of the FEM equation for the problem becomes:279

FQin(t) =

∫
Ω

NT (x, y)Qin(x, y, t) dS. (34)

With the impetus of global-local FEM-based modeling techniques, the280

ability of robustly handling arbitrary Neumann boundary conditions on lo-281

cal models (like the ones illustrated in this work) is mandatory. While it282

is not the purpose of this work to dive into the global-local coupling algo-283

rithms, if time-dependent non-homogeneous Neumann boundary conditions284

are imposed (on this local model), an additional term must be added to the285

right-hand side of the FEM equation:286

Fqout(t) =

∫
∂Ω

NT (x, y)qout(x, y, t) dl. (35)

Furthermore, if an additional temperature-dependent source, represent-287

ing an outward convective flux similar to a 3D film condition is taken into288

account:289

Qout(T ) = h (T − Tenv) (36)
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Figure 2: Internal energy for phase change and equivalent non-linear specific heat

a convective conductivity matrix must be added to the non-linear conductiv-290

ity matrix:291

Kh =

∫
Ω

NT (x, y) h N(x, y) dS (37)

and a convective source term must be added to the right-hand side of the292

FEM equation:293

Fh(Tenv) =

∫
Ω

NT (x, y) h Tenv dS. (38)

The FEM equation finally becomes:294

M(T )Ṫ(t) + (K(T ) + Kh)T(t) = FQin(t)− Fqout(t) + Fh(Tenv). (39)
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The FEM formulation remains incremental, with Newton iterations at295

each time increment as described in Section 3.2.296

The PGD formulation also remains a succession of stages consisting of an297

enrichment step followed by an update step, as described in Section 3.2, but298

some terms are modified, as presented below.299

PGD Enrichment step300

In the enrichment step, a new couple (Φn, λn(t)) is again obtained with301

fixed point iterations by alternating sequentially between:302

• The space problem, consisting of solving the algebraic system:303

(A + B)Φ(k)
n = c (40)

with:304 

Ai and A unchanged

Bi =
∫
I
λ

(k−1)
n (t)(Kn−1(t) + Kh)λi(t) dt for i = 1, . . . , n− 1

B =
∫
I
λ

(k−1)
n

2
(t)(Kn−1(t) + Kh) dt

c =
∫
I
λn(t)(FQin(t)− Fqout(t) + Fh(Tenv)) dt−

∑n−1
i=1 (Ai + Bi)Φi

(41)

• The time problem, consisting of integrating the ordinary differential305

equation:306

a′(t)λ̇(k)
n (t) + b′(t)λ(k)

n (t) = c′(t) (42)

with:307 

ai
′(t) and a′(t) unchanged

bi
′(t) = Φ

(k)
n

T
(Kn−1(t) + Kh)Φi for i = 1, . . . , n− 1

b′(t) = Φ
(k)
n

T
(Kn−1(t) + Kh)Φ

(k)
n

c′(t) = ΦT
n (FQin(t)− Fqout(t) + Fh(Tenv))−

∑n−1
i=1 (ai

′(t)λ̇i(t) + bi
′(t)λi(t)).

(43)

15



PGD Update step308

In the update step, the set of time functions {λ1(t), ..., λn(t)} is again309

simultaneously updated by integrating the ordinary differential system:310

n∑
i=1

a′j,iλ̇i(t) +
n∑
i=1

b′j,iλi(t) = c′j(t) for j = 1, . . . , n (44)

with:311 
a′j,i(t) unchanged

b′j,i(t) = Φj
T (Kn(t) + Kh)Φi

c′j(t) = Φj
T (FQin(t)− Fqout(t) + Fh(Tenv)).

(45)

The computations for stage n(> 1) in this most general case are summa-312

rized in Algorithm 1.313

4. Results and Discussion314

In this Section, the most relevant results are shown in order to compare315

PGD with FEM. All the simulations were done in Matlab. To assure the316

correct answers, Abaqus was used to verify FEM Matlab results. Meshes317

were generated by Gmsh. The coefficients a, b, c (see Equation (11)) and A,318

B, c (see Equations (26) and (41)) were calculated by numerical integration319

using a rectangular method with 100 discretization points in all the following320

examples.321

4.1. Example 1: linear case322

Even though no computational gain is expected in the linear case, it is a323

good starting point to better understand the PGD behavior when applied to324

an additive manufacture problem.325

The domain to be analyzed consists of a 2 mm × 2 mm square plate326

made of Ti-6Al-4V. The laser is stationary and heats the plate during 0.1 s.327

The walls are insulated and there are no Dirichlet boundary conditions. A328

non-uniform triangular mesh with 1894 degrees of freedom was used, with329

an element size of 10−6 m in the laser region and 10−4 m in the edges.330

Further information is presented in Table 1 and in Figure 3.331

Some of the cases tested are presented in Table 2 and Figure 4. Note332

that in all cases the temperature is analyzed at the node where the laser is333

located.334
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Algorithm 1 Non-linear PGD
Require: Mn−1(t), Kn−1(t), Kh, FQin (t), Fq̄out (t), Fh(Tenv), tolPGD, (Φn−1, λn−1(t))

for n = 2 to Nmod do
Enrichment step (Fixed-point iterations) to Compute (Φn, λn(t))

Initialize λ
(k=0)
n (t)

while ε =
∫
I (λ

(k)
n (t)−λ(k−1)

n (t))
2
dt

1
2

∫
I (λ

(k)
n (t)+λ

(k−1)
n (t))

2
dt
> tolPGD do

k = k + 1

Space problem: Compute Φ
(k)
n from a known λ

(k−1)
n (t)

 Ai =
∫
I λ

(k−1)
n (t)Mn−1(t)λ̇i(t) dt

Bi =
∫
I λ

(k−1)
n (t)(Kn−1(t) + Kh)λi(t) dt

for i = 1, . . . , n− 1 and
A =

∫
I λ

(k−1)
n (t)Mn−1(t)λ̇

(k−1)
n (t) dt

B =
∫
I λ

(k−1)
n

2
(t)(Kn−1(t) + Kh) dt,

c =
∫
I λ

(k−1)
n (t)(FQin

(t)− Fqout (t) + Fh(Tenv)) dt−
∑n−1
i=1 ([Ai] + [Bi])Φi

Solve for Φ
(k)
n : (A + B)Φ

(k)
n = c

Time problem: Compute λ
(k)
n (t) from a known Φ

(k)
n

ai
′(t) = Φ

(k)
n

T
Mn−1(t)Φi

bi
′(t) = Φ

(k)
n

T
(Kn−1(t) + Kh)Φi

for i = 1, . . . , n− 1 and


a′(t) = Φ

(k)
n

T
Mn−1(t)Φ

(k)
n

b′(t) = Φ
(k)
n

T
(Kn−1(t) + Kh)Φ

(k)
n

c′(t) = Φ
(k)
n

T
(FQin

(t)− Fqout (t) + Fh(Tenv))−
∑n−1
i=1 (ai

′(t)λ̇i(t) + bi
′(t)λi(t))

Solve for λ
(k)
n (t): a′(t)λ̇

(k)
n (t) + b′(t)λ

(k)
n (t) = c′(t)

Check ε
if ε ≤ tolPGD then

Set: (Φn, λn(t)) = (Φ
(k)
n , λ

(k)
n (t))

end if
end while
Update step (Re-computation of all time functions {λ1(t), ..., λn(t)})


a′j,i(t) = Φj

TMn(t)Φi for i = 1, . . . , n

b′j,i(t) = Φj
T (Kn(t) + Kh)Φi for i = 1, . . . , n

c′j(t) = Φj
T (FQin

(t)− Fqout (t) + Fh(Tenv)).

Solve for {λ1(t), ..., λn(t)}: a′j,iλ̇i(t) + b′j,iλi(t) = c′j(t) for i=1,...,n
end for
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Figure 3: Representative schema of Example 1

Table 1: General properties for Example 1

General properties Values

Density (ρ) 4500 kg/m2

Conductivity (k) 12 W/K

Heat capacity (Cp) 700 J/K/kg

Laser power (P ) 100 kW

Laser radius (R0) 5 · 10−5 m

Total time (tend) 0.1 s

Time increment (∆t) 0.001 s
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Figure 4: Comparison between PGD and FEM at the laser node for Example 1
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Table 2: PGD performance at the laser node for Example 1

Simulation

Type Modes Error Criterion Solve Total

PGD 4 0.0327 1 iteration/mode 4

PGD 4 0.0280 tolPGD=0.01 8

PGD 5 0.0098 1 iteration/mode 5

PGD 5 0.0092 tolPGD=0.01 9

PGD 10 3.31·10−5 tolPGD=10−8 40

Here:335

Error =
‖TFEM − TPGD‖L2(Ω×[0,tend])

‖TFEM‖L2(Ω×[0,tend])

(46)

is the expression used to compute the error. It measures the difference be-336

tween FEM and PGD results according to the L2 norm, normalized by the337

L2 norm of the FEM answer. Solve Total represents the number of times a338

linear system was solved by matrix inversion.339

Comparing the accuracy of the PGD results for various numbers of re-340

tained modes and for various numbers of iterations per mode, we can make341

some observations. First, very few iterations are needed per mode. The error342

criterion can be replaced by a strategy with 1 iteration per mode. This shows343

that the method is self-correcting. Besides, since each iteration requires the344

resolution of a potentially large algebraic system (along with the integration345

of an ODE), for a given number of matrix factorizations, it is more advanta-346

geous to increase the number of modes with just a few (one or two) iterations347

per mode than to increase the number of iterations per mode with a lower348

number of computed modes. This is illustrated by comparing Figures 4b349

(PGD 4 modes, tolPGD=0.01) and 4c (PGD 5 modes, 1 iteration per mode).350

Both represent an improvement of the PGD 4 modes, 1 iteration per mode351

solution. But, in the first case, it is necessary 8 iterations for an error equals352

to 0.028, while for the second one, less iterations (5) give better result (error353

= 0.0098).354

Furthermore, Figure 4a confirms that as the number of modes increases,355

the PGD solution converges to the FEM solution.356

Finally, to illustrate the principle of the PGD, a few couples of basis357

vectors and time functions are presented in Figure 5. The basis vectors have358
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been normalized with respect to the capacitance matrix in order to maintain359

consistent orders of magnitude for the time functions. The time functions360

were initialized by assuming a linear time dependence.361

21



(a) Space and time functions for the first PGD mode

(b) Space and time functions for the second PGD mode

(c) Space and time functions for the tenth PGD mode

Figure 5: PGD space and time functions

4.2. Example 2: non-linear materials362

As expected, the PGD-computed response is very accurate in the linear363

cases. So, in order to increase the complexity of the model, non-linearities364
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must be introduced. First, we will consider material non-linearities, i.e.365

temperature-dependent conductivity and heat capacity. These values were366

obtained in [25] and they are shown in Figure 6.367
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Figure 6: Non-linear material properties for Ti-6Al-4V

Several tests were run, varying the number of modes and convergence368

criterion. The results are presented in Figure 7 and Table 3, again at the369

node where the laser is located.370

The PGD error measure is the same as in Equation (46). The FEM371

tolerance, on the other hand, is chosen so as to yield a reference FEM solution372

of the same precision when compared to Abaqus. The reported Speed-up373

Factor is the ratio of the total number of solves needed for our FEM solution374

by the total number of solves needed for our PGD solution. Due to the fact375

that Abaqus requires only roughly half the number of solves per increment,376

a more conservative way to measure the PGD gain would be to divide the377

reported Speed-up Factor by two.378

First of all, the 50 modes PGD solution (Figure 7a) is very accurate,379

confirming the assumption that if the number of PGD modes is large enough,380
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(a) PGD 50 modes, 2 iterations per mode
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(b) PGD 7 modes, 2 iterations in the 1st mode and 1 iteration in
the others

Figure 7: Performance comparison between PGD and FEM at the laser node for Example 2

the PGD solution tends towards the reference solution, even when some non-381

linearities are introduced.382

Moreover, regarding the modes convergence criterion, the same conclu-383

sions as in the linear case can be applied here. It is possible, and preferable,384

to impose a fixed number of iterations per mode instead of using a tolerance.385

For example, one can compare PGD 6 modes with tolPGD=0.01 and PGD 7386

modes with 2 iterations for the first mode and 1 iteration for the others. In387

the first case, the total number of iterations is not known a priori. The error388

ε from Equation (17) must be smaller than 0.01 in order to calculate the389

next mode. In the second case, the number of iterations of a specific mode is390

imposed, and Equation (17) is ignored. One concludes that a few iterations391

suffice, since the first case has more iterations (meaning larger computational392
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Table 3: Performance comparison between PGD and FEM at the laser node for example 2

Simulation Solve

Type Modes Error Criterion Total Speed-up Factor

FEM - - TolFEM=0.0001 658 -

PGD 5 0.0168
2 it. in the first mode
and 1 it. in the others

6 109.67

PGD 6 0.0077 tolPGD=0.01 17 38.71

PGD 6 0.0083
2 it. in the first mode
and 1 it. in the others

7 94.00

PGD 7 0.0070 tolPGD=0.01 19 34.63

PGD 7 0.0063
2 it. in the first mode
and 1 it. in the others

8 82.25

PGD 8 0.0059
2 it. in the first mode
and 1 it. in the others

9 73.11

PGD 50 0.0025 tolPGD=0.01 105 6.26

costs) and its results are less accurate. 2 iterations for the first mode and 1393

iteration for the others is the minimum necessary number of iterations, since394

the first mode has a larger contribution to the final result - so it must have395

a special treatment - and each new mode seems to correct partially the flaws396

of previous modes. If a given result is not precise enough, it is preferable to397

add an extra mode (with just one iteration) than to perform more iterations.398

Finally, PGD has responded well to the non-linear case. Satisfactory399

results were obtained with just a few iterations, as shown for instance in400

Figure 7b.401

4.3. Example 3: non-linear material properties, latent heat and moving laser402

From Example 2, it was observed that PGD responded well to the first403

non-linearities. So, one can increase the sources of non-linearities to investi-404

gate the limits of PGD. The idea is to introduce a moving torch for the laser405

and to take into account the latent heat and the melting pools.406

The properties for this problem are shown in Table 4 and in Figures 9 and407

6a. Some modifications were made in the domain as illustrated in Figure 8.408

25



It is still a 2 mm×2 mm square patch, with the origin located at the bottom409

left corner and with the laser starting at point 5 located at position (1.5,1)410

mm. However, new points were introduced (points 6 to 10) to represent the411

path of the moving laser. At the instant t = 0 s (beginning of the simulation),412

the laser is at point 5 and starts moving during 1 ms with a speed of 0.5413

m/s in the direction of point 10, located at position (0.5,1) mm. Afterwards,414

the laser is turned off (Qin = 0), and cooling takes place during 1 ms. With415

this approach, it is possible to see the latent heat effects when the material416

undergoes phase transitions both from solid to liquid and from liquid to solid.417

Figure 8: Representative schema of Example 3

Table 4: General properties for Example 3

General properties Values

Density (ρ) 4500 kg/m2

Laser power (P ) 460 kW

Laser radius (R0) 5 · 10−5 m

Torch speed (v) 0.5 m/s (vx = −0.5 m/s , vy = 0 m/s)

Laser initial position X0 = 1.5 mm and Y0 = 1.0 mm

Total time (tend) 2 ms (1 ms with the laser on and 1 ms of cooling)

Time increment (∆t) 2 · 10−5 s

In addition, a non-uniform mesh is used. It has 1208 degrees of freedom,418
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with an element size of 10−4 m at the edges and 10−5 m along the laser419

path. The element size must be smaller than the laser radius in the path420

region, otherwise the heating effect caused by the laser is not well captured.421

Nevertheless, far from the laser path, there is no need to have a refined mesh,422

so it is possible to have coarser elements to save computational time.423

4.3.1. Latent heat424

The approach used for modeling latent heat is explained in Section 3.3.425

The phase transformation from solid to liquid and vice-versa occurs for Ti-426

6Al-4V over a narrow range of temperatures (of about 50 K) centered around427

1920 K. In the finite element formulation, in order to achieve reasonable428

convergence when traversing this strong non-linearity, we chose to widen429

the phase transformation interval using the parameters presented in Table430

5. Previous studies ( see [26], [19]) suggest that such choice has almost no431

detrimental effect when numerical results are a compared to physical tests432

including melt pool in plane dimensions and depth. For consistency a similar433

approach is adopted in the PGD formulation.434

Parameter Value

L (latent heat ) 440 kJ/kg

TS (modified solid temperature) 1653 K

TL (modified liquid temperature) 2153 K

Table 5: Latent heat parameters

In order to obtain a smooth variation of the total heat capacity, the latent435

heat capacity (henceforth Cλ) is interpolated using a fourth order degree436

polynomial:437

Cλ =

{
30( T−TS

TL−TS
)
2
(1− ( T−TS

TL−TS
))

2 L
TL−TS

if TS < T < TL

0 otherwise
(47)

Adding the Cλ values from Equation (47) to the previous Cp defined in438

Figure 6b, one obtains the total Cp which will be used in the current analysis439

(Figure 9).440

4.3.2. Moving source441

The source is now allowed to move within the patch in the negative x-442

direction with speed υ = υx, so that fx(t) = υx and fy(t) = 0 (see Equations443
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Figure 9: Total heat capacity (including latent heat) as a function of the temperature for
Ti-6Al-4V

(2) and (3)). Consequently, the moving source expression becomes:444

Qin(x, y, t) =
2P

πR2
0

exp

(
−2

R2
0

((x− (X0 + υxt))
2 + (y − Y0)2)

)
. (48)

As the source travels along the horizontal direction, the regions of high445

temperature are expected to follow its motion.446

4.3.3. Results and Discussion for Example 3447

Before comparing PGD and FEM results, it is interesting to better un-448

derstand the effects of the latent heat. Figure 10 shows how the latent heat449

leads to a significant reduction of the temperature. Both curves (with and450

without latent heat) coincide as long as T < TS. When the temperature451

reaches the value T = TS, there is a decrease in the slope of the curve with452

latent heat, and the curves no longer coincide. However, when T > TL, the453

slope of the curve with latent heat increases again and the curves become454

nearly parallel.455

The results of the simulation are illustrated in Figure 11 and 12 and in456

Table 6.457
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Figure 10: Comparison between FEM with latent heat and FEM without latent heat
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Figure 11: Comparison between PGD and FEM for Example 3 for a low number of modes
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Figure 12: Comparison between PGD and FEM for Example 3 for a high number of modes
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Table 6: Performance comparison between PGD and FEM for Example 3

Simulation Solve

Type Modes Error 1 Error 2 Criterion Total Speed-up Factor

FEM - - - TolFEM=0.0001 994 -

PGD 10 0.0999 0.0642 2 it./mode 20 49.70

PGD 15 0.0685 0.0434 2 it./mode 30 33.13

PGD 20 0.0299 0.0190 2 it./mode 40 24.85

PGD 25 0.0264 0.0168 2 it./mode 50 19.88

PGD 30 0.0196 0.0125 2 it./mode 60 16.57

PGD 50 0.0070 0.0045 2 it./mode 100 9.94

PGD 100 0.1795 0.1206
3 it. in the 1st mode

and 1 it. in the others
102 9.75

Here:458

Error 1 =
‖TFEM − TPGD‖L2(Ω×[0,tend/2])

‖TFEM‖L2(Ω×[0,tend/2])

(49)

is the error for the first half time of the simulation, where the laser is turned459

on and travels from point 5 to point 10, and460

Error 2 =
‖TFEM − TPGD‖L2(Ω×[0,tend])

‖TFEM‖L2(Ω×[0,tend])

(50)

is the error for the total duration of the simulation, i.e., the laser on and the461

cooling (laser off) phases. Notice that the temperature gradients are higher462

in the laser ”on” scenario than in the cooling scenario, meaning that relative463

global discrepancies between PGD and FEM results are expected to be larger464

in the first half of the simulation . This justifies the fact that Error 1 will465

always be larger than Error 2 in this example.466

As can be seen from these curves, the response behavior is in accordance467

with expectations and shows good correlation between FEM and PGD results468

provided the number of retained modes is sufficient.469

Important points can be highlighted from this example. First of all, in470

contrast with the case of a stationary source, the solution requires more than471

1 iteration per mode, even when using several modes. For example, using472

100 modes with 3 iterations in the first mode and 1 iteration in the others473
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(Figure 12b), the result is very different from the FEM answer and totally474

unacceptable. Nevertheless, when using 50 modes with 2 iterations per mode475

(Figure 12a), the result accuracy is excellent. In both cases, there are about476

100 iterations in total, but in the first case, although more modes are used,477

the result is worse than in the second case. This might seem contradictory478

with the previous results and with the PGD assumptions. However, in the479

case of a moving laser, the higher modes have an important contribution480

to the response due to the non-separability of time and space. As the new481

expression for Qin is such that it is not possible to separate time and space -482

due to the terms vxt and vyt in the exponential - the higher order modes are483

no longer mere corrections, but contribute as importantly to the solution as484

the lower ones. Since higher modes are very relevant for the solution in this485

new case, the convergence criterion needs to be more strict in order to obtain486

an accurate PGD solution. This explains the difference between 50 and 100487

modes PGD solutions. Besides, it establishes that at least 2 iterations are488

necessary for each mode to have an acceptable solution. In fact, one can489

consider that 2 iterations per mode is the ideal mode convergence criterion490

for this example, and a larger number of iterations could add numerical491

pollution . Adding an extra mode is again better than adding more iterations492

per mode.493

Moreover, the number of modes and iterations required to correctly cap-494

ture the diffusion effect is much larger than for a stationary source, even495

though, with 20 modes, PGD represents a performance gain of 24.85 times496

compared to FEM. Qualitatively the result is quite acceptable as the very497

large temperature gradients, peak temperatures and overall temperature dis-498

tributions are captured reasonably well, as shown in Figure 13.499
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(a) FEM

(b) PGD 20 modes 2 iterations per mode

Figure 13: Temperature field in all the domain at t=1 ms for FEM and PGD

Summarizing the results of Sections 4.3 and 4.2, one can observe the500

influence of the latent heat with a moving laser on the solution in Figure 14.501

Figures 14a and 14b support the verification of PGD, showing it is able502

to handle problems with moving source and latent heat, and the larger the503

number of modes, the better the solution (here 50 modes and 2 iterations504

per mode were used). One can note that the PGD solution without latent505

heat is more accurate than the one with latent heat. This is consistent, since506

the latent heat introduces a very strong non-linearity to the problem.507
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(a) Comparison between FEM and PGD without latent heat
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(b) Comparison between FEM and PGD with latent heat

Figure 14: FEM and PGD behaviors for problems with and without latent heat

4.4. Example 4: non-linear material properties, latent heat, moving laser,508

time and space-dependent Neumann boundary conditions and convection509

This is the final example that encompasses most different types of non-510

linearities a thermal problem in the field of additive manufacturing can have,511

by adding a film condition and time and space-dependent Neumann boundary512

conditions to the previous example. The notable exception is radiative heat513

loss which will be subject of future work.514

The properties for this problem are the same as in Example 3, so they515

can be found in Table 4 and in Figures 9 and 6a. However, it was again516

necessary to modify the domain (to be explained later). The patch is now517

represented by a 1 mm x 0.1 mm rectangular uniform mesh (this region will518

be also called the small patch), with the origin at the bottom left corner and519

with triangular elements of size 10−5 m, totalizing 1378 degrees of freedom.520
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The source motion is the same as in the previous case: at the beginning of521

the simulation (t=0), the laser is at point 5 (now located at (0.85,0.05) mm).522

Then it starts moving towards point 10, traveling a distance of 0.5 mm with523

a constant speed of 0.5 m/s. Once arrived at point 10, the laser is turned524

off, and the cooling phenomenon is observed during 1 ms.525

The previous description is illustrated in Figure 15.526

Figure 15: Representative schema of Example 4

4.4.1. Neumann Boundary Conditions527

In all previous examples, it was considered that the domain was ther-528

mally insulated, so the Neumann boundary conditions were zero everywhere.529

However, in reality, not all the laser heat received remains inside the model.530

A fraction of the heat is lost through the edges due to non-homogeneous531

Neumann boundary conditions. In order to determine realistic Neumann532

boundary conditions (to be applied to our model in Example 4), a specific533

approach was used.534

The procedure starts with the computation of the non-linear problem535

response (i.e., non-linear k, non-linear Cp, latent heat, convection, moving536

laser and insulated boundaries) in a larger patch. A 2 mm x 2 mm square537

domain (henceforth the super-patch), totally overlapping the small patch was538

created and used in a first simulation. It was assumed that the influence of539

the diffusion of the laser heat on the edges of the super-patch during the first540

2 ms is negligible, so the insulated walls assumption is more realistic for this541

super-patch.542

The second step was the extraction of the space and time-dependent out-543

flux, that is represented in Figure 16. 30 points at and near the boundaries544

of the small patch (labeled “point 11” to “point 41”) were created. For each545

pair of points (for example points 12 and 13), the heat flux was computed at546

each time increment. The result is a vector containing the time evolution of547

the heat flux for a specific point in space. With this methodology, one can548
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extract the time and space-dependent Neumann boundary conditions for the549

small patch. The criterion for choosing the width of the small patch equal550

to 0.1 mm was that 0.1 Qin < Qout < 0.5 Qin, so the influence of non-zero551

Neumann boundary conditions is significant.552

The final step was to apply at the boundaries of the small patch the553

previously computed flux and to compute the new response.554

Figure 16: Approach to extract the space and time-dependent Neumann boundary condi-
tions

The small patch is represented by the red rectangle and is exactly the555

same as in Figure 15. The green arrow is the laser trajectory. The super-556

patch is represented by the black square which contains the red rectangle.557

To save computation time, the super-patch was meshed non-uniformly. The558

element sizes are 10−4 m near the black edges, 2.5 ·10−5 m near the red edges559

and 10−5 m along the laser path.560

4.4.2. Surface convection (film condition)561

In order to take into account heat exchanges between the model and the562

surrounding environment (air), a film condition was applied to the entire563

surface Ω - (not only redat the edges (∂Ω)). Thus, the film condition was564

treated as a body source rather than as a boundary condition. Its expression565
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is given by:566

−nout · k∇T = h(T − Tenv) (51)

where h= 18 W/K/m (see [27]) is the heat transfer coefficient for the air-567

titanium interaction and Tenv= 293 K is the air temperature, here considered568

the same as the room temperature.569

This approach is an attempt to be as realistic as possible, since we are570

representing a 2D top view model of a 3D problem.571

4.4.3. Results and Discussion572

The simulation was done for FEM and for PGD with different numbers573

of modes (always with 2 iterations per mode). The results are shown in574

Figure 17 and in Table 7. Points 5 to 10 were chosen in order to analyze the575

temperature behavior. Because the laser crosses these points, the changes576

in temperature are highly transient, and so they are good candidates for577

comparing FEM with PGD.578

Table 7: Performance comparison between PGD and FEM for Example 4

Simulation Solve

Type Modes Error 1 Error 2 Criterion Total Speed-up Factor

FEM TolFEM=0.0001 880

PGD 10 0.0827 0.0519 2 it./mode 20 44.00

PGD 15 0.0427 0.0274 2 it./mode 30 29.33

PGD 20 0.0355 0.0223 2 it./mode 40 22.00

PGD 25 0.0170 0.0121 2 it./mode 50 17.60

PGD 30 0.0147 0.0105 2 it./mode 60 14.67

PGD 50 0.0105 0.0098 2 it./mode 100 8.80

Here, Error 1 and Error 2 are the same as defined in Equations (49) and579

(50), respectively.580

As expected, at least 2 iterations are needed per mode, because higher581

modes are important to correctly capture the effect of the traveling laser582

and time-varying Neumann boundary conditions. The result with 50 modes583

(Figure 17c) is extremely accurate, however the performance gain is not very584

high in this case. 10 or 15 modes (Figure 17a) are not sufficient, because585

the accuracy in the high temperature zone is poor. 20 modes (Figure 17b)586
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(a) PGD 15 modes, 2 iterations per mode
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(b) PGD 20 modes, 2 iterations per mode
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(c) PGD 50 modes, 2 iterations per mode

Figure 17: Performance comparison between PGD 50 modes and FEM for Example 4

seems a good compromise, even though there are some oscillations at the587

beginning of the simulation for the PGD response. The accuracy in the most588
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important regions (such as high temperatures or cooling) is acceptable and589

the number of matrix inversions in this case is reduced by 22 compared to the590

FEM. As the out-flux represents a considerable percentage of the laser energy,591

there is a remarkable drop in the temperature when compared to Example 3.592

However, this does not seem to be a problem for PGD. Adding the time and593

space-dependent Neumann boundary conditions and the film convection does594

not change the number of modes necessary for a reasonable PGD response.595

Previously, with 20 modes and 2 iterations per mode one obtained an error596

1 = 0.0299 and an error 2 = 0.0190. Thus, although the errors have slightly597

increased, the choice of 20 modes seems a reasonable compromise. Finally,598

this example proves that PGD can handle highly non-linear and complex599

problems.600

5. Conclusion601

In this paper, a PGD model order reduction technique has been applied602

to the numerical model of highly transient non-linear thermal phenomena as-603

sociated with melt pools in additive manufacturing powder bed fabrication.604

In previous work we have found that with minimal calibration, parabolic605

PDEs associated with transient heat transfer equations are sufficiently accu-606

rate/predictive and hence we have focused this work in that context.607

After a brief introduction and setting the objectives in Section 1, the608

specific problem benchmark in this work is outlined in Section 2. Linear609

and non-linear PGD theory for transient heat transfer equations has been610

carefully described in Section 3. To develop a realistic AM thermal model,611

most relevant non-linearities associated with the parabolic PDE, such as ma-612

terial property non-linearities, phase change by latent heat, time-dependent613

source, temperature-dependent source and time and space-dependent bound-614

ary conditions have been introduced. Finally, Section 4 presents an extensive615

numerical campaign to validate the PDG-based approach against traditional616

FEM while thoroughly assessing the execution performance gains.617

As demonstrated by these tests, model order reduction techniques such as618

PGD appear to be a very promising lead when tackling highly non-linear nu-619

merical simulation challenges in AM. Two key aspects should be highlighted:620

1) the possibility to considerer several high complexity non-linearities in PGD621

(key for realistic models in AM process simulation) in this highly transient622

thermal analysis, and; 2) the remarkable computational time savings.623
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Short term perspectives of this work will cover implementation, validation624

and performance assessment of a 3D model, development of an ad-hoc PGD625

algorithm to further improve computational gains and implementation in626

commercial codes to solve complex industrial cases. On a broader long-term627

scale, future work should address the gigantic multi-physics and the multi-628

scale nature of the problem which could take great advantage from model629

order reduction techniques at both local (melt pool level) and global (part630

level) scales.631
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