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Introduction

Some of my observations on odd Collatz sequence in binary is not entirely new. Admittedly before starting my work I did not look at any old reference for this seemingly obvious observation. It was however quite difficult to point a reference that first made this observation. Odd Collatz sequence in binary seems to be quite common in computer and technical literatures. One literature with a description most similar to what I will introduce is a paper in arXiV written by N. Mondal and P.P. Ghosh (see [START_REF] Mondal | A General Class of Collatz Sequence and Ruin Problem[END_REF]). Wikipedia describes it under abstract machine automation [START_REF] Wikipedia | Online: Collatz Conjecture -As an abstract machine that computes in base two[END_REF]. Here, I will give a description of the odd Collatz sequence in binary and give useful terminology and new observations and theory using these sequences and using mostly binary computations. In the next section we will show how some known results can easily be proven using this tool and later we will even extend some results and provide even newer results.

To avoid any misinterpretation, the natural numbers N is regarded without 0. We also use the following symbols and terminologies:

• By OCS or odd Collatz sequence of an odd number we mean the sequence of odd numbers in the 3n+1 problem starting from the given odd number, which we will call the seed of the OCS, and ending with the first occurrence of 1 if the sequence reaches 1 otherwise the sequence is infinite (it may be cyclic and infinite). So for instance the OCS of 11 would be {11, 17, 13, 5, 1}

We just write OCS if we mean an arbitrary odd Collatz sequence or if the seed is known and in plural form we write OCS's. Obviously 3n + 1 (i.e. the Collatz conjecture) is solved if we prove that the OCS of any odd number is finite.

• The OCS of a number x is cyclic in the same way that a Collatz sequence is cyclic, i.e. there exists a number y ∈ 2N + 1 such that y occurs twice in the OCS. In this case, the OCS is obviously also infinite. As of date, it is not known whether one can have a cyclic OCS. If this were the case, then obviously the Collatz conjecture would be false.

• At an early stage we adapt the binary representation of positive integers. Unless otherwise stated or obvious we often use this convention for numbers. So by 1101 we mean the binary representation of the decimal 13.

• We use shortcut and block representation of binary numbers: Given any integer n ∈ N by 0 n (resp. 1 n ) we mean the binary block having the digit 0 n-times (resp. 1 n-times). The blocks 1 0 and 0 0 are just empty binary blocks.

• We reserve the capital letters for arbitrary binary blocks (of arbitrary length). By X 1 we mean a binary block having 1 in the most right side of it, by X 1 we mean a binary block having 1 in the most left side of it and it is also obvious what we mean by X 1 1 (similarly for other capital letters). It is important to note that we allow binary blocks for which there are some 0 written in the beginning (e.g. 0011 and 11 are different blocks)

• If X is a binary block, then for any n ∈ N by (X) n we mean n repetitions of X. So for example 10(011) 3 is the same as 10011011011. In rare cases we may see (X) 0 which is just an empty block. So 10(X) 0 11 is the same as 1011 for any binary block X.

• • Sometimes we do not care about the block in a binary representation and so we just put in dots to show that there might be a binary block. So sometimes we just write

• • • 101 • • • or • • • 111 or 110 • • • .
• Given an OCS of a binary number • For brevity we sometimes write X = X 1 to mean that we assume that the binary block X has a leading 1 analogously we write X = X 1 , X = X 1 1 etc.

Example. So the decimal 1607 represented by the binary number 11001000111 can be represented as 1 2 0 2 10 3 1 3 and it is of the forms:

X11, 1100X 1 11, 110X 1 0 3 111, X 1 1 000111, . . .

Proposition 1.

The following holds a.) For all n > 1 we have

X 1 01 n 1 Y 1 01 n-1 with |X 1 01 n | b ≤ |Y 1 01 n-1 | b ≤ |X 1 01 n | b + 1. b.) X 1 01 1 Y 1 with |Y 1 | b ≤ |X 1 | b . Specifically one has X 1 101 1 Y 1 with |Y 1 | b < |X 1 101| b . c.) For all n ≥ 2, 1 n 0X 1 1 101 n-1 0Y 1 if
there is a carry on the (n + 1)-th bit.

If there is no carry on the (n + 1)-th bit we get

1 n 0X 1 1 101 n-2 01Y 1 . d.) 10X 1 1 100Y 1 if there is a carry on the second bit otherwise 10X 1 1 11Y 1 .
e.) Let X 1 be a binary block, then X 1 01, X 1 1 1 Z 1 for some odd number

Z 1 .
Proof. For brevity we drop most of the subscripts and superscripts for the blocks and the squiggly arrows.

(a) We compute the next number after X01 n in the OCS

X 1 0 1 1 1 1 n-1 1 + X 0 1 n-1 1 Y 0 1 n-1 ̸ 0
In the addition above, the first row is 2 times X01 n plus 1 and the second row is just X01 n , thus the resulting sum is the next number in the Collatz sequence.

We then trim away all the trailing 0 of the sum to get the next odd number in the Collatz sequence. This is a trick that we will use throughout. Since

X01 n < X01 n + X01 n-1 + 1 ≤ X01 n 0
note that the last inequality is just multiplying X01 n by 2. So

|X01 n | b ≤ |Y 01 n-1 | b ≤ |X01 n | b + 1 (b)
We compute the next number after X01 in the OCS

X 1 0 1 1 1 + X 0 1 Z ̸ 0 ̸ 0
The next number in the sequence we take the largest odd divisor of Z, this we write as Y . For the case X101 we have

X 1 1 1 0 1 1 1 + X 1 0 1 Z ̸ 0 ̸ 0 ̸ 0 Y will then be the largest odd divisor of Z. This also shows that |X101| b ≤ |Z00| b ≤ |X101| b + 1 which implies that |Y | b ≤ |Z| b ≤ |X101| b + 1 -2 < |X101| b (c)
If there is a carry on the (n -1)-th bit we get

1 1 1 1 n-1 1 0 X1 + 1 n-1 1 0X 10 1 n-1 0 Y otherwise (if there is no carry) 1 1 1 1 n-1 0 0 X1 + 1 n-1 1 0X 10 1 n-2 0 1 Y
Here if n = 2 then, as defined, we ignore 1 n-2 and the result is 1001Y .

(d) follow binary addition as in (c). We leave this as an easy exercise for the reader.

(e) We get

X 1 1 1 0 1 1 1 + X 1 0 1 Y ̸ 0 ̸ 0 ̸ 0 and X 1 1 1 + X 1 Y ̸ 0 with Y = X1 + 1 + X. So Z is just the largest odd divisor of Y .
Applying Proposition 1 (e) recursively immediately leads to the following generalization Corollary 2. Suppose X 1 and Y 1 are binary blocks such that X 1 represents an odd number that is not the decimal 1 and that

X 1 1 Y 1 then X 1 (01) n 1 Y 1 ∀n ∈ N Lemma 3. Let n ≥ 2 (a) X1 n 1 Y 1 n-1 with Y = X1 + X + 1. (b) X001 n 1 Y 101 n-1 with Y = X0 + X (c) X101 n 1 Y 001 n-1 with Y = X1 + X + 1.
Note: If x and y are the decimal of X and Y respectively then Y = X1 + X + 1 is just the same as y = 3x + 2 and Y = X0 + X is the same as y = 3x

Proof. (a) We compute

X 1 1 1 1 n-1 1 + X 1 n-1 1 Y 1 n-1 ̸ 0
with the leading block being Y = X1 + X + 1 (1 in the last summand is due to the carry). (b) One computes

X0 1 0 1 1 1 1 n-1 1 + X 0 0 1 n-1 1 Y 1 0 1 n-1 ̸ 0 with the desired result. (c) Similarly X 1 1 1 0 1 1 1 1 n-1 1 + X 1 0 1 n-1 1 Y 0 0 1 n-1 ̸ 0
with the desired result Corollary 4. Suppose that k, n ∈ N with n > 1 and k < n then for any binary block X we have

X001 n k { Y 101 n-k k ∈ 2N + 1 Y 001 n-k k ∈ 2N
for some binary block Y . We can make a similar statement for X101 n with the odd and even results for k reversed, i.e.

X101 n k { Y 101 n-k k ∈ 2N Y 001 n-k k ∈ 2N + 1
Proof. Follows immediately by iterating the result in Lemma 3(b) and (c).

Corollary 5. Let n ∈ 2N + 1 then there exists an x ∈ 2N + 1 such that 1 n n+1 x and 1 n+1 n+1 x i.e. the OCS' of 1 n and 1 n+1 coalesces (this is equivalent to claiming that the OCS of 2 n -1 and 2 n+1 -1 coalesces for any odd number n).

Proof. Because n is odd by Corollary 4, one has

1 n n-1 Y 001 1 n+1 n -1Y 0011
for some binary block Y . Now

Y 0 1 0 1 1 1 1 1 + Y 0 0 1 1 Z 1 0 1 ̸ 0 and Y 0 1 0 1 1 1 + Y 0 0 1 Z 1 ̸ 0 ̸ 0 with Z = Y 0 + Y (so if z and y are the decimal of Z and Y respectively then z = 3y). So 1 n n Z101 1 n+1 n Z1
The result then follows from Proposition 1 (e). Lemma 6. Let n > 2 then

X 1 0 n 1 1 Y 1 0 n-2 1 with Y 1 = X 1 0 + X 1 . And Y 1 has a trailing bit 1 if X 1 has a trailing bit 1 (i.e. Y is odd if X is odd).
Proof. For brevity we write X instead of X 1 taking note that the leading bit is 1.

X0 0 n-2 1 0 1 1 1 + X 0 n-2 0 0 1 Y 0 n-2 1 ̸ 0 ̸ 0 Since Y = X0 + X, Y has a trailing bit 1 if X has a trailing bit 1.
Proposition 7. Let X 1 1 be the binary representation of an odd positive number different from 1, then there exists n ∈ N such that n ≤ 4 and one of the following holds

• X 1 1 n 1 • X 1 1 n Y 1
1 and either X 1 or Y 1 1 contains the binary block 101

Proof. For brevity we write X instead of X 1 1 . We can easily assume that X is greater than 8 (we can check the proposition for odd numbers below 8 and see that this is true). Thus we know that X can have at least three bits. Now, consider the first three leading bits of X. If it is 101 then we are done, if it is 111 then one easily checks that 111 then after one iteration it leads to a number with binary representation with three leading bits being 110 (if there is no carry on the third leading bit) or 111.

We have already tackled leading bits 111 so we assume X has three leading bits 110 and show that after at most three iterations this leads to a number with a binary representation containing 101.

If there is a carry for the third leading bit of the first iteration we have

1 1 1 1 1 0 • • • • + 1 1 0 • • • 10 1 0 • • • •
and so we have our result. We thus assume that there is no carry on the third leading bit for the first iteration and after the first iteration we get

1 1 1 0 • • • • + 1 1 0 • • • 10 0 1 • • • •
If there is no carry at the fourth leading bit of the second iteration we have 1001 • • • 1 1101 • • • and we are done. Thus we assume that the second iteration has a carry at the fourth leading bit, in this case we have

1001 • • • 1 111 • • • 1 101 • • •
Thus we have our result at most in the third iteration! Proposition 8. Given an odd number x such that it does not leads to 1 after one or two iterations then x leads to a number with at most |x| b + 2 bitlength after 3 iterations.

Proof. Let X with leading bit 1 be the binary representation of x. If the first iteration does not lead to an increase in bitlength, then we are done. If it does then there is a carry in the first leading bit of the first iteration. So we assume X 1 10 • • • . If the second iteration does not increase the bitlength then we are done. Otherwise there is a carry in the second leading bit of the second iteration and so we have X 2 100 • • • . But we know that 100 • • • after one iteration does not increase its bitlength (because there is no carry on the first or second leading bit).

Lemma 9. Let X 1 be a binary block with leading 1 and suppose that k ∈ N, then there exists a binary block Y 1 such that for any n > 2k (notice Y 1 is independent of the choice of n) one has

X 1 0 n 1 k Y 1 0 n-2k 1
Proof. Let x ∈ N be the decimal number that X 1 represents. We simply apply Lemma 6 k-times recursively and see that y = 3 k x, where y is the number that Y 1 represents. Y 1 and y are obviously independent of the choice of n.

Proposition 10. Let k ∈ N then for any n > 2k we have

10 n 1 k { X0110 n-2k 1 k ∈ 2N + 1 X0010 n-2k 1 k ∈ 2N
where X = X 1 is a binary block dependent on k but independent of the choice of n.

Proof. One checks that for any m > 2 one has

• • • 0010 m 1 1 • • • 0110 m-2 1 and • • • 0110 m 1 1 • • • 0010 m-2 1
this is just an application of Lemma 9 and its proof (where a block • • • 011 is obtained by multiplying 3 with a block • • • 001 and vice versa). If we apply this result k-times (if it makes it easier to understand, we can harmlessly regard 10 n 1 initially as 0010 n 1) we obtain our result. The last sentence that X is independent on the choice of n comes from Lemma 9.

We have already informally used the term coalesce in Corollary 5. Though it is easy to understand what we meant, it is best to define it more rigorously in order to avoid confusion.

Definition. Let x, y ∈ 2N + 1 (binary or decimal representation), then we say that the OCS's of x and y coalesces if there exists numbers m, n ∈ N ∪ {0} and z ∈ N such that the OCS of x has more than m terms, the OCS of y has more than n terms and x m z and y n z. To make it more precise we also write (the OCS's of ) (x, y) coalesces after (m, n) iterations. Similar to coalescing pairs, we can define coalescing finite numbers x 1 , x 2 , . . . , x k ∈ 2N + 1.

So Corollary 5 says that for n ∈ 2N + 1, 1 n and 1 n+1 coalesces or more specifically (1 n , 1 n+1 ) coalesces in (n + 1, n + 1) iterations.

Corollary 11. Let k ∈ 2N then the binary representation pair (10 2k 1, 10 2k+1 1) coalesces after (k + 2, k + 2) iterations.

Proof. Since k > 1 and k -1 is odd, we agree by Proposition 10 that after k -1 iterations there exists a binary block X representing an even number such that 10 2k 1 and 10 2k+1 1 leads to X11001 and X110001 respectively.

After k iterations, 10 2k 1 and 10 2k+1 1 will respectively lead to

X 1 1 1 0 1 0 1 1 1 + X 1 1 0 0 1 Y 0 1 1 ̸ 0 ̸ 0 and X 1 1 1 0 0 1 0 1 1 1 + X 1 1 0 0 0 1 Y 0 1 0 1 ̸ 0 ̸ 0 where Y = X1 + X + 1.
Clearly Y ̸ = 0 and Y represents an even number (since X does it too) and so after k + 1 iterations 10 2k 1 will lead to the following

Y 1 0 1 1 1 1 1 + Y 0 1 1 Z 0 1 ̸ 0
and 10 2k+1 1 will lead to

Y 1 0 1 1 1 0 1 1 1 + Y 0 1 0 1 Z ̸ 0 ̸ 0 ̸ 0 ̸ 0 with Z = Y 0 + Y + 1.
Notice that Z is in the OCS of 10 2k+1 1 because it represents an odd number (since Y represents an even number).

We observe that Z is neither 0 nor 1. So after k + 2 iterations both 10 2k 1 and 10 2k+1 1 lead to the largest odd factor of the number Z0 + Z + 1 = Z1 + Z Definition. Let x ∈ 2N + 1 and X = X 1 1 be its binary representation. Then X can be written as follows

1 n k 0 m k 1 n k-1 . . . 1 n1 0 m1 1 n0 k ≥ 0
We now define the function µ : 2N + 1 → N, the image of x or X is

µ(x) = µ(X) := max{n 0 , n 1 , . . . , n k , m 1 , . . . , m k }
and we can similarly define the image of any odd number from the decompositions of bunches of 1's and 0's in its binary representation. The number 2k is called the number of alternations and we are able in this way to define the function

σ : N → 2N σ(x) = σ(X) := 2k
Proposition 12. Let n ∈ N and suppose that the OCS of x ∈ 2N + 1 be infinite and not cyclic. Then there exists y ∈ 2N + 1 in the OCS of x such that one of the following holds:

• σ(y) ≥ n • µ(y) ≥ n
Proof. For any number k ∈ N there exists a y ∈ 2N + 1 in the OCS of x such that |y| b > k, otherwise: The OCS may contain only numbers with at most k bitlength and this set of numbers is finite. Thus, because we assumed that the OCS is infinite, the OCS will have repeating numbers making it cyclic which is a contradiction. So for n 2 there is a y ∈ 2N + 1 in the OCS of x such that |y| b > n 2 . Suppose now that σ(y) < n (so σ(y) + 1 ≤ n) and µ(y) < n, then we get

|y| b ≤ (σ(y) + 1)µ(y) < n 2
and this is a contradiction.

Intuitively, one may think that the number of alternations and the number of the largest bit blocks consisting of only 1's or of only 0's can help in the understanding of development of the sequence of the odd Collatz sequences of some numbers. This is what we aim to do in the future.

Application

We use techniques from the previous section to show that some known results can sometimes be very easily proven. We also show new results extending known results that will help us understand the Collatz problem much better.

Remark 13. We express some of the results in the previous section in a more standardly used decimal form a.) Proposition 1 (e) and Corollary 2: For any x ∈ 2N + 1 such that x ̸ = 1 if x 1 y then all numbers of the form

4 n x + 4 n-1 + • • • + 4 + 1 (n ∈ N)
leads to y after 1 iteration. b.) Lemma 3: Let n ≥ 2 be an integer then

∀x ∈ N 2 n x + 2 n -1 1 2 n-1 y + 2 n-1 -1 where y = 3x + 2 ∀x ∈ N 2 n+2 x + 2 n -1 1 2 n+1 y + 2 n + 2 n-1 -1 where y = 3x ∀x ∈ N 2 n+2 x + 2 n+1 + 2 n -1 1 2 n+1 y + 2 n-1 -1 where y = 3x + 2 c.) Lemma 9: Let x ∈ 2N + 1 and n, k ∈ N be such that n > 2k then 2 n+1 x + 1 k 2 n-2k+1 3 k x + 1 Lemma 4.1 of [4]
discusses a result that is easy to prove using binary representations. It basically implies the following Proposition 14. (see [START_REF] Andrei | About the Collatz Conjecture[END_REF] Lemma 4.1) Collatz conjecture holds for numbers of the form 2 2t -1 3 t ∈ N Proof. We can assume that t > 2 because we know that the Collatz conjecture holds for 1 (trivially) and 5. A number having the above mentioned form is a geometric series and can be written as

2 2t -1 3 = t ∑ i=1 2 2i-2 = t ∑ i=1 4 i-1
The above is very easy to represent in binary form, it is an odd number of the form X(01) n with n = t -2 and X = 101 (decimal 5). By Corollary 2 (or see also Remark 13 (a)) this number leads to 1 after only one iteration (because the binary X = 101 leads to 1 after one iteration).

Another known result is Corollary 5. I am not the first to prove this result. The result has been known much earlier, though I am not sure who first tried to prove it. For instance, Theorem 2 of [START_REF] Chuanzhong | Some Discussion on the 3x+1 Problem[END_REF] (a short paper in Chinese) has a proof of this. But Corollary 5 has a proof that shows how easy it is to use OCS and binary arithmetic to prove this result.

We now use OCS and binary arithmetic to show that the results by Andaloro (see [START_REF] Andaloro | On Total Stopping Times under 3x + 1 Iteration[END_REF]) can be extended. To do this, we will first use a specific form of the proposition (for the case p = 3) below that I first discussed with Henning Makholm. He proved the generalised proposition presented below. I present his proof with some modifications for clarity and exactness. 

) py + • • • = 1 + p 2 N
for some N ∈ N. So there is a k ∈ Z such that

kp n+1 = p 2 N -p ⇒ (pN -kp n ) = p(N -kp n-1 ) = 1
this is a contradiction because p > 1 and N -kp n-1 is an integer. Thus p + 1 is indeed a generator of the multiplicative subgroup G and there is indeed an m ∈ N ∪ {0} such that (p + 1) m (px + 1) ≡ 1 mod p n+1

Remark 16. We can interpret Proposition 15 in binary for p = 3. In this case there exists an m ∈ N ∪ {0} such that 3 n divides

4 m x + 4 m -1 3 = 4 m x + 4 m-1 + . . . 4 + 1
If X = X 1 is the binary number representing x then this would mean that 3 n divides the binary number X(01) m (note that m can be 0, in which case 3 n divides x). This compact representation is sometimes easier to understand when computing in binary.

Let x ∈ 2N + 1 such that x ̸ = 1 and is represented by a binary number X = X 1 then Proposition 1 (e) says that X01 and X lead to the same number after one iteration. This is also stated in [START_REF] Andaloro | On Total Stopping Times under 3x + 1 Iteration[END_REF] (in Remark after Theorem 1): If x is an odd number then 4x + 1 and x lead to the same number after one iteration (in OCS). So in fact it suffices to show that the Collatz conjecture holds for all numbers congruent to 1 modulo 4 in order to prove the Collatz conjecture. Andaloro showed an even more general case. In [START_REF] Andaloro | On Total Stopping Times under 3x + 1 Iteration[END_REF] he showed that the Collatz conjecture is true iff the conjecture holds for all numbers congruent to 1 modulo 8 (see [START_REF] Andaloro | On Total Stopping Times under 3x + 1 Iteration[END_REF] Lemma 5) iff the conjecture holds for all numbers congruent to 1 modulo 16 (see [START_REF] Andaloro | On Total Stopping Times under 3x + 1 Iteration[END_REF] Theorem 2).

We will generalize this further using our observation from the odd collatz sequence with binary numbers and conclude that the conjecture is true iff the conjecture holds for all numbers congruent to 1 modulo 2 n for arbitrary n ∈ N. We have so far seen that this is true for n = 1, 2, 3, 4 (n = 1 being our interpretation of the conjecture itself using only odd numbers!).

Theorem 17. Let n ∈ N then the Collatz conjecture is true iff the Collatz conjecture holds for all x such that x ≡ 1 mod 2 n Proof. The sufficient condition is obvious so we will prove the necessary condition. Suppose y ∈ N is odd and not equal to 1 and let n ∈ N be the whole number in our Theorem. Because of Lemma 5 and Theorem 2 of [START_REF] Andaloro | On Total Stopping Times under 3x + 1 Iteration[END_REF] (see paragraph before this Theorem), we may assume that n > 2. Furthermore, without loss of generality we can even assume that n ∈ 2N + 1 (otherwise we can prove the above Theorem for n + 1 and the result with n follows). Let Y = Y 1 1 be the binary number that represents y and set k = n-1 2 , then by Proposition 15 (with p = 3, see also Remark 16) there is an m ∈ N ∪ {0} such that 3 k divides Y (01) m . Let X = X 1 be the binary number representing a number x ∈ N such that 3 k x = 4 m y + 4 m -1 3
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By Lemma 9 we have X0 n 1

k Y (01) m 01. Let Z be the binary number such that Y 1 Z (recall that we assumed Y is not 1). Then by Corollary 2 (the second squiggly arrow below)

X0 n 1 k Y (01) m+1 1 Z
We are proving the necessary condition, so X0 n 1 (which is a number that is congruent to 1 modulo 2 n ) eventually leads to 1. Thus Y 1 as well since it leads to Z which is in the OCS of X0 n 1.

  Given a number n ∈ N by |n| b ∈ N we mean the bit length of n, we abuse this same notation for binary blocks. So |211| b for the decimal 211 is the same as |11010011| b for the binary representation of 211 and both would have value 8. Any binary block can be used with | • | b in the same way. So if X = 0001110 then |X| b = 7. We say that X has |X| b number of bits or has bitlength |X| b and sometimes (but rarely) we want to speak of the n-th bit of a block (unless otherwise stated, counting is from left to right).

  Proposition 15. Let x ∈ N, p be an odd prime number and n ∈ N then there exists a number m ∈ N ∪ {0} such that It suffices to show that there exist an m ∈ N ∪ {0} such that p n+1 divides pr m = (p + 1) m (px + 1) -1 In other words we need to prove that there is an m such that (p + 1) m (px + 1) ≡ 1 mod p n+1For simplicity we denote the ring Z/p n+1 Z by A. Now define the setG := {py + 1 mod p n+1 : y = 0, 1, . . . , p n -1} ⊂ AAll elements in G are units in A because for all y ∈ N we know that py + 1 is relatively prime to p. Now ify 1 ̸ = y 2 for y 1 , y 2 ∈ {0, 1, . . . , p n -1}and if py 1 + 1 ≡ py 2 + 1 mod p n+1 then it follows thatp n | (y 2 -y 1 )But since the difference between y 1 and y 2 cannot exceed p It suffices to prove that p + 1 is the generator of G. The generators of (Z p n , +) are exactly the numbers congruent module p n that are relatively prime to p n equivalently non-generators in (Z p n , +) are numbers that are multiples of p modulo p n . From the above isomorphism, a non-generator of G is an element that is of the form h p for some h ∈ G. Now suppose that p + 1 ≡ (py + 1) p mod p n+1 for some y ∈ {0, 1, . . . , p n -1}. If we expand (py + 1) p we get

	p n | (p + 1) m x +	(p + 1) m -1 p
	Proof. (Henning Makholm) Observe by the binomial expansion that p | (p + 1) m -1 so (p+1) m -1 p is an integer. For m ∈ N ∪ {0} denote
	r m := (p + 1) m x +	(p + 1) m -1 p
	(py + 1) p = 1 +	( p 1

n -1, this can happen only if y 1 = y 2 which is a contradiction. Thus G has exactly p n distinct elements. Since p is an odd prime, the multiplicative group A * (i.e. group of units of A ) is cyclic and therefore any subgroup is cyclic. So G is cyclic and we have a canonical group isomorphism (G, * ) ∼ -→ (Z p n , +)