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Odd Collatz Sequence and Binary Representations

Jose Capco

Abstract

In this work, we investigate the odd Collatz sequences (odd sequences arising
from the 3n + 1 problem) and use binary arithmetic to provide proof of some
results in the 3n + 1 problem. Aside from the main result, the paper also
provides a new perspective on how to approach the 3n+1 problem by studying
the properties of binary representations of terms in an odd Collatz sequence.
This approach is of interest in its own rights. The main result is a generalization
of the result of Andaloro [2] on residue class sufficiency sets for the Collatz
conjecture to be true: Given a fixed natural number n, the Collatz conjecture
is true iff the Collatz conjecture holds for numbers congruent to 1 modulo 2n.
Thus we present a sequence of sets whose set-theoretic limit approaches the set
containing only 1. These sets can be chosen to have a natural density that is
arbitrarily small. This is an intuitive extension of the result of Andaloro, who
proved this for n = 2, 3 and 4. In the past years, sufficiency sets were provided
that had similar properties but they usually have a more complex structure
[5]. The nearest result was shown around 30 years ago by Korec and Znám [7]
who reduced the Collatz conjecture to residue class sufficiency sets that were
dependent on primitive roots modulo an arbitrary power of an odd prime. A
much simpler sequence of sufficiency sets is presented in this paper.

Keywords: Collatz conjecture, 3n+ 1 problem

1. Introduction

Some of my observations on odd Collatz sequence in binary is not entirely
new. Admittedly before starting my work I did not look at any old reference
for this seemingly obvious observation. It was however quite difficult to point
a reference that first made this observation. Odd Collatz sequence in binary
seems to be quite common in computer and technical literatures. One literature
with a description most similar to what I will introduce is a paper in arXiV
written by N. Mondal and P.P. Ghosh (see [8]). Wikipedia describes it under
abstract machine automation [9]. Here, I will give a description of the odd
Collatz sequence in binary and give useful terminology and new observations
and theory using these sequences and using mostly binary computations. In the
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next section we will show how some known results can easily be proven using
this tool and later we will even extend some results and provide even newer
results.

To avoid any misinterpretation, the natural numbers N is regarded without
0. We also use the following symbols and terminologies:

• By OCS or odd Collatz sequence of an odd number we mean the sequence
of odd numbers in the 3n+1 problem starting from the given odd number,
which we will call the seed of the OCS, and ending with the first occurrence
of 1 if the sequence reaches 1 otherwise the sequence is infinite (it may be
cyclic and infinite). So for instance the OCS of 11 would be

{11, 17, 13, 5, 1}

We just write OCS if we mean an arbitrary odd Collatz sequence or if
the seed is known and in plural form we write OCS’s. Obviously 3n + 1
(i.e. the Collatz conjecture) is solved if we prove that the OCS of any odd
number is finite.

• The OCS of a number x is cyclic in the same way that a Collatz sequence
is cyclic, i.e. there exists a number y ∈ 2N+1 such that y occurs twice in
the OCS. In this case, the OCS is obviously also infinite. As of date, it is
not known whether one can have a cyclic OCS. If this were the case, then
obviously the Collatz conjecture would be false.

• At an early stage we adapt the binary representation of positive integers.
Unless otherwise stated or obvious we often use this convention for num-
bers. So by 1101 we mean the binary representation of the decimal 13.

• We use shortcut and block representation of binary numbers: Given any
integer n ∈ N by 0n (resp. 1n) we mean the binary block having the digit
0 n-times (resp. 1 n-times). The blocks 10 and 00 are just empty binary
blocks.

• We reserve the capital letters for arbitrary binary blocks (of arbitrary
length). By X1 we mean a binary block having 1 in the most right side of
it, by X1 we mean a binary block having 1 in the most left side of it and
it is also obvious what we mean by X1

1 (similarly for other capital letters).
It is important to note that we allow binary blocks for which there are
some 0 written in the beginning (e.g. 0011 and 11 are different blocks)

• If X is a binary block, then for any n ∈ N by (X)n we mean n repetitions
of X. So for example 10(011)3 is the same as 10011011011. In rare cases
we may see (X)0 which is just an empty block. So 10(X)011 is the same
as 1011 for any binary block X.

• Given a number n ∈ N by |n|b ∈ N we mean the bit length of n, we abuse
this same notation for binary blocks. So |211|b for the decimal 211 is the
same as |11010011|b for the binary representation of 211 and both would
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have value 8. Any binary block can be used with | · |b in the same way.
So if X = 0001110 then |X|b = 7. We say that X has |X|b number of bits
or has bitlength |X|b and sometimes (but rarely) we want to speak of the
n-th bit of a block (unless otherwise stated, counting is from left to right).

• Sometimes we do not care about the block in a binary representation and
so we just put in dots to show that there might be a binary block. So
sometimes we just write · · · 101 · · · or · · · 111 or 110 · · · .

• Given an OCS of a binary number X, by X  Y (we say X leads to Y )
we mean that the OCS of X has the number Y in it. Also if Y is the
(n+ 1)-th number in the OCS of X we write X

n Y and we say X leads
to Y after n iterations. So for the decimal 11, we can write

1011 1101

or 1011
2 1101 and

1011
1 10001

i.e. the decimal 11 leads to 13, and in an OCS if a decimal 11 occurs then
17 is the next number after it.

• For brevity we sometimes write X = X1 to mean that we assume that the
binary block X has a leading 1 analogously we write X = X1, X = X1

1

etc.

Example. So the decimal 1607 represented by the binary number 11001000111
can be represented as 120210313 and it is of the forms:

X11, 1100X111, 110X103111, X
1
1000111, . . .

Proposition 1. The following holds

a.) For all n > 1 we have X101n
1 Y 101n−1 with |X101n|b ≤ |Y 101n−1|b ≤

|X101n|b + 1.

b.) X101
1 Y 1 with |Y 1|b ≤ |X1|b. Specifically one has X1101

1 Y 1 with
|Y 1|b < |X1101|b.

c.) For all n ≥ 2, 1n0X1
1 101n−10Y1 if there is a carry on the (n+1)-th bit.

If there is no carry on the (n+ 1)-th bit we get 1n0X1
1 101n−201Y1.

d.) 10X1
1 100Y1 if there is a carry on the second bit otherwise 10X1

1 11Y1.

e.) Let X1 be a binary block, then X101, X11
1 Z1 for some odd number

Z1.

Proof. For brevity we drop most of the subscripts and superscripts for the blocks
and the squiggly arrows.
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(a) We compute the next number after X01n in the OCS

X
1
0

1
1

1
1n−1 1

+X 0 1n−1 1
Y 0 1n−1 ̸ 0

In the addition above, the first row is 2 times X01n plus 1 and the second row
is just X01n, thus the resulting sum is the next number in the Collatz sequence.
We then trim away all the trailing 0 of the sum to get the next odd number in
the Collatz sequence. This is a trick that we will use throughout. Since

X01n < X01n +X01n−1 + 1 ≤ X01n0

note that the last inequality is just multiplying X01n by 2. So

|X01n|b ≤ |Y 01n−1|b ≤ |X01n|b + 1

(b) We compute the next number after X01 in the OCS

X
1
0

1
1 1

+X 0 1
Z ̸ 0 ̸ 0

The next number in the sequence we take the largest odd divisor of Z, this we
write as Y . For the case X101 we have

X
1
1

1
0

1
1 1

+X 1 0 1
Z ̸ 0 ̸ 0 ̸ 0

Y will then be the largest odd divisor of Z. This also shows that |X101|b ≤
|Z00|b ≤ |X101|b + 1 which implies that

|Y |b ≤ |Z|b ≤ |X101|b + 1− 2 < |X101|b

(c) If there is a carry on the (n− 1)-th bit we get

1
1

1
1n−1

1
0 X1

+ 1n−1 1 0X
10 1n−1 0 Y

otherwise (if there is no carry)

1
1

1
1n−1

0
0 X1

+ 1n−1 1 0X
10 1n−20 1 Y

Here if n = 2 then, as defined, we ignore 1n−2 and the result is 1001Y .
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(d) follow binary addition as in (c). We leave this as an easy exercise for the
reader.

(e) We get

X
1
1

1
0

1
1 1

+X 1 0 1
Y ̸ 0 ̸ 0 ̸ 0

and

X
1
1 1

+X 1
Y ̸ 0

with Y = X1 + 1 +X. So Z is just the largest odd divisor of Y .

Applying Proposition 1 (e) recursively immediately leads to the following gen-
eralization

Corollary 2. Suppose X1 and Y1 are binary blocks such that X1 represents an

odd number that is not the decimal 1 and that X1
1 Y1 then

X1(01)n
1 Y1 ∀n ∈ N

Lemma 3. Let n ≥ 2

(a) X1n
1 Y 1n−1 with Y = X1 +X + 1.

(b) X001n
1 Y 101n−1 with Y = X0 +X

(c) X101n
1 Y 001n−1 with Y = X1 +X + 1.

Note: If x and y are the decimal of X and Y respectively then Y = X1+X +1
is just the same as y = 3x+ 2 and Y = X0 +X is the same as y = 3x

Proof. (a) We compute

X
1
1

1
1n−1 1

+X 1n−1 1
Y 1n−1 ̸ 0

with the leading block being Y = X1+X +1 (1 in the last summand is due to
the carry).
(b) One computes

X0
1
0

1
1

1
1n−1 1

+X 0 0 1n−1 1
Y 1 0 1n−1 ̸ 0

with the desired result.
(c) Similarly

X
1
1

1
0

1
1

1
1n−1 1

+X 1 0 1n−1 1
Y 0 0 1n−1 ̸ 0

with the desired result
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Corollary 4. Suppose that k, n ∈ N with n > 1 and k < n then for any binary
block X we have

X001n
k 
{

Y 101n−k k ∈ 2N+ 1
Y 001n−k k ∈ 2N

for some binary block Y . We can make a similar statement for X101n with the
odd and even results for k reversed, i.e.

X101n
k 
{

Y 101n−k k ∈ 2N
Y 001n−k k ∈ 2N+ 1

Proof. Follows immediately by iterating the result in Lemma 3(b) and (c).

Corollary 5. Let n ∈ 2N+1 then there exists an x ∈ 2N+1 such that 1n
n+1 x

and 1n+1
n+1 x i.e. the OCS’ of 1n and 1n+1 coalesces (this is equivalent to

claiming that the OCS of 2n−1 and 2n+1−1 coalesces for any odd number n).

Proof. Because n is odd by Corollary 4, one has

1n
n−1 Y 001

1n+1  n− 1Y 0011

for some binary block Y . Now

Y 0
1
0

1
1

1
1 1

+ Y 0 0 1 1
Z 1 0 1 ̸ 0

and

Y 0
1
0

1
1 1

+ Y 0 0 1
Z 1 ̸ 0 ̸ 0

with Z = Y 0 + Y (so if z and y are the decimal of Z and Y respectively then
z = 3y). So

1n
n Z101

1n+1
n Z1

The result then follows from Proposition 1 (e).

Lemma 6. Let n > 2 then

X10n1
1 Y 10n−21

with Y 1 = X10+X1. And Y 1 has a trailing bit 1 if X1 has a trailing bit 1 (i.e.
Y is odd if X is odd).
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Proof. For brevity we write X instead of X1 taking note that the leading bit is
1.

X0 0n−2

1
0

1
1 1

+X 0n−2 0 0 1
Y 0n−2 1 ̸ 0 ̸ 0

Since Y = X0 +X, Y has a trailing bit 1 if X has a trailing bit 1.

Proposition 7. Let X1
1 be the binary representation of an odd positive number

different from 1, then there exists n ∈ N such that n ≤ 4 and one of the following
holds

• X1
1

n 1

• X1
1

n Y 1
1 and either X1 or Y 1

1 contains the binary block 101

Proof. For brevity we write X instead of X1
1 . We can easily assume that X is

greater than 8 (we can check the proposition for odd numbers below 8 and see
that this is true). Thus we know that X can have at least three bits. Now,
consider the first three leading bits of X. If it is 101 then we are done, if it is

111 then one easily checks that 111 · · · 1 101 · · · and we are done. If it is 100
then after one iteration it leads to a number with binary representation with
three leading bits being 110 (if there is no carry on the third leading bit) or 111.
We have already tackled leading bits 111 so we assume X has three leading bits
110 and show that after at most three iterations this leads to a number with a
binary representation containing 101.

If there is a carry for the third leading bit of the first iteration we have

1
1

1
1

1
0 · · · ·

+ 1 1 0 · · ·
10 1 0 · · · ·

and so we have our result. We thus assume that there is no carry on the third
leading bit for the first iteration and after the first iteration we get

1
1 1 0 · · · ·
+ 1 1 0 · · ·
10 0 1 · · · ·

If there is no carry at the fourth leading bit of the second iteration we have

1001 · · · 1 1101 · · · and we are done. Thus we assume that the second iteration
has a carry at the fourth leading bit, in this case we have

1001 · · · 1 111 · · · 1 101 · · ·

Thus we have our result at most in the third iteration!
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Proposition 8. Given an odd number x such that it does not leads to 1 after
one or two iterations then x leads to a number with at most |x|b + 2 bitlength
after 3 iterations.

Proof. Let X with leading bit 1 be the binary representation of x. If the first
iteration does not lead to an increase in bitlength, then we are done. If it does
then there is a carry in the first leading bit of the first iteration. So we assume

X
1 10 · · · . If the second iteration does not increase the bitlength then we

are done. Otherwise there is a carry in the second leading bit of the second

iteration and so we have X
2 100 · · · . But we know that 100 · · · after one

iteration does not increase its bitlength (because there is no carry on the first
or second leading bit).

Lemma 9. Let X1 be a binary block with leading 1 and suppose that k ∈ N,
then there exists a binary block Y 1 such that for any n > 2k (notice Y 1 is
independent of the choice of n) one has

X10n1
k Y 10n−2k1

Proof. Let x ∈ N be the decimal number that X1 represents. We simply apply
Lemma 6 k-times recursively and see that y = 3kx, where y is the number that
Y 1 represents. Y 1 and y are obviously independent of the choice of n.

Proposition 10. Let k ∈ N then for any n > 2k we have

10n1
k 
{

X0110n−2k1 k ∈ 2N+ 1
X0010n−2k1 k ∈ 2N

where X = X1 is a binary block dependent on k but independent of the choice
of n.

Proof. One checks that for any m > 2 one has

· · · 0010m1
1 · · · 0110m−21

and
· · · 0110m1

1 · · · 0010m−21

this is just an application of Lemma 9 and its proof (where a block · · · 011 is
obtained by multiplying 3 with a block · · · 001 and vice versa). If we apply this
result k-times (if it makes it easier to understand, we can harmlessly regard
10n1 initially as 0010n1) we obtain our result. The last sentence that X is
independent on the choice of n comes from Lemma 9.

We have already informally used the term coalesce in Corollary 5. Though
it is easy to understand what we meant, it is best to define it more rigorously
in order to avoid confusion.
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Definition. Let x, y ∈ 2N+ 1 (binary or decimal representation), then we say
that the OCS’s of x and y coalesces if there exists numbers m,n ∈ N∪ {0} and
z ∈ N such that the OCS of x has more than m terms, the OCS of y has more
than n terms and x

m z and y
n z. To make it more precise we also write (the

OCS’s of) (x, y) coalesces after (m,n) iterations. Similar to coalescing pairs,
we can define coalescing finite numbers x1, x2, . . . , xk ∈ 2N+ 1.

So Corollary 5 says that for n ∈ 2N + 1, 1n and 1n+1 coalesces or more
specifically (1n, 1n+1) coalesces in (n+ 1, n+ 1) iterations.

Corollary 11. Let k ∈ 2N then the binary representation pair

(102k1, 102k+11)

coalesces after (k + 2, k + 2) iterations.

Proof. Since k > 1 and k−1 is odd, we agree by Proposition 10 that after k−1
iterations there exists a binary block X representing an even number such that
102k1 and 102k+11 leads to X11001 and X110001 respectively.

After k iterations, 102k1 and 102k+11 will respectively lead to

X
1
1 1 0

1
0

1
1 1

+X 1 1 0 0 1
Y 0 1 1 ̸ 0 ̸ 0

and

X
1
1 1 0 0

1
0

1
1 1

+X 1 1 0 0 0 1
Y 0 1 0 1 ̸ 0 ̸ 0

where Y = X1 +X + 1.

Clearly Y ̸= 0 and Y represents an even number (since X does it too) and so
after k + 1 iterations 102k1 will lead to the following

Y
1
0

1
1

1
1 1

+ Y 0 1 1
Z 0 1 ̸ 0

and 102k+11 will lead to

Y
1
0

1
1

1
0

1
1 1

+ Y 0 1 0 1
Z ̸ 0 ̸ 0 ̸ 0 ̸ 0

with Z = Y 0 + Y + 1. Notice that Z is in the OCS of 102k+11 because it
represents an odd number (since Y represents an even number).

We observe that Z is neither 0 nor 1. So after k + 2 iterations both 102k1 and
102k+11 lead to the largest odd factor of the number Z0 + Z + 1 = Z1 + Z
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Definition. Let x ∈ 2N+1 and X = X1
1 be its binary representation. Then X

can be written as follows

1nk
0mk

1nk−1
. . . 1n10m11n0 k ≥ 0

We now define the function µ : 2N+ 1 → N, the image of x or X is

µ(x) = µ(X) := max{n0, n1, . . . , nk,m1, . . . ,mk}

and we can similarly define the image of any odd number from the decompo-
sitions of bunches of 1’s and 0’s in its binary representation. The number 2k
is called the number of alternations and we are able in this way to define the
function

σ : N → 2N σ(x) = σ(X) := 2k

Proposition 12. Let n ∈ N and suppose that the OCS of x ∈ 2N+1 be infinite
and not cyclic. Then there exists y ∈ 2N+ 1 in the OCS of x such that one of
the following holds:

• σ(y) ≥ n

• µ(y) ≥ n

Proof. For any number k ∈ N there exists a y ∈ 2N + 1 in the OCS of x such
that |y|b > k, otherwise: The OCS may contain only numbers with at most k
bitlength and this set of numbers is finite. Thus, because we assumed that the
OCS is infinite, the OCS will have repeating numbers making it cyclic which is
a contradiction.

So for n2 there is a y ∈ 2N+1 in the OCS of x such that |y|b > n2. Suppose
now that σ(y) < n (so σ(y) + 1 ≤ n) and µ(y) < n, then we get

|y|b ≤ (σ(y) + 1)µ(y) < n2

and this is a contradiction.

Intuitively, one may think that the number of alternations and the number
of the largest bit blocks consisting of only 1’s or of only 0’s can help in the
understanding of development of the sequence of the odd Collatz sequences of
some numbers. This is what we aim to do in the future.

2. Application

We use techniques from the previous section to show that some known results
can sometimes be very easily proven. We also show new results extending known
results that will help us understand the Collatz problem much better.

Remark 13. We express some of the results in the previous section in a more
standardly used decimal form
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a.) Proposition 1 (e) and Corollary 2: For any x ∈ 2N+ 1 such that x ̸= 1 if

x
1 y then all numbers of the form

4nx+ 4n−1 + · · ·+ 4 + 1 (n ∈ N)

leads to y after 1 iteration.

b.) Lemma 3: Let n ≥ 2 be an integer then

∀x ∈ N 2nx+ 2n − 1
1 2n−1y + 2n−1 − 1 where y = 3x+ 2

∀x ∈ N 2n+2x+ 2n − 1
1 2n+1y + 2n + 2n−1 − 1 where y = 3x

∀x ∈ N 2n+2x+ 2n+1 + 2n − 1
1 2n+1y + 2n−1 − 1 where y = 3x+ 2

c.) Lemma 9: Let x ∈ 2N+ 1 and n, k ∈ N be such that n > 2k then

2n+1x+ 1
k 2n−2k+13kx+ 1

Lemma 4.1 of [4] discusses a result that is easy to prove using binary repre-
sentations. It basically implies the following

Proposition 14. (see [4] Lemma 4.1) Collatz conjecture holds for numbers of
the form

22t − 1

3
t ∈ N

Proof. We can assume that t > 2 because we know that the Collatz conjecture
holds for 1 (trivially) and 5. A number having the above mentioned form is a
geometric series and can be written as

22t − 1

3
=

t∑
i=1

22i−2 =

t∑
i=1

4i−1

The above is very easy to represent in binary form, it is an odd number of the
form X(01)n with n = t − 2 and X = 101 (decimal 5). By Corollary 2 (or see
also Remark 13 (a)) this number leads to 1 after only one iteration (because the
binary X = 101 leads to 1 after one iteration).

Another known result is Corollary 5. I am not the first to prove this result.
The result has been known much earlier, though I am not sure who first tried to
prove it. For instance, Theorem 2 of [6] (a short paper in Chinese) has a proof
of this. But Corollary 5 has a proof that shows how easy it is to use OCS and
binary arithmetic to prove this result.

We now use OCS and binary arithmetic to show that the results by An-
daloro (see [2]) can be extended. To do this, we will first use a specific form of
the proposition (for the case p = 3) below that I first discussed with Henning
Makholm. He proved the generalised proposition presented below. I present his
proof with some modifications for clarity and exactness.
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Proposition 15. Let x ∈ N, p be an odd prime number and n ∈ N then there
exists a number m ∈ N ∪ {0} such that

pn | (p+ 1)mx+
(p+ 1)m − 1

p

Proof. (Henning Makholm) Observe by the binomial expansion that p | (p +

1)m − 1 so (p+1)m−1
p is an integer. For m ∈ N ∪ {0} denote

rm := (p+ 1)mx+
(p+ 1)m − 1

p

It suffices to show that there exist an m ∈ N ∪ {0} such that pn+1 divides
prm = (p+1)m(px+1)− 1 In other words we need to prove that there is an m
such that

(p+ 1)m(px+ 1) ≡ 1 mod pn+1

For simplicity we denote the ring Z/pn+1Z by A. Now define the set

G := {py + 1 mod pn+1 : y = 0, 1, . . . , pn − 1} ⊂ A

All elements in G are units in A because for all y ∈ N we know that py + 1 is
relatively prime to p. Now if y1 ̸= y2 for

y1, y2 ∈ {0, 1, . . . , pn − 1}

and if py1 + 1 ≡ py2 + 1 mod pn+1 then it follows that

pn | (y2 − y1)

But since the difference between y1 and y2 cannot exceed pn−1, this can happen
only if y1 = y2 which is a contradiction. ThusG has exactly pn distinct elements.
Since p is an odd prime, the multiplicative group A∗ (i.e. group of units of A
) is cyclic and therefore any subgroup is cyclic. So G is cyclic and we have a
canonical group isomorphism

(G, ∗) ∼−→ (Zpn ,+)

It suffices to prove that p+ 1 is the generator of G. The generators of (Zpn ,+)
are exactly the numbers congruent module pn that are relatively prime to pn

equivalently non-generators in (Zpn ,+) are numbers that are multiples of p
modulo pn. From the above isomorphism, a non-generator of G is an element
that is of the form hp for some h ∈ G. Now suppose that p + 1 ≡ (py + 1)p

mod pn+1 for some y ∈ {0, 1, . . . , pn − 1}. If we expand (py + 1)p we get

(py + 1)p = 1 +

(
p

1

)
py + · · · = 1 + p2N

for some N ∈ N. So there is a k ∈ Z such that

kpn+1 = p2N − p ⇒ (pN − kpn) = p(N − kpn−1) = 1

12



this is a contradiction because p > 1 and N − kpn−1 is an integer. Thus p + 1
is indeed a generator of the multiplicative subgroup G and there is indeed an
m ∈ N ∪ {0} such that

(p+ 1)m(px+ 1) ≡ 1 mod pn+1

Remark 16. We can interpret Proposition 15 in binary for p = 3. In this case
there exists an m ∈ N ∪ {0} such that 3n divides

4mx+
4m − 1

3
= 4mx+ 4m−1 + . . . 4 + 1

If X = X1 is the binary number representing x then this would mean that
3n divides the binary number X(01)m (note that m can be 0, in which case
3n divides x). This compact representation is sometimes easier to understand
when computing in binary.

Let x ∈ 2N + 1 such that x ̸= 1 and is represented by a binary number
X = X1 then Proposition 1 (e) says that X01 and X lead to the same number
after one iteration. This is also stated in [2] (in Remark after Theorem 1): If x
is an odd number then 4x+1 and x lead to the same number after one iteration
(in OCS). So in fact it suffices to show that the Collatz conjecture holds for
all numbers congruent to 1 modulo 4 in order to prove the Collatz conjecture.
Andaloro showed an even more general case. In [2] he showed that the Collatz
conjecture is true iff the conjecture holds for all numbers congruent to 1 modulo
8 (see [2] Lemma 5) iff the conjecture holds for all numbers congruent to 1
modulo 16 (see [2] Theorem 2).

We will generalize this further using our observation from the odd collatz
sequence with binary numbers and conclude that the conjecture is true iff the
conjecture holds for all numbers congruent to 1 modulo 2n for arbitrary n ∈
N. We have so far seen that this is true for n = 1, 2, 3, 4 (n = 1 being our
interpretation of the conjecture itself using only odd numbers!).

Theorem 17. Let n ∈ N then the Collatz conjecture is true iff the Collatz
conjecture holds for all x such that x ≡ 1 mod 2n

Proof. The sufficient condition is obvious so we will prove the necessary con-
dition. Suppose y ∈ N is odd and not equal to 1 and let n ∈ N be the whole
number in our Theorem. Because of Lemma 5 and Theorem 2 of [2] (see para-
graph before this Theorem), we may assume that n > 2. Furthermore, without
loss of generality we can even assume that n ∈ 2N+ 1 (otherwise we can prove
the above Theorem for n + 1 and the result with n follows). Let Y = Y 1

1 be
the binary number that represents y and set k = n−1

2 , then by Proposition 15
(with p = 3, see also Remark 16) there is an m ∈ N ∪ {0} such that 3k divides
Y (01)m. Let X = X1 be the binary number representing a number x ∈ N such
that

3kx = 4my +
4m − 1

3
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By Lemma 9 we have X0n1
k Y (01)m01. Let Z be the binary number such

that Y
1 Z (recall that we assumed Y is not 1). Then by Corollary 2 (the

second squiggly arrow below)

X0n1
k Y (01)m+1

1 Z

We are proving the necessary condition, so X0n1 (which is a number that is
congruent to 1 modulo 2n) eventually leads to 1. Thus Y  1 as well since it
leads to Z which is in the OCS of X0n1.
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