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Abstract:  

 There is increasing evidence showing that humans and other nonhuman mammals are 

sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical 

regularities seems to be a fundamental biological property underlying auditory learning. In the 

specific case of speech, statistical regularities have been shown to play a crucial role in the 

acquisition of several linguistic features, from phonotactic to more complex rules such as 

morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: 

sequences of sounds changing in frequency or timbre can be segmented on the sole basis of 

conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and 

longitudinal experiments showing that, on the one side, merging music and speech information in 

song facilitates stream segmentation and, on the other side, musical practice directly affects 

sensitivity to statistical regularities in speech both at the neural and behavioral levels. Based on 

recent findings showing the involvement of a fronto-temporal network in speech segmentation, we 

will defend the idea that enhanced auditory learning observed in musicians can originate via at least 

three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory 

mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex as well as increased functional 

connectivity within the whole audio-motor network. Finally we will discuss how these data predict 

a beneficial use of music in optimizing speech acquisition trajectories both in normal and impaired 

populations. 
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 Predicting future events is crucial for survival in an ever-changing auditory world. The 

detection of auditory changes in the environment and the prediction of future auditory events at 

different time scales are particularly interesting for the study of music and speech auditory 

processing. Music and speech are two communicative activities that involve the combination of an 

elementary set of sounds ordered in time according to rules allowing the perception and the 

production of complex and unlimited utterances or musical phrases. Both activities require several 

perceptual and cognitive processes ranging from sound identification and categorization to memory 

storage and retrieval. Most importantly for our present aim, because language and music evolve in 

time, elementary elements become part of more complex structures following specific (emerging) 

rules and making specific (emerging) predictions. The study of how the human brain builds these 

expectations, one of the core mechanisms of language and music acquisition, has a specific interest 

to inform basic principles of both auditory neuroscience and psychophysiology. In the first part of 

this article, we will bring evidence showing that neural sensitivities to simple acoustic changes or 

more complex statistical rules found in auditory sequences are one of the fundamental biological 

processes that underlies auditory learning for both music and speech. In a second part, we will 

discuss the role of music, musical practice and training in revealing refined sensitivity to these 

statistical properties and will finish by proposing testable hypotheses accounting for such an 

enhanced sensitivity in musicians. 

  1. Cortical correlates of change detection in animal and human models 

   1.1. Change detection in animals 

The cerebral correlates of auditory change detection have been widely studied via 

neurophysiological measures both in humans and animals. Neural sensitivity to low probability 

auditory events has been shown to take place within the primary auditory cortices of anesthetized 

cats by using invasive intra-cortical single-unit recordings (Ulanovsky et al., 2003). Indeed, 
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Ulanovsky and collaborators showed that neurons in this cortical area responded more to rarely 

occurring pure tones embedded in a repetitive sequence of standard ones. This finding suggested 

that Stimulus Specific Adaptation (SSA), i.e. the decrease in the firing rate of neurons to repetitive 

adapted standard tones, might be the correlate of change detection at the level of single neurons, and 

a possible simple mechanism for auditory memory. In a further study, these authors showed that 

SSA in primary auditory cortices could occur at different time scales ranging from a few hundred 

milliseconds to tens of seconds (Ulanovsky et al., 2004). More recently, Yaron and collaborators 

(2012) have revealed the presence of neurons in primary auditory cortices of anesthetized rats that 

are sensitive to more detailed information. The authors analyzed intra- and extracellular recordings 

from the auditory cortex of anesthetized rats in response to two types of oddball sequences wherein 

the position of rare tones could be either a random or periodic. They found smaller response to 

tones in periodic sequences than to the same tones in random order. Most interestingly, the activity 

of primary auditory cortex neurons was clearly shown to be modulated by the order of sound 

sequences at the time scale of minutes. The authors proposed that such a neuronal sensitivity could 

be the correlate of statistical regularities processing involved in extracting rather natural syntactic 

properties of language and music.  

   1.2. Change detection in humans 

There is growing evidence suggesting that several aspects of speech and music processing in 

humans involve similar change detection processes, from the detection of acoustic changes to the 

detection of changes in the statistical structure of a sequence of sounds. Thanks to excellent time 

resolution, Electroencephalographic (EEG) recordings offer non-invasively access to cortical brain 

activity on the order of the millisecond in response to external stimuli such as pure tones, harmonic 

sounds or speech sounds. For instance, EEG has been used to bring the first evidence of sensitivity 

to rarely occurring auditory events in the auditory cortex. Using tone pips, neural sensitivity to low 
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probability auditory events was shown in human adults and then in newborns (Hari et al., 1984; 

Alho et al., 1991). The well-known Mismatch Negativity (MMN), a change-detection component of 

the auditory Event-Related brain Potentials (ERPs), is elicited by rarely occurring deviant events 

embedded within a repetitive sequence of standard stimuli (Näätänen et al., 2005, Grimm & Escera 

2011). The MMN is considered a measure of pre-attentive, implicit auditory processing which may 

reflect the formation of an echoic memory trace within the auditory cortices (Näätänen et al., 2005). 

This ERP component is found for changes in frequency (Sams et al., 1985), intensity (Paavilainen et 

al., 1993), location (Paavilainen et al., 1989), duration (Schröger and Winkler, 1995) or timbre 

(Tervaniemi et al., 1997). Importantly, the MMN is also elicited for changes in different acoustic 

parameters of speech sounds consisting of single vowels or CV syllables (Deguchi et al., 2010, 

Näätänen 2001). Interestingly for the present review, other studies have demonstrated that a MMN 

can be elicited by changes in longer, much more complex and/or abstract patterns of musical and 

speech sounds (Boh et al., 2011; Herholz et al., 2009; Wang et al., 2012). All together, these 

findings support the idea that detecting changes as well as detecting patterns both require that the 

auditory system be sensitive to statistical regularities. Furthermore, these results show that auditory 

change detection processes that take place within the auditory cortices can reflect the processing of 

formant transition variations sub-serving phoneme and timbre change detection as well as the 

processing of more complex structures in longer linguistic or musical contexts. We suggest that the 

detection of a change, strongly linked to the predictive abilities of the auditory system, can be 

considered as a basic biological process involved both in music and speech sequence learning.  

  2. Sensitivity to statistical structure of auditory input. 

2.1. Statistical learning of single sounds 

In the context of language acquisition, it is now well accepted that sensitivity to speech sounds 

evolves during infancy (Kuhl 2004). Notably, it has been shown that infants’ ability to discriminate 
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different speech sounds is sensitive to the probabilistic patterns of speech sounds present in the 

environment. During the first year of their life, while infants between the ages of 0 to 6 months do 

not differentiate foreign from native phonetic units, after the age of 6 months they show a drastic 

decrease in the sensitivity to foreign phonological units while becoming attuned to phonetic units of 

their mother tongue (Kuhl 2004). This property of phonetic learning has been elegantly highlighted 

in a behavioral experiment with 6 and 8 month-old infants (Maye et al., 2002). One group of infants 

was familiarized during 2 minutes with a [da] - [ta] continuum presenting a bimodal frequency 

distribution (tokens from the extremities of the continuum were the most frequent) and another 

group of infants was familiarized with a similar continuum but presenting a unimodal frequency 

distribution (tokens from the center of the continuum were the most frequent). Infants were 

subsequently tested in a phonetic discrimination test. While the group of infants exposed to the 

bimodal distribution discriminated tokens from the extreme points of the continuum, infants who 

were previously familiarized with a unimodal distribution did not. These results brought evidence 

that perceptual learning, as it has been showed for the learning of native phonemes seems to rely on 

the sensitivity to the statistical properties of the speech sounds present in the environment (Maye et 

al., 2002). This process is nowadays commonly referred to as statistical learning. Statistical learning 

has been shown to occur not only at the level of phonemes but also at the word level (Saffran et al., 

1996a).  

   2.2. Statistical learning of sequences of sounds 

Besides identifying the phonemes present in the input, another crucial step of language acquisition 

is the ability to extract the words from fluent speech unfolding in time. In regular adult directed 

speech there are no systematic acoustic cues such as silences or stresses at words boundaries. By 

contrast, infant directed speech presents exaggerated pitch contour changes and slower speech rate 

that may largely contribute in solving the speech segmentation problem (Fernald 1992; Thiessen et 
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al., 2005). Nonetheless, it has been shown that speech can be segmented in an implicit manner 

based on only one source of information: the statistical structure of the language (Saffran et al., 

1996a). Indeed, ‘‘syllables that are part of the same word tend to follow one another predictably, 

whereas syllables that span word boundaries do not’’ (Saffran et al. 2001). The role of transitional 

probabilities in speech segmentation (i.e., the probability of syllable Y given syllable X: p (Y/X) = 

frequency of XY/ frequency of X) has been elegantly shown by Saffran and collaborators in both 

infants and adults (Saffran et al. 1996a, 1996b; Aslin et al. 1998). Subsequently, studies using EEG 

and Near Infrared Spectroscopy have also revealed this ability in neonates (Gervain et al. 2008; 

Teinonen et al. 2009). In these kinds of experiments, the paradigm generally consists of a 

familiarization (learning) phase followed by a behavioral test. During the exposure phase, 

participants are exposed to several minutes (depending on the complexity of the stream and on the 

population of interest) of a statistically structured, continuous flow of artificial syllables lacking any 

acoustic cues at words boundaries. The test phase for adult participants is typically a two-alternative 

forced choice (AFC) procedure during which participants have to choose, in each trial, between a 

familiar pseudo-word that was part of the language and a pseudo-word built with similar syllables, 

but that was not part of the language (see figure 1 for an illustration of the experimental procedure 

used in François & Schön 2011). Above chance performance is interpreted as participants’ ability to 

segment the speech stream on the basis of statistical properties of the input. This ability to extract 

units thanks to statistical properties of the input has also been shown for non-linguistic stimuli such 

as sounds with different pitches (Saffran et al. 1999) and timbres (Tillmann and McAdams 2004), as 

well as with environmental sounds (Sanders et al., 2009). These results suggest that statistical 

learning is a domain general learning process. Additionally this statistical sensitivity has been 

revealed in the cotton top tamarin and in rats as well (Hauser et al. 2000, 2002; Ramus et al. 2000; 

Toro and Trobalon 2005) suggesting that sensitivity to acoustic regularities is a fundamental 

auditory process that undergirds normal auditory processing, survival in a complex acoustic 
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environment and even, in many cases, successful expressive and receptive vocal communication. In 

the domain of music, statistical learning has been shown to be at play for the acquisition of new 

unfamiliar musical scales as well as for the learning of 12-tone serial musical sequences (Loui et al., 

2010; Dienes & Longuet-Higgins 2004). Loui and collaborators familiarized adult participants with 

melodies originating from a finite-state musical grammar during 30 minutes. The results of this 

study showed evidence of learning as revealed by recognition, generalization and preference for 

repeated melodies from the grammar. The authors suggested that sensitivity to statistical regularities 

is a basic principle accounting for music acquisition and preference. To summarize, these studies 

bring converging evidence suggesting that sensitivity to statistical regularities is one of the 

fundamental perceptual-cognitive processes underlying auditory learning and that it may serve as a 

basic principle for several aspects of language and music learning.  

   2.2. Brain correlates of auditory statistical learning.  

A growing number of studies have been conducted in human adults and children to unravel the 

cortical network involved during such statistical learning of speech and tone sequences. Using 

fMRI, it has been shown that compared to a random stream (thus containing no predictable patterns 

of syllables), listening to a statistically structured stream of syllables activated more of the so-called 

fronto-temporal dorsal pathway including the Superior Temporal Gyrus, the Middle Temporal 

Gyrus, the Pre-Motor Cortex and the Inferior Frontal Gyrus (Hickok & Poeppel 2007; Cunillera et 

al., 2009; Rodriguez-Fornells et al., 2009; McNealy et al., 2006; 2010). Using EEG recordings, 

other studies have shown larger learning related modulations on the N100 and N400 components 

for structured compared to random sequences of syllables (Cunillera et al., 2009, De Diego 

Balaguer et al., 2007). Moreover, in a study using sequences of tones, Abla and colleagues reported 

similar modulations of the N100 and N400 components during the exposure phase suggesting that 

similar processes might be at play for speech and tone segmentation (Abla et al., 2008). 
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Interestingly for the present review, a recent study has provided a precise description on the 

organization of the STG with respect to statistical sensitivity for speech and non-speech sounds 

(Tremblay et al., 2012). In this study, participants were presented with random and highly structured 

sequences of speech and bird songs while performing a visual task. The results revealed several 

important findings. While some sub-regions of the STG showed a relative preference to speech (i.e. 

being significantly activated for both speech and bird songs), others showed an absolute preference 

for speech (i.e being significantly activated for speech only). Most interestingly, some sub-regions 

in the Posterior Supra Temporal plane including the medial Transverse Temporal Gyrus were 

sensitive to the statistical structure of the input independently of the sound category. The authors 

proposed that the supratemporal plane is functionally organized according to an anteroposterior 

gradient (figure 2). More anterior regions might be operating specifically for speech at the level of 

single phonemes while more posterior regions might be involved in processing statistically 

structured sequences of both speech and non speech sounds. This last study is particularly 

interesting because it supports the idea that the processing of different categories of structured 

sequences (speech and non speech sounds) may rely on shared neural processes in the posterior 

STG of healthy participants. Moreover, it supports Patel’s OPERA hypothesis (Patel, 2011), which 

is presented in a expanded version in the same issue of Hearing Research (Patel, 2013).  

2.3. Sensitivity to statistical structure as a domain general skill 

The body of literature presented above suggests that sequencing abilities in music and speech may 

partly rely on general shared learning mechanisms and that these abilities may be sustained by 

shared and overlapping cortical resources (Patel 2003; Kraus & Chandrasekaran, 2010). However, 

studies investigating statistical learning processes have focused on one dimension or the other but 

not on both at the same time. This renders the comparison of results issued from different tasks, 

participants, and analyses difficult and not straightforward. In this respect, the use of song is 
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particularly well suited to the study of the relation between language and music, the advantage 

being that both linguistic and musical information are merged into one single acoustic signal 

containing two salient dimensions, thus allowing for a direct comparison within the same 

experiment. We recently ran a set of behavioral experiments using sung languages with different 

statistical structures during the exposure phase. In a first experiment (Schön et al., 2008), we 

compared segmentation performance of a spoken language versus segmentation performance of a 

sung language. Two groups of participants were familiarized with an artificial language that was 

either spoken or sung (each syllable being sung on a specific pitch). While 7 min of familiarization 

were not enough to segment a spoken language, they were sufficient to learn the sung language. 

These behavioral results suggest that the learning process is facilitated when the statistical structure 

of the musical and linguistic dimensions match. Because one may claim that song is simply more 

arousing than speech, we ran a further experiment using another sung language wherein linguistic 

and musical statistical structures mismatched. The participants' level of performance was exactly in 

between the spoken and the matching sung version obtained in the two previous experiments. These 

results confirmed a beneficial effect of both distributional and motivational properties of music in 

the very first steps of language acquisition (Thiessen et al., 2005; Schön et al., 2008).  

  3. Musical practice facilitates the extraction of statistical regularities 

In two recently published articles we studied separately the effect of musical expertise in adults and 

the effect of active musical training in 8 to 10 year old children on speech segmentation abilities 

(François & Schön 2011, François et al., 2012, see also Shook et al., 2013 for additional 

behavioural evidence of enhanced statistical learning of an auditory Morse code language in 

musicians). The underlying hypothesis was that if some auditory processes involved in both 

linguistic and musical learning are shared, then, musical training, by enhancing the functioning of 

these common processes, should also affect language processing. We used both behavioral and 
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electrophysiological measures to assess speech segmentation skills in participants exposed to 

several minutes of a sung stream. While in the adult experiment we tested both the recall of 

linguistic and musical dimensions contained in the sung language, we tested only the recall of the 

linguistic dimension in children. In the first study with adults, we showed that musicians barely 

outperformed nonmusicians at the behavioral level: both groups performed above chance level in 

the linguistic test while staying at chance in the musical test. Interestingly, ERP data were more 

sensitive and showed a main effect of expertise on the N1 component with larger amplitude for 

musicians than for nonmusicians in both dimensions. Additionally, we found that the amplitude of a 

later N400-like fronto-central negative component was more sensitive to the transitional 

probabilities in musicians compared to nonmusicians, again in both dimensions. These findings 

suggest that musicians may have more ‘‘robust’’ representations of both musical and linguistic 

structures shaped during the exposure phase than nonmusicians. Interestingly, in the musical test we 

found a similar interaction of expertise and sensitivity to the statistical structure on two early ERP 

components. Musicians showed both a larger P2 and MMN to low transitional probability melodies 

than to high transitional probability melodies while nonmusicians did not show these effects. The 

Transitional Probability effect on the P2 and MMN components suggested that musicians learned 

the musical structure (both tonal and interval structures) better than nonmusicians. In the second 

study with children, we compared a group of children enrolled in a music-training program during 

two school years to a matched control group of children enrolled in an equally motivating painting 

training program. Results were impressive in showing that while no pre-training between-group 

differences were observed neither at the behavioral nor at the electrophysiological level, only 

musically trained children showed a large increase in their speech segmentation abilities as revealed 

by a linear increase in performance after one and after two years of training. Interestingly, after 2 

years, this behavioral benefit was accompanied, as in adults, by a greater sensitivity of a fronto-

central N400-like component to transitional probabilities in musically trained children than in 
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painting trained children. Our findings provided causal evidence that music training can enhance the 

sensitivity to the statistical regularities in speech, a fundamental biological process underlying 

language learning. Additionally, this result argues in favor of the intuitive and common thinking that 

music can play a very important role in children’s language development notably by facilitating 

speech segmentation, a building block of language acquisition. In the following sections we will 

suggest three non-exclusive explanations that may account for the observed benefit of musicians 

over nonmusicians in speech segmentation. 

   4 Why musical practice may facilitates speech segmentation  

 4.1 Enhanced low-level auditory processing for speech and musical sounds in musicians. 

The study of professional musicians is of great interest because it can reveal how the long term 

coupling of auditory and motor systems can fine-tune the brain. Studying professional musicians 

allows determining the functional and structural modifications fostered by musical practice (at least 

when revealed by longitudinal studies). Indeed, musicians' brain is considered as a good model of 

neuroplasticity both at the structural and functional levels (Münte et al., 2002). Compared to non-

musicians, musicians show an enhanced cortical attentive and pre-attentive processing of linguistic 

(for example see Chobert et al., 2011 for Voice Onset Time, frequency and duration deviances) and 

musical features (see for example Vuust et al., 2011). This enhancement is reflected by larger 

amplitude and/or shorter latencies of many ERP components such as the N1, P2, MMN and P300 

(Pantev et al., 1998; Koelsch et al., 1999; Shahin et al., 2003; Van Zuijen et al., 2005). For instance, 

adult musicians show larger MMN than nonmusicians to deviance in contour and interval structure 

inserted in repetitive 5 notes melodies (Fujioka et al., 2004). Even at the sub-cortical level, adult, 

child and preschooler musicians show more robust encoding of linguistic and musical features as 

reflected by earlier and larger brainstem responses compared to non-musicians (Kraus and 

Chandrasekaran, 2010; Musacchia et al., 2007; Strait et al., 2012, 2013; Parbery-Clark et al., 2011, 
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Strait & Kraus, 2013). Most of these studies used cross-sectional approaches and causation can only 

be inferred in the case of well-controlled longitudinal studies with pseudo-random assignment of 

the participants. For instance, Lappe and collaborators (2008) compared MMNs elicited by deviant 

3 piano tones sequences embedded in standard sequences before and after 2 weeks of musical 

training in one group with sensory-motor training and in another with auditory training only. The 

results showed a greater enhancement of MMN amplitude in the sensory-motor trained group 

compared to the auditory training group. More recently, Chobert and collaborators revealed that 6 

months and 12 months of active musical training in 8 to 10 year old children were sufficient to 

induce an enhanced MMN in response to changes in VOT and duration of CV syllables (Chobert et 

al., 2012). At the structural level, Hyde and collaborators (2009) showed that 15 months of musical 

training in 6-year-old children enhanced auditory discrimination performance in melodic and 

rhythmic tasks as well as in a finger motor sequencing task. Moreno and colleagues (2009) trained 

8-year-old nonmusician children with music or painting for 6 months and revealed better pitch 

discrimination abilities for both melodies and sentence prosody in the musically trained group only. 

These last studies demonstrate that active musical training positively impacts multiple functional 

aspects of the brain. Most importantly, these studies show that music training facilitates both pre-

attentive and attentive processing of acoustic deviance in linguistic and musical inputs, one the 

basic biological process involved both in music and speech sequence learning. Recently, 

Paraskevopoulos and colleagues (2011) used MEG recordings in a MMN paradigm to study the 

effect of musical practice on the neural and behavioral sensitivity to statistical structure of tone 

sequences. The stimuli consisted of repetitive three tone sequences as standard sequences, which 

were interleaved with deviant sequences in which the final tone was changed compared to standard 

ones. Musical experts and nonmusicians showed similar level of performance and similar MMN 

amplitude to deviance. Nonetheless, compared to nonmusicians musical experts showed a larger 

difference between standards and deviants on an early ERP component, the P50. These results 
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suggested that enhanced P50 to deviant tones might index a better encoding of transitional 

probabilities in musicians than in nonmusicians (Paraskevopoulos et al., 2011). Even more recently, 

Skoe and colleagues conducted an experiment demonstrating sensitivity to statistical in evoked 

responses understood to be generated by the auditory midbrain/brainstem (Skoe et al., 2013). They 

used brainstem recordings during the presentation of random and statistically structured sequences 

of doublets of tones while participants watched a silent photo-slideshow. Results showed that the 

best learners were participants having the most enhanced response to structured sequences. 

Interestingly, there is evidence showing that musicians have larger planum temporale than 

nonmusicians (Keenan et al, 2001; Luders et al, 2004) and that white matter integrity in the right 

hemisphere predicts the success in a pitch-related grammar-learning task (Loui et al., 2011). 

Additionally, trans-magnetic brain stimulation applied to Heschl's gyrus modulates the level of 

performance in a pitch discrimination task (Mathys et al., 2010). Taken together, these results show 

that an enhanced neural sensitivity of the statistical properties in auditory input within the temporal 

lobes and in the Inferior Colliculus of musicians might probably contribute to enhanced auditory 

learning skills.  

 4.2. Enhanced IFG/PMC functioning 

In addition to the involvement of the auditory cortex, prefrontal cortices (left IFG and PMC) 

are clearly activated during the exposure phase of an artificial language learning task (Cunillera et 

al., 2009; McNealy et al., 2006, 2010). IFG/PMC regions have been shown to be involved in 

language perception and production and in music processing as well (Vigneau et al., 2006; Koelsch 

et al., 2005; Brown et al., 2006). Grey matter density in the IFG has been found to correlate with the 

level of language proficiency (Stein et al., 2012) and in the number of years of phonetic training in 

expert phoneticians (Golestani et al., 2011). Interestingly, there is evidence showing that white 

matter integrity in the left-IFG predicts the level of performance in an artificial grammar learning 
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task (Flöel et al., 2009) and that musicians show increased gray matter density and volume in this 

very same brain region (Slumming et al., 2002). Thus a greater recruitment of associative frontal 

areas in musicians compared to nonmusicians could also contribute to enhanced neural sensitivity 

by acting as a top-down modulatory process onto low-level auditory cortices or as phono-

articulatory matching process (Rodriguez-Fornells et al., 2009). 

 4.3. Enhanced connectivity from pSTG to IFG/PMC 

Finally, it is worth to consider feedforward and feedback neuronal projections within the 

speech segmentation network. The fibers of white matter forming the well-known Arcuate 

Fasciculus or Superior Longitudinal Fasciculus (AF/SLF) directly connect the posterior STG to the 

IFG/PMC. Lesions of the AF/SLF induce impairment not only of phonological and word repetition 

but also in verbal short-term memory tasks (Benson et al., 1973; Damasio and Damasio, 1980; 

Anderson et al., 1999). Moreover, studies have found that the AF/SLF is notably decisive in 

mapping speech sound sequences to articulatory sequences of gestures (Catani et al., 2005; 

Schmahmann et al., 2007) and in word learning (Lopez-Barroso et al., 2013). Interestingly, both 

adult musicians and in 8-year old children who followed 2 years of musical training show a more 

developed AF/SLF than nonmusicians (Oechslin et al., 2010; Wan & Schlaug, 2010, Halwani et al., 

2011). Taken together these results suggest that, an increased connectivity between auditory regions 

within the temporal lobe and motor regions within the frontal lobe might induce enhanced 

segmentation skills in musicians compared to nonmusicians.  

Conclusion 

Further research will be needed to decipher the relative contribution of these three non exclusive 

possibilities suggested above and notably thanks to the use of innovative data processing techniques 

involving both structural and functional measures applied to specific well designed experiments 
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(François et al., 2012a). For instance, the analyses of ERPs during the exposure phase are of great 

interest because implicit electrophysiological measures (EEG/MEG can reveal subtle differences 

between groups in language acquisition that might be underestimated by behavioral estimates 

(McLaughlin et al., 2004; Abla et al., 2008; Cunillera et al., 2009; De Diego Balaguer et al., 2007). 

Additionally, implicit electrophysiological measures can be very useful and informative when 

studying specific populations such as very young infants (Teinonen et al., 2009; Kudo et al., 2011) 

who are unable to deliver an overt behavioral response while being at the same time the most 

interesting population for disentangling the contribution of nature vs. nurture in the acquisition of 

language and music. The use of implicit measures could be also useful in the case of patients with 

communicative disorders such as patients with aphasia or children with autistic disorders or in the 

case of patients with motor disorders such as in Parkinson's disease. It is important to keep in mind 

that the present article focused exclusively on first-order statistical regularities. Besides these, 

natural languages make use of higher order statistics, for instance in hierarchical syntactical 

structures. Interestingly, recent work done by Brod and Opitz (2013) brings evidence of enhanced 

sensitivity to long distance dependencies in the learning of an artificial language for musicians 

compared to nonmusicians. This last finding suggests that musical practice might also benefit the 

learning of more complex syntactical rules in more natural language. The effect of singing in 

facilitating the speech segmentation as well as the effect of musical practice in enhancing brain 

functioning at the different levels of processing involved in auditory sequencing skills strongly 

promote the use of music as a tool for optimizing speech acquisition trajectories both in normal and 

impaired populations.  

Here, we have presented evidence for enhanced sensitivity to statistical regularities in musicians 

than in nonmusicians. We have proposed that such a benefit might rely on a complex interaction 

between enhanced low-level auditory processing in both cortical and subcortical regions, enhanced 

functioning of associative frontal areas, and enhanced connectivity between those areas. One of the 
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possible mechanisms for such an enhanced sensitivity to statistical regularities has been proposed to 

involve corticofugal projections that shapes low-level auditory regions in a top-down manner (Skoe 

et al., 2013). However, future research is needed to clearly define the respective roles of bottom-up 

and top-down mechanisms for engendering neural sensitivity to acoustic regularities and how they 

are strengthened in musicians. 
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Figure 1: Illustration of the experimental design used in François & Schön 2011. Participants were 

presented with a statistically structured stream of sung syllables (exposure phase) and then tested 

with a 2AFC for recognition of both linguistic and musical structures. Stimuli were presented 

through loudspeakers. 
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Figure 2: From Tremblay et al., 2013, the figure illustrates the patterns of activity to sound 

category, statistical structure, exposure time and their interactions within the bilateral supratemporal 

areas of healthy adult participants. The anteroposterior gradient is visible from the color-coded 

patterns of responses with sensitivity to the statistical structure independently of sound category in 

more posterior areas and absence of sensitivity in more anterior areas. Regions’ legend: PP = 

planumpolare; TTG = transverse temporal gyrus (m = medial, l = lateral); TTS = transverse 

temporal sulcus (m = medial, l = lateral); PT = planum temporale (a = anterior, m = middle, 

p=posterior); SF=caudal sylvian fissure (a=anterior, p=posterior); STG=superior temporal gyrus (a= 

anterior, m = middle, p = posterior). 


