
HAL Id: hal-02062409
https://hal.science/hal-02062409v1

Preprint submitted on 1 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulating classical query rewriting algorithms with
SLD-resolution

Christophe Rey, Elias Tahhan-Bittar, Jerzy Tomasik

To cite this version:
Christophe Rey, Elias Tahhan-Bittar, Jerzy Tomasik. Simulating classical query rewriting algorithms
with SLD-resolution. 2019. �hal-02062409�

https://hal.science/hal-02062409v1
https://hal.archives-ouvertes.fr


Simulating classical query rewriting algorithms
with SLD-resolution

Christophe Rey
Université Clermont Auvergne

LIMOS, IUT d’Allier
Clermont-Ferrand, France
christophe.rey@uca.fr

Elias Tahhan-Bittar
Universidad Simon Bolivar

Caracas, Venezuela
etahhan@usb.ve

Jerzy Tomasik
Université Clermont Auvergne

LIMOS, CNRS
Clermont-Ferrand, France
jerzy.tomasik@udamail.fr

classical SLD-resolution procedure, which is at the heart of logic
programming and deductive databases, enables to compute such
rewritings. This idea is also further evoked in [11]. SLD-resolution
[14] is based on the resolution inference rule which rewrites a
definite goal into another one using a definite clause, by unifying
the head of this definite clause to an atom of the initial definite goal.
The choice of both the definite clause among a definite program
(i.e. a finite set of definite clauses), and of the atom among all the
atoms of the definite goal, is called the computation rule R of SLD-
resolution.

The on-going work presented in this paper is about how we
can envision different SLD-resolution strategies (e.g. by choosing a
specific computation ruleR) to make it simulates classical rewriting
algorithms, namely the bucket [12], the inverse-rules [5] and the
MINICON algorithms [15]. This work is mainly based on an exper-
imental study and still needs future formal proofs to be acertained.

In section 2, we recall some notions about mediation and SLD-
resolution and how the latter can be used to compute query rewrit-
ings. We sum up this by an elegant property concerning the an-
tichains of resolution trees. In section 3, we present our experi-
mental results based on an implementation of SLD-resolution with
varying strategies. These results are essentially a set of 4 constraints
that can make SLD-resolution simulate classical query rewriting
algorithms. We then conclude.

2 SLD-RESOLUTION AND MEDIATION
2.1 Recalls about mediation
In order to link views of S to relations of G, mediation systems are
given a setMG,S of mappings. There are three kinds of mappings:
local-as-view (LAV), global-as-view (GAV) and local-and-global-
as-view (GLAV). LAV mappings express views as queries using
relations of G and thus need query rewriting algorithm to process
a user query. GAV mappings express relations of G as queries
using views as relations and thus allow query processing by query
unfolding. GLAV mappings are containment relationships between
couples of queries made of one query using views as relations and
one query using relations of G. As LAV ones, they imply query
rewriting. In this work, we focus on LAV mappings since classical
algorithms are designed to handle them.

Example 2.1. This example is about scientific papers, denoted by
numbers, and their topics and references. We have:
• G = {cites(2), sameTopic(2)}, which means there are 2 rela-
tions in G each of which have arity 2.
• S = {v4(1),v5(2),v6(2)}
• MG,S contains the following three mappings:

ABSTRACT
We present experimental results that indicate that SLD-resolution
could be considered as a unifying framework for the studying of
query rewriting algorithms. Indeed, adding constraints to the con-
trol of SLD-resolution makes it simulate some of the classical query
rewriting algorithms used in mediation systems. We propose 4 such
constraints and link SLD-resolution to 3 classical algorithms: the
bucket, the inverse-rules and the MINICON algorithms.

CCS CONCEPTS
• Information systems → Relational database model; Medi-
ators and data integration; • Theory of computation → Con-
straint and logic programming;

KEYWORDS
SLD-resolution ; maximally contained rewritings ; certain answers
; definite program ; conjunctive query; local-as-view ; mediation
; data integration ; rewriting algorithm ; open world assumption ;
algorithmic framework

ACM Reference Format:
Christophe Rey, Elias Tahhan-Bittar, and Jerzy Tomasik. 2018. Simulating
classical query rewriting algorithms with SLD-resolution . In Proceedings of
Unpublished. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
In data integration, more specifically in the setting of mediation,
the problem of answering queries using views has been studied for
about 25 years [2, 3, 9, 18]. The basic issue, in the relational database
setting, aims at querying many heterogeneous data sources from a
single user query expressed on a virtual schema G and using only
a set S of materialized views defined on the sources schemas. A
well-studied approach is the query rewriting one in which the user
query is rewritten as possibly many queries, each of them being
expressed exclusively using available views. Generally, the obtained
rewritings are the maximally contained rewritings under the certain
answers semantics [1]. Many alorithmical approaches have been
proposed [6–8, 11–13, 15–17]. Among these, [8] shows that the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Unpublished, 2018, C. Rey, E. Tahhan-Bittar, J. Tomasik

– v4(X ) ← cites(X ,Y ), cites(Y ,X )
– v5(X ,Y ) ← sameTopic(X ,Y )
– v6(X ,Y ) ← cites(X ,Z ), cites(Z ,Y ), sameTopic(X ,Z )
These mappings are conjunctive queries. For example, the
first mapping says that for each X which is a singleton data
of v4, it must be the first part of a tuple < X ,Y > of the
relation cites and the second part of a tuple (not necessarily
another one) < Y ,X > of cites . This, of course, if G were
materialized.
• The query q is the following:
q(A0) ← cites(A0,B0), cites(B0,A0), sameTopic(A0,B0)
which means the user is looking for all paper number A0
that cites a paper B0 having the same topic as and which
cites A0.

The maximally contained rewriting is the query q′:
q′(A0) ← v6(A0,A0).
which means that only view v6 may contains certain answers to
the user query.

2.2 Recalls about SLD-resolution
SLD-resolution is a procedure which is based on the exhaustive
application of the resolution inference rule to a definite goal [14].
In the previous example, the conjunctive query q is such a definite
goal. When we trace all possible applications of the inference rule
to the definite goal, we obtain the resolution tree. If one branch of
this tree ends with a contradiction, then it means that a solution of
the goal has been found.

Used to compute query rewritings, SLD-resolution must get a
definite program that is equivalent toMG,S . [5, 8, 11] show that
this definite program is obtained by inversing mappings into the
so-called inverse-rules.

Example 2.2.
The inverse-rules ofMG,S from the previous example are:
cites(X , f 1(X )) ← v4(X ).
cites(f 1(X ),X ) ← v4(X ).
sameTopic(X ,Y ) ← v5(X ,Y ).
cites(X , f 3(X ,Y )) ← v6(X ,Y ).
cites(f 3(X ,Y ),Y ) ← v6(X ,Y ).
sameTopic(X , f 3(X ,Y )) ← v6(X ,Y ).
We remark the appearance of functional terms which stand for
existential variables.
Then, the resolution inference rule can for example be applied on q
as follows:
• the cites(A0,B0) atom from q can be unified with the head
atom cites(X1, f 1(X1)) of the first inverse-rule (in order to
avoid variable capture, variables of the inverse-rules are
always refreshed before each resolution rule application).
• the unifier is the following substitution: {X1/A0,B0/f 1(A0)}
• the new goal defining q is now
q(A0) ← v4(A0), cites(f 1(A0),A0), sameTopic(A0, f 1(A0))

The resolution tree is given in figure 1.

In the previous example, no branch of the resolution tree ends
with a contradiction. This is explained by the fact that the input
definite program (i.e. the inverse-rules) does not contain any fact.
Besides, each node of the resolution tree gives a rewriting of the

initial query. By the soundness and completeness of SLD-resolution
[4], and if we view the resolution tree as the representation of a
partial ordered set (the set of nodes), it is easy to see that each
maximal antichain (wrt inclusion) allows to compute all possible
answers to our query. In other words, given any maximal antichain
of the resolution tree, each answer of the query is mandatorily
obtained from one element of this antichain, provided some substi-
tution is applied to it. Up to our knowledge, this way of formulating
soundness and completeness of SLD-resolution is new.

Example 2.3. In the previous example, the set containing the
leaves of the 5 branches os the resolution tree is an antichain,
and it is of course maximal. So, assuming that the views contain
data, we know that each certain answer to the initial user query
can be obtained by finding a substitution and applying it to one
of the five nodes of the antichain. Since there is only one node
without functional term, then the maximal contained rewriting is
this single node (certain answers cannot contain functional terms),
namely: v6(A0,A0),v6(A0,A0),v6(A0,A0) which clearly defines q′
as q′(A0) ← v6(A0,A0).

What is really interesting in the notion of maximal antichain of
the resolution tree is that it makes clear the fact that the strategy
with which SLD-resolution is executed will have an impact on the
way the maximally contained rewriting will be found: it is clear
that once an antichain of the resolution tree will be found which
elements use only views from S, and not relations from G anymore,
then the maximally contained rewriting is this antichain. So the
computation rule R may be defined according to this. For example,
in[11], the so-called "unit clauses" are used so that contradictions
are mandatorily found as leaves of all branches. Now we know that
in such an algorithm, R must be defined so that these unit clauses
are examined after all other clauses, otherwise there may be no
maximal antichain of the resolution tree in which will appear the
maximally contained rewriting. This is because some atom may
have been resolved by the unit clauses.

Coming from the maximal antichain point of view, the idea
of SLD-resolution strategies is further developed in next section
where we present different SLD-resolution stratégies, experimen-
tally concluding that SLD-resolution can act as some classical query
rewriting algorithms provided that it is lead by the right strategy.

3 SLD-RESOLUTION STRATEGIES AND
QUERY REWRITING ALGORITHMS

To go further in testing different SLD-resolutions, we have stud-
ied three classical query rewriting algorithms, namely the bucket
[12], the inverse-rules [5] and the MINICON algorithms [15]. We
have identified 4 constraints that we have used as SLD-resolution
parameters. These 4 constraints have a same objective which is to
avoid generating parts of the rewriting containing functional terms
during SLD-resolution. We recall that certain answers cannot con-
tain functional terms, since data in views do not contain functional
terms. These 4 constraints are the following:

C1 During unification, it is not allowed to map distinguished
variables (those in the head of the query) to functional terms.

C2 During unification, it is not allowed to map variables from
the clauses body to functional terms.



Simulating query rewriting algorithms with SLD-resolution Unpublished, 2018,

←cites(A0,B0),cites(B0,A0),sameTopic(A0,B0).

←v6(X23,B0),
cites(B0,f3(X23,B0)),

sameTopic(f3(X23,B0),B0).

←v6(B0,B0),
v6(B0,B0),

sameTopic(f3(B0,B0),B0).

←v6(B0,B0),
v6(B0,B0),

v5(f3(B0,B0),B0).

sameTopic(X25,Y17)←v5(X25,Y17).
{X25/f 3(B0,B0),Y17/B0}

cites(X24,f 3(X24,Y16))←v6(X24,Y16).
{X24/B0,X23/B0,Y16/B0}

←v6(A0,Y5),
cites(f3(A0,Y5),A0),

sameTopic(A0,f3(A0,Y5)).

←v6(A0,A0),
v6(A0,A0),

sameTopic(A0,f3(A0,A0)).

←v6(A0,A0),
v6(A0,A0),
v6(A0,A0).

←v6(A0,A0),
v6(A0,A0),

v5(A0,f3(A0,A0)).

sameTopic(X15,Y7)←v5(X15,Y7).
{X15/A0,Y7/f 3(A0,A0)}sameTopic(X19,f 3(X19,Y11))←v6(X19,Y11).

{X19/A0,Y11/A0}

cites(f 3(X14,Y6),Y6)←v6(X14,Y6).
{X14/A0,Y6/A0,Y5/A0}

←v4(B0),
cites(B0,f1(B0)),

sameTopic(f1(B0),B0).

←v4(B0),
v4(B0),

sameTopic(f1(B0),B0).

←v4(B0),
v4(B0),

v5(f1(B0),B0).

sameTopic(X9,Y3)←v5(X9,Y3).
{X9/f 1(B0),Y3/B0}

cites(X8,f 1(X8))←v4(X8).

{X8/B0}

←v4(A0),
cites(f1(A0),A0),

sameTopic(A0,f1(A0)).

←v4(A0),
v4(A0),

sameTopic(A0,f1(A0)).

←v4(A0),
v4(A0),

v5(A0,f1(A0)).

sameTopic(X3,Y1)←v5(X3,Y1).
{X3/A0,Y1/f 1(A0)}

cites(f 1(X2),X2)←v4(X2).

{X2/A0}

cites(X1,f 1(X1))←v4(X1).

{X1/A0,B0/f 1(A0)} cites(f 1(X7),X7)←v4(X7).

{X7/B0,A0/f 1(B0)}
cites(X13,f 3(X13,Y5))←v6(X13,Y5).
{X13/A0,B0/f 3(A0,Y5)}

cites(f 3(X23,Y15),Y15)←v6(X23,Y15).
{A0/f 3(X23,B0),Y15/B0}

Figure 1: Resolution tree of example 2.2
.

C3 For all existential variable v in the query body, query atoms
that contain v must be unified with heads of clauses that
have the same body.

C4 All query atom must be unified with only one clause head.
Although we do not have formal proofs yet, after executing SLD-
resolution with any subset of these set of 4 constraints, it seems
that we have the following results (summed up in table 2):

• SLD-resolution-based query rewriting algorithms [8, 11] fol-
low constraints C3 and C4.
• Once the inverse-rules have been obtained, the SLD-resolution
seems to simulate the inverse-rules algorithm [5], provided
constraints C2, C3 and C4 are applied.
• Once the inverse-rules have been obtained, SLD-resolution
seems to simulate the MINICON algorithm [15], provided
constraints C1, C3 and C4 are applied.
• The bucket algorithm [12] follows only constraint C4.

Let’s make a few remarks about these results. First, the exploration
of the SLD-resolution tree can be executed in a depth-first or in a
breadth-first manner. When we say it seems to simulate either the
inverse-rules or the MINICON algorithm, then it implies that SLD-
resolution is executed in a breadth-first manner. Constraint C1 is
the one that corresponds to the creation of MINICON descriptions
in the MINICON algorithm. Constraint C2 is implicitely implied
during step 2 in the inverse-rules algorithm when it removes func-
tional terms by creating new predicates. C3 is de facto ensured by
skolemization during the generation of inverse-rules. C4 is de facto
ensured by SLD-resolution.

Example 3.1. Going onwith the previous example, figure 3 shows
the impact of constraint C1 on the resolution tree exploration.

The case of the bucket algorithm is a bit different from the oth-
ers. Indeed, the bucket algorithm seems to be a sort of degenerated

Constr. SLD-
resolution
[8, 11]

Inverse-
rules
[5]

Minicon
[15]

Bucket
[12]

C1 X
C2 X
C3 X X X
C4 X X X X

Figure 2: Constraints and corresponding classical query
rewriting algorithms.

form of SLD-resolution which would not be applied to the standard
inverse-rules, but to naively inverse-rules where no functional term
would be introduced. Therefore, the execution of SLD-resolution to
such a program would result in wrong parts in the obtained rewrit-
ing since unification is far less constrained. This is what explains
the final step of the bucket algorithm where the containment of
each part of the maximally contained rewriting candidate must be
tested.

Example 3.2. In the running example, the degenerated inverse-
rules used by the SLD-resolution to simulate the bucket algorithm
would be the following ones:
cites(X ,Y ) ← v4(X ).
cites(Y ,X ) ← v4(X ).
sameTopic(X ,Y ) ← v5(X ,Y ).
cites(X ,Z ) ← v6(X ,Y ).
cites(Z ,Y ) ← v6(X ,Y ).
sameTopic(X ,Z ) ← v6(X ,Y ).

Our prototype.
We have implemented a parameterized SLD-resolution procedure
to be able to test mainly constraints C1 and C2. It has developed



Unpublished, 2018, C. Rey, E. Tahhan-Bittar, J. Tomasik

←cites(A0,B0),cites(B0,A0),sameTopic(A0,B0).

Stop since
C1 is not
verified
(A0 is
mapped to
f 3(X23,B0)).

←v6(A0,Y5),
cites(f3(A0,Y5),A0),

sameTopic(A0,f3(A0,Y5)).

←v6(A0,A0),
v6(A0,A0),

sameTopic(A0,f3(A0,A0)).

←v6(A0,A0),
v6(A0,A0),
v6(A0,A0).

←v6(A0,A0),
v6(A0,A0),

v5(A0,f3(A0,A0)).

sameTopic(X15,Y7)←v5(X15,Y7).
{X15/A0,Y7/f 3(A0,A0)} sameTopic(X19,f 3(X19,Y11))←v6(X19,Y11).

{X19/A0,Y11/A0}

cites(f 3(X14,Y6),Y6)←v6(X14,Y6).
{X14/A0,Y6/A0,Y5/A0}

Stop since
C1 is not
verified (A0
is mapped
to f 1(B0)).

←v4(A0),
cites(f1(A0),A0),

sameTopic(A0,f1(A0)).

←v4(A0),
v4(A0),

sameTopic(A0,f1(A0)).

←v4(A0),
v4(A0),

v5(A0,f1(A0)).

sameTopic(X3,Y1)←v5(X3,Y1).
{X3/A0,Y1/f 1(A0)}

cites(f 1(X2),X2)←v4(X2).

{X2/A0}

cites(X1,f 1(X1))←v4(X1).

{X1/A0,B0/f 1(A0)}

cites(f 1(X7),X7)←v4(X7).

{X7/B0,A0/f 1(B0)}cites(X13,f 3(X13,Y5))←v6(X13,Y5).
{X13/A0,B0/f 3(A0,Y5)}

cites(f 3(X23,Y15),Y15)←v6(X23,Y15).
{A0/f 3(X23,B0),Y15/B0}

Figure 3: Resolution tree showing the impact of constraint C1.
.

as a meta interpreter with the Goedel programming language [10].
Goedel is a programming language which offers meta program-
ming facilities. It is not maintained anymore since about 20 years.
It has been chosen since we would like our meta interpreter to
follow a ground approach, in which the first order semantics is
clear and ensured. Up to our knowledge, no other existing or past
programming language is completely oriented toward such a meta
programming paradigm. Using Goedel libraries, our prototype is
8000 lines of code long (5400 for the SLD-resolution and 3600 for
tests and examples).

4 CONCLUSION
In this work, we present experimental results that indicate that
SLD-resolution could be considered as a unifying framework for
the studying of query rewriting algorithms. However, formal proofs
still needs to be established. The interest of having such a frame-
work would be to have a way to fairly compare query rewriting
algorithms. Of course, classical query rewriting algorithms need
not to be studied anymore. But it may be useful for actual query
rewriting algorithms, such as the ones in the field of ontological
query answering for example.

REFERENCES
[1] S. Abiteboul and O. Duschka. 1998. Complexity of answering queries using

materialized views. Proc. of the 17th ACM SIGACT SIGMOD SIGART Symposium
on Principles of Database Systems (PODS’98) (1998), 254–265.

[2] Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset,
and Pierre Senellart. 2012. Web Data Management. Cambridge University Press.
432 pages. http://hal.inria.fr/hal-00847933 Open access of the full text on the
Web.

[3] Foto Afrati and Rada Chirkova. [n. d.]. Answering Queries Using Views.
[4] K. Clark. [n. d.]. Predicate logic as a computational formalism.
[5] O.M. Duschka. 1997. Query Optimization Using Local Completeness. In Pro-

ceedings of the Fourteenth AAAI National Conference on Artificial Intelligence,
AAAI-97.

[6] Oliver M. Duschka and Michael R. Genesereth. 1997. Answering Recursive
Queries Using Views. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, May 12-14, 1997, Tucson,
Arizona, USA. 109–116. https://doi.org/10.1145/263661.263674

[7] Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. 2000. Recursive
Query Plans for Data Integration. J. Log. Program. 43, 1 (2000), 49–73. https:
//doi.org/10.1016/S0743-1066(99)00025-4

[8] John Grant and Jack Minker. 2002. A Logic-based Approach to Data Integration.
Theory Pract. Log. Program. 2, 3 (May 2002), 323–368. https://doi.org/10.1017/
S1471068401001375

[9] Alon Y. Halevy. 2001. Answering queries using views: A survey. The VLDB
Journal 10, 4 (01 Dec 2001), 270–294. https://doi.org/10.1007/s007780100054

[10] Patricia Hill and John Lloyd. [n. d.]. The Goedel Programming Language.
[11] Christoph Koch. 2004. Query rewriting with symmetric constraints. AI Commun.

17, 2 (2004), 41–55.
[12] A. Levy, A. Rajaraman, and J. Ordille. 1996. Querying Heterogeneous Information

Sources Using Source Descriptions. In Proceedings of the 22nd VLDB Conference,
Bombay, India, T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nand-
lal L. Sarda (Eds.). Morgan Kaufmann, 251–262.

[13] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. 1995.
Answering Queries Using Views. In Proceedings of the Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 22-25, 1995,
San Jose, California, USA. 95–104. https://doi.org/10.1145/212433.220198

[14] Ulf Nilsson and Jan Maluszynski. 1995. Logic, Programming, and PROLOG (2nd
ed.). John Wiley & Sons, Inc., New York, NY, USA.

[15] R. Pottinger and A. Halevy. 2001. MiniCon: A scalable algorithm for answering
queries using views. The VLDB Journal 10, 2-3 (2001), 182–198.

[16] Xiaolei Qian. 1996. Query Folding. In Proceedings of the Twelfth International
Conference on Data Engineering (ICDE ’96). IEEE Computer Society, Washington,
DC, USA, 48–55. http://dl.acm.org/citation.cfm?id=645481.655581

[17] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. 1995. Answering
Queries Using Templates with Binding Patterns. In Proceedings of the Fourteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
May 22-25, 1995, San Jose, California, USA. 105–112. https://doi.org/10.1145/
212433.220199

[18] J.D. Ullman. 2000. Information Integration Using Logical Views. Theoretical
Computer Science 239, 2 (2000), 189–210.

http://hal.inria.fr/hal-00847933
https://doi.org/10.1145/263661.263674
https://doi.org/10.1016/S0743-1066(99)00025-4
https://doi.org/10.1016/S0743-1066(99)00025-4
https://doi.org/10.1017/S1471068401001375
https://doi.org/10.1017/S1471068401001375
https://doi.org/10.1007/s007780100054
https://doi.org/10.1145/212433.220198
http://dl.acm.org/citation.cfm?id=645481.655581
https://doi.org/10.1145/212433.220199
https://doi.org/10.1145/212433.220199

	Abstract
	1 Introduction
	2 SLD-resolution and Mediation
	2.1 Recalls about mediation
	2.2 Recalls about SLD-resolution

	3 SLD-resolution strategies and query rewriting algorithms
	4 Conclusion
	References

