
HAL Id: hal-02062406
https://hal.science/hal-02062406v1

Preprint submitted on 1 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing certain answers via compactness
Christophe Rey, Elias Tahhan-Bittar, Jerzy Tomasik

To cite this version:
Christophe Rey, Elias Tahhan-Bittar, Jerzy Tomasik. Characterizing certain answers via compactness.
2019. �hal-02062406�

https://hal.science/hal-02062406v1
https://hal.archives-ouvertes.fr

Characterizing certain answers via compactness
Caractérisation des réponses certaines par compacité
Christophe Rey

Université Clermont Auvergne

LIMOS, IUT d’Allier, CNRS

Clermont-Ferrand, France

christophe.rey@uca.fr

Elias Tahhan-Bittar

Universidad Simon Bolivar

Caracas, Venezuela

etahhan@usb.ve

Jerzy Tomasik

Université Clermont Auvergne

LIMOS, CNRS

Clermont-Ferrand, France

jerzy.tomasik@udamail.fr

ABSTRACT
In relational data integration, some approaches rely on logic pro-

gramming to get answers for one query from several sources. More

precisely, in the mediation setting where a virtual global schema

linked to all local source schemas is assumed, some algorithms

are based on SLD-resolution to generate rewritings of a query ex-

pressed on the global schema, so that it can be evaluated on the

many sources. The aim of this evaluation is to obtain the certain an-

swers [1]. These answers are the answers that are always obtained

when a user evaluates his query on any materialization of the global

schema which reflects the source data [9]. Of course, it has been

shown that the generated rewritings, especially via SLD-resolution,

could compute the certain answers. However, from a more gen-

eral point of view, and up to our knowledge, no certain answers

characterization w.r.t. answers of a definite program formalizing a

mediation setting has been proposed yet. This is the main contribu-

tion of this paper, which is based on a new compactness result that

characterizes certain answers w.r.t. an extension to infinite models

of certain answers.

RÉSUMÉ
En intégration de données relationnelles, certaines approches font

usage de la programmation logique pour obtenir des réponses à

une requête posée sur plusieurs sources. Plus précisément, dans les

contextes de médiation, où l’on suppose l’existence d’un schéma

global virtuel reliant tous les schémas des sources locales, certains

algorithmes sont basés sur la SLD-resolution pour générer des

réécritures des requêtes exprimées sur le schéma global, et ce afin

de pouvoir les évaluer sur les sources locales. Le but de cette éval-

uation est d’obtenir les réponses certaines [1]. Ces réponses sont

celles qui seraient toujours obtenues si l’utilisateur pouvait évaluer

sa requête sur toutes les matérialisations possibles du schéma global

en accord avec les données contenues dans les sources [9]. Bien

entendu, il a été démontré que les réécritures générées, notamment

par SLD-resolution, permettaient d’obtenir les réponses certaines.

Cependant, dans une perspective plus générale, il n’existe pas en-

core, à notre connaissance, de caractérisation des réponses certaines

en fonction des réponses d’un programme défini formalisant un

contexte de médiation. C’est la contribution principale de cet article,

qui s’appuie sur un résultat nouveau de compacité caractérisant les

réponses certaines en fonction d’une extension aux modèles infinis

de ces dernières.

CCS CONCEPTS
• Information systems→Mediators and data integration; Re-
lational database model;

KEYWORDS
certain answers ; compactness ; definite program ; local-as-view ;

mediation ; data integration

ACM Reference format:
Christophe Rey, Elias Tahhan-Bittar, and Jerzy Tomasik. 2017. Characteriz-

ing certain answers via compactness Caractérisation des réponses certaines

par compacité. In Proceedings of Unpublished, , November 2017, 14 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The query answering problem in relational data integration is the

problem of getting answers to a single user query from many het-

erogeneous relational data sources without forcing the user to

formulate herself her query on each source schema. In this context,

the mediation setting assumes a virtual global schema to which the

user can express her query, and then studies how to automatically

get answers from this single query. A well-studied algorithmical

approach to solve this is query rewriting: the user query is rewritten

into as many formulas as there are sources to query. The union of

all answers to all these rewritings evaluated on the corresponding

sources is the answer to the initial query. The set of obtained an-

swers must be the set of certain answers [1]: computing these is the

aim of the query answering problem, in data integration systems

that follow the mediation setting.

Previously, it has been shown that the generated rewritings, es-

pecially via SLD-resolution, could compute the certain answers.

However, from a more general point of view, and up to our knowl-

edge, no certain answers characterization w.r.t. answers of a definite

program formalizing a mediation setting has been proposed yet.

In this paper, we propose such a characterization. In other words,

we show the completeness of SLD-resolution for answering con-

junctive queries over local-as-view (LAV) mappings. And this result

is obtained through a compactness result that says that certain

answers do not change when evaluated on infinite or finite models.

Such results can appear to be well-known. Despite that they

implicitly arise from many previous works [1, 4, 9, 12, 14], we

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Unpublished, November 2017, C. Rey, E. Tahhan-Bittar, J. Tomasik

argue that they have never been fully detailed and proved, and that

detailing them is not trivial. In [1, 4, 14], the fact that SLD-resolution

is complete is assumed for different settings (e.g. assuming LAV,

global-as-view GAV or global-and-local-as-view GLAV mappings),

but its justification is always more or less implicit and not formally

given. In [12], theorem 1 shows that SLD-resolution, applied on

a rewriting that is a definite program, generates answers that are

answers to the original query. However this soundness proof does

not come with a completeness one. Moreover it is not clearly related

to the notion of certain answers. Another paper [14] uses SLD-

resolution for query answering in a mediation setting. But since

it is not the contribution of the paper, no proof is given that all

certain answers are computed.

In [9], some results are given that may suggest that a certain

answer for finite models can be mapped to a certain answer for any

infinite model. Intuitively, the explanation follows the following

steps: (i) a certain answer for finite models is a certain answer for

the chase, (ii) the chase terminates on source-to-target dependen-

cies (which can express e.g. LAV mappings), (iii) the result of the

chase is a universal solution, (iv) certain answers can be decided on

this universal solution by dropping nulls, and (v) all the previous

arguments seem to be straightforwardly extendable to infinite mod-

els (i.e. infinite universal solutions). Here again, we believe that the

reasoning is correct, but we argue that a precise proof is needed.

In this paper, we give such a detailed proof. Trying to start from

previous results, we quickly realized that we needed to redefine

many basic notions in order to be as precise as possible in our re-

sults. That’s why, before the compactness theorem and the certain

answers characterization, a large part of this paper is dedicated to

the recall of some formal notions from definite clauses to data inte-

gration concepts. We believe the obtained framework is interesting

as itself and consider it as the third contribution of this paper.

Now, let’s explain the idea underlying our certain answers char-

acterization. To better understand the link between certain answers

and answers of a definite program, let’s illustrate it with a detailed

example taken from [13].

Example 1.1. Assume that wewant to build an integration system

I that deals with bibliographic references of scientific papers in

a mediation setting. The global schema G is modeled with two

predicates
1
, cites(2) and sameTopic(2): cites(X ,Y) indicates that the

paper X cites the paper Y , and sameTopic(X ,Y) means that papers

X and Y share the same topic. So G = {cites, sameTopic}. Then, we
suppose we have three data sources, each described by one source

predicate, namelyv4(1),v5(2) andv6(2). We can consider these three

data sources as one, and then the source schema is S = {v4,v5,v6}.
To describe the content of these sources according to the global

schema, three mappings are defined:

q4(X) ← cites(X ,Y), cites(Y ,X) with v4 ⊆ q4,
q5(X ,Y) ← sameTopic(X ,Y) with v5 ⊆ q5, and
q6(X ,Y) ← cites(X ,Z), cites(Z ,Y), sameTopic(X ,Z)withv6 ⊆ q6.
The first mapping interprets as follows: (i) q4 gives the papers that
cite another paper which cites them, and (ii) if the global schema

was materialized, evaluating q4 would give a set of tuples that

would contain tuples of v4. So we say that v4 is contained in q4.
Similarly, v5 is contained in q5 describing couples of papers that

1
The number between brackets is the predicate arity.

have a same topic, and v6 in q6 describing couples of papers (X ,Y)
such thatX cites a paperZ of the same topic which citesY . Suppose
now the source database D is the following set of tables:

v4 1

2

3

v5 1 4

2 3

5 3

v6 5 5

2 5

As proved thereafter, this mediation setting can be modeled as the

following definite program P(I,D):
Facts Rules

v4(1).
v4(2).
v4(3).
v5(1, 4).
v5(2, 3).
v5(5, 3).
v6(5, 5).
v6(2, 5).

cites(X , f1(X)) ← v4(X).
cites(f1(X),X) ← v4(X).
sameTopic(X ,Y) ← v5(X ,Y).
cites(X , f3(X ,Y)) ← v6(X ,Y).
cites(f3(X ,Y),Y) ← v6(X ,Y).
sameTopic(X , f3(X ,Y)) ← v6(X ,Y).

Now, we have the user conjunctive queryq expressed on G:q(X) ←
cites(X ,Y), cites(Y ,X), sameTopic(X ,Y) that looks for papers that
cite other papers that cite them, having the same topic.

On one hand, in first order logic, answers of q w.r.t. P(I,D) are
all substitutions θ such that

∀X∀Y ((cites(X ,Y) ∧ cites(Y ,X) ∧ sameTopic(X ,Y))θ) is a logical
consequence of P(I,D). These can be computed by SLD-resolution

[16]. Here, there is only one: θ : X 7→ 5. Thus, by soundness of

SLD-resolution:

P(I,D) |=
∀Y (cites(5,Y) ∧ cites(Y , 5) ∧ sameTopic(5,Y))
i.e. all models of P(I,D) are models of ∀Y (cites(5,Y)∧cites(Y , 5)∧
sameTopic(5,Y)). Moreover, by completeness of SLD-resolution,

any other answer substitution is an instance of θ .
On the other hand, the certain answers of q w.r.t. I andD is the

intersection of all q(D ′) where D ′ is a database on G such that all

mappings of I are satisfied w.r.t. D, and q(D ′) is the evaluation of

q over D ′. This intersection may be infinite. But each D ′ is finite.

The ambition of this paper is to prove that certain answers,

defined as an intersection of finite models, exactly correspond to

ground answer substitutions which definition involve both finite

and infinite models.

The outline is the following. In section 2 we recall the semantics

of definite programs. We focus on a tuple point of view (instead

of a substitution one) so that linking it with answers of a database

query is made easier. In section 3, we recall notions of the relational

model from the answer tuple p.o.v., especially the characterization

of conjunctive query evaluation. In section 4 we present our contri-

bution: we extend the notion of certain answers (mainly to infinite

models), show that they coincide with classical certain answers (we

called this result certain answers compactness), and then use this

compactness to show classical certain answers exactly coincide to

ground answer tuples. We then conclude.

2 DEFINITE PROGRAM SEMANTICS
FROM THE ANSWER TUPLE P.O.V.

The aim of this section is to give (definition 2.6) the definite program

semantics in terms of answer tuples (instead of answer substitu-

tions) since it is closer to certain answers (cf. section 4). Thus section

Characterizing certain answers via compactness Unpublished, November 2017,

2.1 recalls many basic definitions, many of which being taken from

[16]. Then, in section 2.2 we recall what is an answer to a definite

goal w.r.t. a definite program, from both the (classical) substitution

the tuple p.o.v. We assume the reader is familiar with first order

logic syntax and semantics.

2.1 Preliminary notations and definitions
The set of variables that are used throughout the paper is denoted

by Var and the set of terms is denoted by Term. Any constant is

denoted by a lowercase letter such as a,b, c or indexed ones ai ,bi , ci .
Any variable is denoted by a capital letter such as X , Y , Z or by

indexed ones Xi , Yi or Zi . Any generic term (constant, variable or

functional term) is denoted by a calligraphic capital letter such as T

or indexed ones Ti . Atomic formulas are denoted by capital letters

such as A, B or indexed ones Ai , Bi .
Given n ∈ N, an n-tuple of terms is an element of Termn

; a tuple
is an n-tuple for some n ∈ N. When a tuple is given by its elements,

those are written into < · · · >. For instance < T1, · · · ,Ti , · · · ,Tn >

is a tuple: its ith term is denoted by < T1, · · · ,Ti , · · · ,Tn > (i) :=
Ti , its range is the set {T1, · · · ,Ti , · · · ,Tn }. Any tuple of terms

is denoted by an overlined calligraphic capital letter such as T .

Any tuple of constants is denoted by an overlined lowercase let-

ter, such as c . Any tuple of variables is denoted by an overlined

capital letter, such as X . The tuple concatenation X · Z of two

variable tuples X =< X1, . . . ,Xn > and Z =< Z1, . . . ,Zm >,

such that ∀i ∈ {1, . . . ,n},∀j ∈ {1, . . . ,m},Xi , Z j , is the tuple

< X1, . . . ,Xn,Z1, . . . ,Zm >. The size of a tuple of terms T is the

number of all terms that are in T and is noted |T |.

A term-substitution or substitution σ is an application that maps

each variable to a term (a constant, another variable or a functional

term). We use the postfix or left to right mapping notation for

substitutions, for instance the image by σ of X is denoted by Xσ .
The set {X ∈ Var |Xσ , X }, called support of σ and denoted by

supp(σ) is finite. The set of term-substitutions is denoted by TS. A

substitution is ground when images of variables in its support do

not contain any variable. The set of ground term-substitutions is

noted GTS. LetX =:< X1, . . . ,Xn > be an-tuple of pairwise distinct

variables andT =:< T1, . . . ,Tn > be a termn-tuple, the substitution

which support is the range of X and such that it maps the ith

variable of X to the ith term of T , for each i ∈ {1, ..,n}, is denoted

by {X/T } or {X1/T1, · · · ,Xn/Tn }. For any substitution θ and any

n-tuple of variables X knowing that X =< X1, . . . ,Xi , . . . ,Xn >

the image ofX by θ is the n-tupleXθ :=< X1θ, . . . ,Xiθ, . . . ,Xnθ >.

For any substitution σ and tuple of variables Y the substitution{
Y/Yσ

}
is called the restriction of the substitution σ to the tuple

of variables Y and is denoted σ�Y . A variable-substitution θ is a

term-substitution that maps variables to variables.

A valuation v is an application that maps each variable in Var to
an element of a set which is the domain of a structure (see definition

3.1). v is said to be associated to this structure. Let v a valuation

associated to a structure. Let X =< X1, . . . ,Xn > be a n-tuple of
pairwise distinct variables of Var . We use the same notation as

the one for substitution to denote the precise images by v of the

variables in X . For example, with X =< X1,X2,X3,X4 >, v can be

defined as {X1/a,X2/b,X3/c,X4/a}. Otherwise we use the prefix

notation for valuations. For instance, we note the previous example

v(X) =< a,b, c,a >. SinceVar is infinite, the domain of a valuation

is also infinite. However, we usually use a valuation in a precise

context where there is a finite number of variables. The previous

substitution-like notation for valuations suits well to these contexts.

The set of variables of a conjunction of atoms A1 ∧ · · · ∧Am is

noted var (A1 ∧ · · · ∧ Am). The set of variable of a variable tuple

Y is noted var (Y). The tuple of variables of a set E of variables is

noted E.
We now recall some notions about clauses, goals and programs.

We assume there is an always true (i.e. in every structure) nullary

connective noted � and an always false (i.e. in every structure)

nullary connective noted �.

Definition 2.1. Clause, definite clause
A clause is a first-order logic formula ∀L1 ∨ · · · ∨ Ln where each

Li is an atomic formula (a positive literal) or the negation of an

atomic formula (a negative literal)
2
. A definite clause is a clause that

contains exactly one positive literal, so having the form: ∀(A0 ∨

¬A1 ∨ · · · ∨ ¬An). The notational convention is to write such a

definite clause as a so-called rule: A0 ← A1, . . . ,An for n ≥ 0. In

this rule notation, the universal quantifier is omitted. A0 is called

the head of the rule and the expression A1, . . . ,An the body of the

rule, which corresponds to the formula A1 ∧ · · · ∧An .

When the body is empty (i.e. when n = 0) the implication arrow

may be omitted. In this case, the clause is called a fact. It corresponds

to the case where the body is �, i.e. A0 is equivalent to A0 ← and

to A0 ← �. Note that there are ground facts, i.e. facts that do not

contain any variable, and non-ground facts, i.e. facts that contain

universally quantified variables. When the head is empty (but not

the body), the clause is called a definite goal (cf definition 2.2 below).

The empty definite clause is the degenerated case when both the

body and the head are empty. It is written � since it corresponds

to← �, which is equivalent to ¬�.

Variables in the body and not in the head may be seen as exis-

tential variables, since, for instance, the following formulas are all

equivalent [16]:

∀X∀Y∀Z (дdchild(X ,Y) ← child(X ,Z) ∧ child(Z ,Y))
∀X∀Y∀Z (дdchild(X ,Y) ∨ ¬(child(X ,Z) ∧ child(Z ,Y)))
∀X∀Y (дdchild(X ,Y) ∨ ∀Z¬(child(X ,Z) ∧ child(Z ,Y)))
∀X∀Y (дdchild(X ,Y) ∨ ¬∃Z (child(X ,Z) ∧ child(Z ,Y)))
∀X∀Y (дdchild(X ,Y) ← ∃Z (child(X ,Z) ∧ child(Z ,Y)))
Let Π : B0 ← B1, . . . ,Bn be a definite clause in P , the set of vari-
ables of Π is noted var (Π) = ∪ni=0var (Bi). Let’s define now what

is a definite goal, a definite query and a definite program.

Definition 2.2. Definite goal, query, program
A definite goal is a clause that contains no positive literal, and at

least one negative, so having the form:∀(¬A1∨· · ·∨¬An), forn ≥ 1,

also written← A1, . . . ,An . A definite query is a formula of the fol-

lowing kind ∃Z A1∧ . . . ∧An where: (i) theAi s are atomic formulas,

(ii) Z contains the existentially quantified variables of the formula

(these variables are thus called existential), (iii) the free variables

of the formulas are contained in X (these variables are also called

distinguished), and (iv) w.l.o.g. we pose X ·Z = var (A1 ∧ · · · ∧An).

2
The universal quantifier means that each variable of the formula is universally

quantified.

Unpublished, November 2017, C. Rey, E. Tahhan-Bittar, J. Tomasik

The name of such a definite query is a rounded capital letter fol-

lowed by

(
X ;Z

)
, e.g. Q

(
X ;Z

)
. The tuple Y = X · Z is called the

query variables tuple, X is called the distinguished query variables

tuple and Z is called the existential query variables tuple of Q
(
X ;Z

)
.

The definite goal associated to Q
(
X ;Z

)
is Q

(
X ;Z

)
:← A1, . . . ,Am .

Both the definite query and its associated definite goal have the

same name, which is Q

(
X ;Z

)
. Let Q

(
X ;Z

)
: ∃Z ,A1∧ . . .∧An be

a definite query. Let Q2

(
X ;Z

)
:← B1, . . . ,Bm be a definite goal.

We define the notion of "body" as follows: (i) Body(Q

(
X ;Z

)
) is the

formulaA1∧ . . .∧An (without ∃Z), and (ii) Body(Q2
(
X ;Z

)
) is the

following expression B1, . . . ,Bm (without the left arrow). A definite
program is a finite set of definite clauses and/or facts. An extended
definite program is the union of a finite set of definite clauses and a

(possibly infinite) set of facts.

2.2 Goal answers and query answers
In this section, we define what is a goal answer, first in terms of a

substitution (definition 2.3), and second in terms of a tuple of terms

(definition 2.4). These two definitions are semantical in the sense

that they refer to logical implication only (they do not refer to any

syntactical procedure to compute these answers).

As usual, the logical implication symbol |= has two meanings.

First, I |= φ means that the structure I satisfies the closed formula

φ. We say also φ is true in I, and also I is a model of φ. Moreover,

for a set of formulas P: I |= P iff I is a model of each formula in P.

Second, for a set of formulas P, P |= φ iff I |= φ, for all structure
I s.t. I |= P. As for rules, when writing logical implication, for a

sake of simplicity, the universal quantifier will usually be omitted.

Definition 2.3. Goal answer substitution
Let P be an extended definite program. A P answer substitution to a

definite goal Q

(
X ;Z

)
:← A1, . . . ,Am

is a substitution σ such that: P |= (A1 ∧ . . . ∧Am)σ .

The set of P answer substitutions to a goal

Q

(
X ;Z

)
:← A1, . . . ,Am is noted AS(Q

(
X ;Z

)
, P):

AS(Q

(
X ;Z

)
, P) = {σ ∈ TS | P |= (A1 ∧ . . . ∧Am)σ } .

Note that, every extended definite program P implies logically

the conjunction of an empty set of formulas denoted by �. Thus

AS(�, P) = TS since AS(�, P) = {σ ∈ TS | P |= �σ } = TS.

Definition 2.4. Goal answer tuple
Let P be an extended definite program. A goal answer tuple of a

definite goal Q

(
X ;Z

)
:← A1, . . . ,Am w.r.t. P is a tuple of terms

(X · Z)σ where σ is a P answer substitution to Q

(
X ;Z

)
. The set of

goal answer tuples of Q

(
X ;Z

)
w.r.t. P , is noted GAT(Q

(
X ;Z

)
, P):

GAT(Q

(
X ;Z

)
, P) = {(X · Z)σ | σ ∈ AS(Q

(
X ;Z

)
, P)} .

Now we know what is a goal answer tuple, we can define what

is a query answer tuple. Roughly speaking, it is a restriction of a

goal answer tuple over the distinguished query variable tuple.

Definition 2.5. Query answer tuple

Let P be an extended definite program, Q

(
X ;Z

)
a definite query,

and σ a substitution. Xσ is a query answer tuple to Q
(
X ;Z

)
w.r.t.

P , if (X · Z)σ is a goal answer tuple of Q

(
X ;Z

)
. I.e. the set of

query answer tuples of the definite query Q

(
X ;Z

)
w.r.t. P , noted

QAT(Q

(
X ;Z

)
, P), is:

QAT(Q

(
X ;Z

)
, P) = {Xσ | σ ∈ AS(Q

(
X ;Z

)
, P)} .

Therefore each goal answer tuple corresponds to one query

answer tuple, and each query answer tuple corresponds to at least

one goal answer tuple. In the following, we focus on ground query

answer tuples.

Definition 2.6. Ground query answer tuple

Let P be an extended definite program and Q

(
X ;Z

)
be a definite

query . We define the set of ground query answer tuples of Q
(
X ;Z

)
w.r.t. P as:

GQAT(Q

(
X ;Z

)
, P) =

{T ∈ QAT(Q

(
X ;Z

)
, P) | T is ground}

Example 2.7. Going on with our running example, the definite

query Q(⟨X ⟩ ; ⟨Y ⟩) equivalent to the conjunctive query q is:

← ∃Ycites(X ,Y) ∧ cites(Y ,X) ∧ sameTopic(X ,Y)
for which there is:

GAT(Q(⟨X ⟩ ; ⟨Y ⟩), P(I,D)) = {⟨5, f3(5, 5)⟩},
QAT(Q(⟨X ⟩ ; ⟨Y ⟩), P(I,D)) = {⟨5⟩}, and
GQAT(Q(⟨X ⟩ ; ⟨Y ⟩), P(I,D)) = {⟨5⟩}.

3 RECALLS IN RELATIONAL DATABASES
Based on recalls from [3, 4, 6], the aim of this section is to prove that

definite queries have the same semantics as conjunctive queries

when evaluated on finite or infinite relational structures (theorem

3.15). This result is not new but is given here from the answer tuple

point of view. Usually, in relational databases, conjunctive queries

are evaluated on a relational database which is, roughly, a finite,

relational Herbrand model. To fill the gap with finite or infinite rela-

tional structures, we mainly introduce, in section 3.1, the notion of

name extension for a first order language and a relational structure.

This allows each element of a relational structure to be the interpre-

tation of a constant in the structure (either itself or a preexisting

constant), thus getting close to a Herbrand model (cf. definition 3.4

and lemma 4.2). In section 3.2, we use name extension to define

relational databases. In section 3.3, we recall that a relational struc-

ture can be viewed as an extended definite program and we show

that logical implication w.r.t. this structure coincides, for definite

queries, with logical implication w.r.t. the corresponding program.

Then, in section 3.4, after defining conjunctive queries, we give

the characterization of their semantics in terms of ground query

answer tuples. We end this section by giving a characterization of

conjunctive query inclusion in terms of logical implication.

Characterizing certain answers via compactness Unpublished, November 2017,

3.1 Relational structures and name extensions
Definition 3.1. Relational structure, active domain

A FO relational languageL is defined as a couple (R, C)whereR is a

non empty finite set of relation symbols and C is a (possibly infinite

and possibly empty) set of constant symbols such that R ∩ C = ∅.

When C is empty, we talk about the relational schema R instead of

the FO relational language L.

Assuming a FO relational language L = (R, C). A relational
structure D for L (or L-structure) is a triple

〈
|D|,L, .D

〉
, defined

as follows:

• |D| is a (possibly infinite) set called the universe (or the

domain) of D.

• L = (R, C) is the signature (or the alphabet) ofD.R is called

the schema ofD. Each predicate symbol ri ∈ R is associated

to an integer ≥ 1 called its arity and noted arity(ri).

• .D is an interpretation function

– which assigns an element of |D| to each constant symbol

c ∈ C, and
– which assigns a subset of |D|ar ity(ri) to each relation

symbol ri ∈ R. This subset is noted r
D
i and is called the

interpretation of ri in D.

When C = ∅, we say D is a relational structure for the schema R.
The structure is finite when all rDi is finite.

The active domain of D, denoted by adom(D), is the set of el-

ements of the domain which occur in some interpretation of a

relation of D.

Definition 3.2. Name extension
Given a FO relational language L = (R, C) and a structure D for

L. The name extension of the language L by D is the FO relational

language (L)ν = (R, Cν) such that Cν is the union of C (the set

of constants in L) with the set of elements of |D| which are not

equal to an interpretation of a constant in C.

Given a FO relational language L = (R, C) and a relational

structure D =
〈
|D|,L, .D

〉
for L.

Dν =
〈
|Dν |,Lν , .D

ν 〉
is the name extension of D if:

• |Dν | = |D|

• Lν is the name extension of L by D

• and .D
ν
:

– c 7→ cD
ν
= cD , ∀c ∈ C

– c 7→ cD
ν
= c , ∀c ∈ Cν \C

– ri 7→ rD
ν

i = rDi , ∀ri ∈ R.

Definition 3.3. Name, name substitution and name set
Given a FO relational language L = (R, C), and D be an structure

for L = (R, C). For each c ∈ |D| we say that a constant c ′ ∈ Cν is

a name for c if (c ′)D
ν
= c . The notation N (c ′, c) means that c ′ is a

name for c .
Let v be a valuation from the set of variables Var to |D|, we say

that a substitutionv ′ is a name substitution forv if for each variable

X , Xv ′ is a name for v(X) (i.e. N (Xv ′,v(X))); we abbreviate by

N (v ′,v).
Let E ⊆ |D|n . We define the name set of E as follows: N(E) =

{
〈
c ′
1
, . . . , c ′n

〉
∈ (Cν)n | ∃ ⟨c1, . . . , cn⟩ ∈ E s.t. N (c ′i , ci),∀i ∈ {1, . . . ,n}}.

In other words, we have N (c ′, c) iff either (c ∈ |D|\CD and

c = c ′), or (c ′ ∈ C and c ′D = c). Moreover, a valuation has always

at least one name substitution, and may have several name substi-

tutions if the interpretation by D of constants in C is not one to

one. By contrast, a ground substitution can be a name substitution

for only one valuation.

3.2 Relational databases
We can now define what is a database.

Definition 3.4. Relational database
A relational database (or simplier a database) is the structure name

extension of a relational structure which language has no constant

and where all predicate interpretations are finite.

Note that:

• Since a relational database is a relational structure then its

universe may be infinite as in example 3.5.

• For the sake of simplicity, we will denote databases Dν
as

relational structures D, i.e. without the
ν
superscript. For

instance, D will be used to denote either a database or a

relational structure.

• If D is a database and R is the set of relation names, then

we say D is a (relational) database for the schema R.

Example 3.5. Going on with our running example, we suppose

we have the relational language L = (R, C) with R = {v4,v5,v6}

and C = ∅, and the relational structureD =
〈
|D|,L, .D

〉
for L de-

fined as follows: |D| = N and .D is such thatv4D = {⟨1⟩ , ⟨2⟩ , ⟨3⟩},
v5D = {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨5, 3⟩}, and v6D = {⟨5, 5⟩ , ⟨2, 5⟩}. Then
the structure name extension of D is a finite structure Dν =〈
|Dν |,Lν , .D

ν 〉
defined as follows: |Dν | = |D| = N, Lν =

({v4,v5,v6},N), and .D
ν
is such that:

i 7→ iD
ν
= i, ∀i ∈ N,

v4 7→ v4D
ν
= {⟨1⟩ , ⟨2⟩ , ⟨3⟩} = v4D ,

v5 7→ v5D
ν
= {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨5, 3⟩} = v5D , and

v6 7→ v6D
ν
= {⟨5, 5⟩ , ⟨2, 5⟩} = v6D .

Let D be a relational database for the schema R. That means

the relational language for which D is a relational structure is

L = (R, |D|). Since D is itself the name extension of a relational

structure, then it is clear that the name extension of L byD is itself

and that the name extension of D is itself as well. So it is clear that

we have N (c, c) for all c ∈ |D|.

Lemma 3.6. Let D be a database for R. We have:

Thus, for any valuationv from Var to |D|, there is only one name

substitution v ′, which is equal to v . Henceforth, for databases, we
may denote by the same way a valuation and its name substitution,

except we keep the postpositioned notation for substitutions and

the prepositioned notation for valuations.

3.3 From a structure to its ground theory
In this section, we define the ground theory Ddef of a relational

structureD. Informally, this is the set of all ground atomic formulas

that derive from relations interpretation that define D. We show

the link between this set and the logical consequences of the name

extension of D. Since Ddef can be viewed as extended definite

program, this allow, in next section, to link the answers of a query

over a relational structure to the answers of a definite goal over a

extended definite program.

Unpublished, November 2017, C. Rey, E. Tahhan-Bittar, J. Tomasik

Definition 3.7. Ground theory of a relational structure
Let L = (R, C) be a FO relational language and D be a relational

structure for L. The ground theory Ddef of D is the following set

of ground atomic formulas of Lν = (R, Cν) :

Ddef := {r (c ′
1
, . . . , c ′n) | r ∈ R and ∃ ⟨c1, . . . , cn⟩ ∈ r

D

s.t. N (c ′i , ci),∀i ∈ {1, . . . ,n}}

Example 3.8. In the running example, we have:

Ddef = {v4(1),v4(2),v4(3),v5(1, 4),v5(2, 3),v5(5, 3),v6(5, 5),v6(2, 5)}.

Let’s make some remarks about this definition :

• For one tuple ⟨c1, . . . , cn⟩ ∈ r
D

there may be several ground

atomic formulas r (c ′
1
, . . . , c ′n) such that ∀i ∈ {1, . . . ,n}, we

have N (c ′i , ci).
• The FO language Ldef used to build formulas that are in

Ddef is relational. Indeed, it is clear by construction that

Ldef = (R, C
ν), which is the same as the one of Dν

.

• It is easy to see that Dν
is a model of Ddef . Moreover, it is

a minimal model (w.r.t. inclusion). However Dν
is not the

only minimal model of Ddef since there can be models on

other domains.

• On the contrary of Dν
, D might not be a model of Ddef .

Indeed, if Cν , C then there will be atomic formulas in

Ddef expressed with a different language than the one for

whichD is a relational structure. Thus,D cannot be a model

for such formulas.

Recall that, in a database D for a schema R all relation inter-

pretations are finite. So, when these are defined by extension, then

the set of ground formulas Ddef is finite and can be viewed as an

extended definite program (made of ground atomic formulas only).

Now, we can express logical implication for atomic formulas in

terms of our previous definitions.

Lemma 3.9. Let D be a relational structure for a relational lan-
guage L = (R, C). Let Lν be the language (R, Cν). Let v : Var →
|D| be a valuation. Letψ , ψ1, . . . , ψm be atomic formulas of L. We
have:

(1) (D |=v ψ) ⇔ (D
ν |=v ψ)

(2)

(
D |=v ∃Z (ψ1 ∧ . . . ∧ψm)

)
⇔

(
Dν |=v ∃Z (ψ1 ∧ . . . ∧ψm)

)
Proof of previous lemma is given in appendix A.

Lemma 3.10. Let D be a relational structure for a relational lan-
guage L = (R, C). Let Lν be the language (R, Cν). Let u ′ : Var →
Cν be a ground substitution. Let v : Var → |D| be a valuation and
v ′ : Var → Cν be one of its name substitutions. Let φ,φ1, . . . ,φn be
atomic formulas of Lν . We have:

(1)

(
φu ′ ∈ Ddef

)
⇔

(
Ddef |= φu

′
)

(2) (Dν |=v φ) ⇔
(
φv ′ ∈ Ddef

)
(3) (Dν |=v φ1 ∧ . . . ∧ φn)

⇔

(
Ddef |= (φ1 ∧ . . . ∧ φn)v

′
)

(4)

(
Dν |=v ∃Z (φ1 ∧ . . . ∧ φn)

)
⇔

(
Ddef |= (∃Z (φ1 ∧ . . . ∧ φn))v

′
)

Proof of previous lemma is given in appendix A.

From point 1. of lemma 3.10, we have that, for any ground atomic

formula φ of of Lν : φ < Ddef ⇔ Ddef ̸ |= φ. This leads us to
consider the so-called Open and Closed World Assumptions, as

follows:

• the Closed World Assumption (CWA) is assumed when we

consider as true each formula in the atomic ground formula

completion Ddef of Ddef , i.e.

Ddef = Ddef ∪ {¬φ | φ is a ground atomic formula and

φ < Ddef }

• the Open World Assumption (OWA) is assumed when we

consider that for any ground atomic formula φ such that

φ < Ddef , we have nothing more than Ddef ̸ |= φ (i.e. there

exists a structure I s.t. I |= Ddef and I ̸|= φ).

We will reuse these notions in section 4.

By Lemmas 3.9 and 3.10, we conclude on the equivalence, for

definite queries, of logical implication w.r.t. a relational structure

and logical implication w.r.t. associated extended definite program.

Corollary 3.11. Let D be a relational structure for a relational
languageL = (R, C). LetLν be the language (R, Cν). Letv : Var →
|D| be a valuation and v ′ : Var → Cν be one of its name substitu-
tions. Letψ ,ψ1, . . . ,ψm be atomic formulas of L. We have:(
D |=v ∃Z (ψ1 ∧ . . . ∧ψm)

)
⇔

(
Ddef |= (∃Z (ψ1 ∧ . . . ∧ψn))v

′
)
.

3.4 Conjunctive queries
In this section, we recall what is a conjunctive query (CQ) in the

relational structures context. Informally, a conjunctive query is

a function that associates a subset of the universe to a relational

structure. It is defined by a conjunction of positive literals, which

arguments may be constants, existential variables or free variables.

We’ll see thereafter that it corresponds to the definition of a definite

query (without function symbol).

Definition 3.12. Conjunctive query syntax [2, 5]
Let (R, C) be a FO relational language. A conjunctive query q on

(R, C) of arity n is an expression of the following form:

q(X) ← p1(X1), . . . ,pm (Xm)
such that:

• m ≥ 1,

• q is a symbol which belongs to a new alphabet, the alphabet

of queries, disjoint from R and C,

• ∀i ∈ {1, . . . ,m},pi ∈ R,

• ∀i ∈ {1, . . . ,m}, |Xi | = arity(pi) and |X | = n = arity(q),

• X1, . . . ,Xm are tuples containing variables from Var and/or
constants from C,

• w.l.o.g. X contains only variables, and

• var (X) ⊆
⋃

i ∈{1, ...,m }
var (Xi) (i.e. q is "safe").

The part that is on the left of the← symbol is called the head of

the query. The part that is on the right of the← symbol is called

the body of the query.

Now, to capture the intuition that a conjunctive query corre-

sponds to a definite query (or goal) without function symbol, we

need the following definition.

Characterizing certain answers via compactness Unpublished, November 2017,

Definition 3.13. Associated definite query
Let q(X) ← p1(X1), . . . ,pm (Xm) be a conjunctive query on a FO

relational language (R, C). The definite query (resp. goal) Q
(
X ;Z

)
associated to q is the following expression:

Q

(
X ;Z

)
: ∃Z ,A1 ∧ . . . ∧Am

(resp.) Q

(
X ;Z

)
:← A1, . . . ,Am , where:

• Ai = pi (Xi),∀i ∈ {1, . . . ,m}

• var (Z) = (
⋃

i ∈{1, ...,m }
var (Xi)) \var (X)

We can now introduce the following notation for conjunctive

queries. A conjunctive query q on a schema (R, C) may now be

noted

q(X) ← ∃Z , Body(Q
(
X ;Z

)
) or

q(X) ← ∃Z ,A1 ∧ . . . ∧Am

knowing that Q

(
X ;Z

)
: ∃Z ,A1∧ . . .∧Am is its associated definite

query.

Now, we give the definition of conjunctive query semantics w.r.t.

a relational structure.

Definition 3.14. Conjunctive query semantic w.r.t. a relational
structure
Let D be a relational structure for a FO relational language (R, C).

Let q be the conjunctive query q(X) ← ∃Z ,A1 ∧ . . . ∧Am of arity

n on a FO relational language (R ′, C′). The answer to q over D,

denoted qD , is defined only for R ′ ⊆ R and C′ ⊆ C as follows:

qD = {⟨c1, . . . , cn⟩ ∈ |D|
n |

D |={X1/c1, ...,Xn/cn }

(
∃Z ,A1 ∧ . . . ∧Am

)
}

When the FO relational language (R ′, C′) is not given, then it is

assumed to be (R, C).

In the previous definition, we do see the purpose of name ex-

tension: qD ⊆ qD
ν
and they may be different whenever some

elements of the domain used in the interpretation of predicates

are not themselves the interpretation of any constant. So dealing

with the name extension allows to get all possible answer tuples

during the evaluation of q. Definition 3.14 applies also to databases,

excepted that in this case we have qD = qD
ν
(since D = Dν

from

lemma 3.6).

The previous definition shows that the← symbol used to write

a conjunctive query in definition 3.12 has no logical meaning, oth-

erwise it would be the equivalence↔ symbol. Nevertheless, it can

be interpreted with an operational meaning: to effectively compute

the answer to q, we have to achieve computations from what we

know about predicates used in the body of q. The← denotes the

way this computation is done.

We’ve said that the semantics of (or the answer to) a conjunctive

query q with arity n over D for the schema R is denoted qD . We

recall the same notation rD
′

is used to denote the interpretation of a

predicate symbol r of a schema R ′ in a given databaseD ′. So there

is a common notation to denote the intentionally defined query

predicate q and the extensionally defined predicate r . Whatever

kind of predicate r belongs to, rD is said to be the extension of r in
D for the schema R ∪ {r }.

Since a definite query is associated to each conjunctive query,

then it is natural to remark that evaluating a conjunctive query w.r.t.

a databaseD must be very close to evaluating a definite query w.r.t.

the ground theory Ddef of D. The following proposition clarifies

this point for relational structures.

Theorem 3.15. CQ evaluation characterization

Let D be a relational structure for a FO relational language (R, C).
Let q be the conjunctive query of arity n, associated to the definite

query Q
(
X ;Z

)
, on the FO relational language (R ′, C′) with R ′ ⊆ R

and C′ ⊆ C. We have:
GQAT(Q

(
X ;Z

)
,Ddef) = N(q

D)

where (cf. def. 3.3):
N(qD) = {

〈
c ′
1
, . . . , c ′n

〉
∈ (Cν)n |

∃ ⟨c1, . . . , cn⟩ ∈ q
D s.t. N (c ′

1
, c1), . . . ,N (c

′
n, cn)}.

The proof of this theorem is given in appendix A.

Applied to relational databases, the previous result, which is

databases and logic programming folklore now, is important since

it shows that conjunctive queries have the same semantics as their

associated definite query, which can be computed by logic program-

ming algorithms as SLD-resolution for example.

Before focusing on data integration issues, we recall the notion

of query inclusion.

Definition 3.16. Conjunctive query inclusion
Let q1 and q2 be two conjunctive queries on the relational language

(R, C). We say that q1 is contained into q2, noted q1 ⊆ q2, if for

every relational structureD for the language (R, C) we have qD
1
⊆

qD
2
.

Query inclusion can be characterized w.r.t. logical implication

as follows.

Lemma 3.17. Let q1 and q2 be two conjunctive queries, with the

same arity, on the same relational language (R, C) and let Q1
(
X ;Z

)
and Q2

(
W ;V

)
be their respective associated definite query. For every

relational structure D for (R, C) we have:

qD
1
⊆ qD

2
⇔ D |= ∀X ((∃ZBody

(
Q1

(
X ;Z

))
) →

(∃VBody
(
Q2

(
X ;V

))
))

The proof of this lemma is given in appendix A.

4 CERTAIN ANSWERS IN MEDIATION
The aim of this section is to characterize (theorem 4.26) the certain

answers of a conjunctive query q in an integration system by show-

ing their equality with the ground query answer tuples of a definite

query corresponding to q w.r.t. a definite program modeling the

integration system.

The main issue to obtain this characterization comes from the

fact that certain answers are defined as a (possibly infinite) inter-

section of databases (i.e. finite relational Herbrand models) and

that the goal query answer tuples are defined w.r.t. all models of

the definite program. Three elements are used to solve this issue.

The first is the Herbrand model theorem (theorem 4.5 [10]) that

says a first order sentence is true in all structures iff it is true in

all Herbrand models. The second is a new compactness theorem

Unpublished, November 2017, C. Rey, E. Tahhan-Bittar, J. Tomasik

(theorem 4.20) that says (classical) certain answers are equal to a

new extended notion of certain answers, namely Herbrand certain

answers (definition 4.18). The third is the clausal form theorem

(theorem 4.24 [7]) that says a first order sentence is true w.r.t. a set

of formulas iff it is true w.r.t. the clausal form of the conjunction of

all these formulas.

These three elements are presented according to the following

outline. In section 4.1, we recall the definition of Herbrand model

and some associated properties, including the Herbrand model theo-

rem. Then, in section 4.2, we definewhat is a data integration system

using Hebrand models. We show some simple associated properties.

At last, in section 4.3, we define the classical and extended forms of

certain answers, before showing their correspondance through the

compactness theorem. Then we recall the notion of clausal form

and the associated theorem, before ending the section with the

certain answers characterization.

4.1 Herbrand Models
We follow [10] for Herbrand models presentation. Herbrand models

are structures characterized by the fact that their universe is the

set of ground terms deriving from the used first order language.

Thus relational Herbrand models have their set of constants as their

universe. Usually, for instance in relational databases, this set of

constants is supposed to be infinite. To cope with any first order

language, especially those having a finite set of constants, we need

the extra notion of L-parameters extension [10] (of a relational

language) to define Herbrand model in the most general way.

Definition 4.1. Relational Herbrand model
Given a relational first order languageL = (R, C). Assuming a fixed

non empty infinite countable set of constant symbols U (called

the domain) such that R ∩ U = ∅, C ⊂ U and U\C is infinite.

The language LH = (R,U) is called a L-parameters extension. A
LH -Herbrand model D is a relational structure

〈
U, (R,U), .D

〉
,

defined as follows:

• U is the (Herbrand) universe of D, often noted |D|.

• (R,U) is the signature (or the alphabet) of D. The set R

is called the schema of D. Each predicate symbol ri is as-
sociated to an integer ≥ 1 called its arity. We note it by

arity(ri).

• .D is an interpretation function

– which assigns each constant symbol c ∈ U to itself, and

– which assigns a subset ofUar ity(ri)
to each relation sym-

bol ri ∈ R. This subset is noted rDi and is called the

interpretation of ri in D.

From definitions 3.4 and 4.1, it is easy to derive the following

lemma.

Lemma 4.2. Given a relational first order languageL = (R, C). Let
LH = (R,U) be aL-parameters extension. LetD be aLH -Herbrand
model. If adom(D) is finite, then D is a relational database.

Moreover, from definition 3.3, lemma 3.6 and 3.10, it is easy to

derive the following results.

Lemma 4.3. Given a relational first order language L = (R, C), a
L-parameters extensionLH = (R,U) and aLH -HerbrandmodelD.
Let v : Var → |D| be a valuation. Then v is also a name substitution

forv (i.e. for itself) and we have:
(
φv ∈ Ddef

)
⇔

(
Ddef |= φv

)
for

every atomic LH -formula φ. Moreover, for any n ∈ N, if F ⊆ |D|n

then N(F) = F .

We end this section by the Herbrand model theorem, expressed

using the Herbrand validity notation.

Definition 4.4. Herbrand Validity
Given a sentence φ of the relational first order languageL = (R, C).

Let LH = (R,U) be a L-parameters extension:

|=H φ iff D |= φ for every LH -Herbrand model D.

Theorem 4.5. Herbrand Model. Theo. 5.9.4 from [10]

Given a sentence φ of the relational first order language L = (R, C).
There is:
|= φ iff |=H φ.

4.2 Data integration system
We refer the reader to [4, 6] for studies on data integration systems.

In this paper, we focus on the source-centric approach of data

integration, also known as the Local-As-View (LAV) mediation

setting, using the LAV mappings, with which the source schema

is expressed w.r.t. the global schema. More precisely, each source

is considered as a relation that is defined by a view which is a

conjunctive query expressed with the predicate symbols of the

global schema, and all these relations constitute the source schema.

In this approach, the global schema is supposed not to change

when data sources join or leave the integration system [3]. On the

contrary, sources may be updated easily by changing the query that

defines them.

In the mediation setting, the global schema is virtual: it means we

know the set of predicates that defines it, but we do not know any

instance for it. Contrary to the global schema, the source schema is

materialized: it means that we know both the source predicate set

and the interpretation of each source predicate. In this context, a

LAVmapping is a query on the global schema associated to a source

predicate. The answer to this query is linked by a subset relation to

the known interpretation of the associated source predicate. In other

words, we know a query on the global schema (the LAV mapping),

but we do not know any database for the global schema, so we

do not know the answer to this query. But this answer is linked

by a subset relation to a known set of tuples (the interpretation

of the corresponding source predicate). This subset relation gives

information about the content of the database for the global schema.

Definition 4.6. Data integration system [4, 6]
A DIS (data integration system) I is a triple

I =
〈
G,S,MG,S

〉
where:

• G is a finite set of predicate symbols, and is called the global

schema,

• S is a finite set of predicate symbols, disjoint from G and

called the source (or local) schema, and

• MG,S is a set of mappings between G and S which will be

defined further.

Definition 4.7. DIS source database and global instance
Let I =

〈
G,S,MG,S

〉
be a DIS.

• Let D be a database for the schema S. D is called a source
database for I.

Characterizing certain answers via compactness Unpublished, November 2017,

• Let L = (S ∪ G, |D|) and let LH = (S ∪ G,U) be a L-

parameters extension. We say that LH is a Herbrand lan-

guage for (I,D).

• Let D ′ =
〈
U, (S ∪ G,U), .D

′
〉
be a LH -Herbrand model;

D ′ is called a global instance for I (or a global database for
I if D ′ is finite) when:

D ′ |=
(∧
Ddef

)
In this context, we say that (D,D ′) is a source database and global

instance pair for I. Notice that if (D,D ′) is a source database and
global instance pair for I, then for every s ∈ S we have sD ⊆ sD

′

.

Whether sD = sD
′

or not determines the notion of conservative

global instance.

Definition 4.8. Conservative global instance
Let I =

〈
G,S,MG,S

〉
be a DIS and (D,D ′) a source database

and global instance pair for I. D ′ is a conservative global instance
for (I,D) if for every s ∈ S we have sD = sD

′

.

A case of conservative global instance is given in example 4.13.

[3] gives a proof that a conservative global instance can always be

built.

Proposition 4.9. Existence of conservative instances

Let I =
〈
G,S,MG,S

〉
be a DIS. Let D be a source database. Let

LH be a Herbrand language for (I,D). LetD ′ be the LH -Herbrand
model defined by
∀s ∈ S, sD

′

= sD and ∀д ∈ G, дD
′

= |D|ar ity(д). (D,D ′) is
a source database and global instance pair for I such that D ′ is a
conservative global instance for (I,D).

To complete the definition of DIS, we need to explicit the notion

of LAV mapping.

Definition 4.10. LAV mapping
Let I =

〈
G,S,MG,S

〉
be an integration system. Let s ∈ S. A

LAV mapping between s and the global schema G is an expression

among the following three:

• s ⊆ q (sound LAV mapping),

• s ⊇ q (complete LAV mapping),

• s ≡ q (exact LAV mapping), which is a shortcut for both

s ⊆ q and s ⊇ q,

where q is a conjunctive query on G with the same arity as s .
Let (D,D ′) be a source database and global instance pair for I.

A LAV mapping l is true in (D,D ′), noted (D,D ′) |= l , if:
• if l has the form s ⊆ q then sD

′

⊆ qD
′

,

• if l has the form s ⊇ q then sD = sD
′

⊇ qD
′

or

• if l has the form s ≡ q then sD = sD
′

= qD
′

.

Generally in data integration, mappings are assumed to be sound.

Since LAV mappings are defined using a query (called q in the

previous definition) on the global schema G, then we often talk

about sound LAV mapping as "sound views" on G. Intuitively, if s
is a sound view it means that each tuple in the interpretation of

s in the current source database is a tuple in the evaluation of q
over any global instance. Moreover, s is a sound view means that

there may be tuples in the evaluation of q that are not present in

the interpretation of s . This means that some tuples that are not in

s may be still true in q. This is why, by analogy with the OWA, we

say that the OWA (on the views w.r.t. the global schema) is made

whenever we deal with sound LAV mappings.

The opposite case happens when sources are still assumed to

be sound but when every other unknown fact is considered to be

false (w.r.t. to the interpretation of q). This means that sources

are considered to be complete (in addition to be sound). So this

is equivalent to the assumption that views are exact. By analogy

with the CWA, we say that the CWA (on the views w.r.t. the global

schema) is made whenever we deal with sound and complete (ie

exact) LAV mappings.

CWA is the classical assumptionwhen studying relational databases.

On the contrary, OWA is considered the best assumption when

dealing with data integration. Indeed, when trying to integrate

data coming from different heterogeneous sources, it seems more

realistic to consider that an unknown fact is not necessarily false.

That is why, from now on, we will focus on the LAV mappings

under the OWA.

The following proposition explicits the inclusion contained in a

sound LAV mapping: it is basically a logical implication in D ′.

Proposition 4.11. Let I =
〈
G,S,MG,S

〉
be an integration

system. Let (D,D ′) be a source database and global instance pair
for I. Let s ⊆ q be a sound LAV mapping, with Q(X ;Z) the definite
query associated to q. We have: (D,D ′) |= s ⊆ q iff
D ′ |= ∀X (s(X) → ∃Z Body(Q(X ;Z))

Proof. By definition 4.10 and lemma 3.17. �

4.3 Query answering in a DIS
Query answering is an important issue in data integration. It is the

problem of computing the answer to a query posed on the global

schema of a source instance of an integration system. The only

data usable to generate the answers are in the sources. However

we can derive information about the global schema database by

reasoning from sources data and the LAV mappings. The idea is to

consider only the global schema databases that are coherent with

the mappings knowing the source database. These are called the

valid instances of the global schema. Then answers to a query can

be defined as common answers to all valid instances. These are

called certain answers. Certain answers define the semantics of a

data integration query answering problem [1] (with LAV mappings

and under the OWA).

Definition 4.12. Valid global instance
Let I =

〈
G,S,MG,S

〉
be an integration system, with LAV map-

pings in MG,S , assuming the OWA. Let (D,D ′) a be a source

database and global instance pair, for I. D ′ is a valid global in-
stance for (I,D) if ∀l ∈ MG,S, (D,D ′) |= l ; we say also that

(D,D ′) is a source database and valid global instance pair for I .

Example 4.13. Going on with the running example with I =〈
G,S,MG,S

〉
be the studied integration system. Let’s assume we

have L = ({v4,v5,v6}, {1, 2, 3, 4, 5}) as the initial first order rela-
tional language. Then the source database D defined by

v4D = {⟨1⟩ , ⟨2⟩ , ⟨3⟩},
v5D = {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨5, 3⟩}, and
v6D = {⟨5, 5⟩ , ⟨2, 5⟩}
can be viewed as aLH -Herbrandwith, for instance,LH = ({v4,v5,v6},

Unpublished, November 2017, C. Rey, E. Tahhan-Bittar, J. Tomasik

{1, 2, 3, 4, 5} ∪ { even number ≥ 6}). D can also be viewed as the

name extension of a relational structure E which language is LE =

({v4,v5,v6}, ∅) and which universe is |E | = {1, 2, 3, 4, 5}.

Now, let K be the following language:

K = ({v4,v5,v6} ∪ {cites, sameTopic}, {1, 2, 3, 4, 5}).
D ′

1
,D ′

2
andD ′′ are global instances and databases for (I,D). The

database D ′
1
is defined by

v4D
′
1 = {⟨1⟩ , ⟨2⟩ , ⟨3⟩},

v5D
′
1 = {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨5, 3⟩},

v6D
′
1 = {⟨5, 5⟩ , ⟨2, 5⟩},

citesD
′
1 = {⟨1, 6⟩ , ⟨6, 1⟩ , ⟨2, 3⟩ , ⟨3, 2⟩ , ⟨3, 5⟩ , ⟨5, 3⟩},

sameTopicD
′
1 = {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨9, 12⟩},

and thus we have:

q4D
′
1 = {⟨1⟩ , ⟨2⟩ , ⟨3⟩ , ⟨5⟩ , ⟨6⟩},

q5D
′
1 = {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨9, 12⟩}, and

q6D
′
1 = {⟨2, 2⟩ , ⟨2, 5⟩}.

D ′
1
can be viewed as aKH

-Herbrandmodel withKH = ({v4,v5,v6}
∪ {cites, sameTopic}, N). (D,D ′

1
) is a source database and conser-

vative global instance pair for I. D ′
1
is not valid since ⟨5, 3⟩ <

sameTopicD
′
1 .

The database D ′
2
is defined by

v4D
′
2 = {⟨1⟩ , ⟨2⟩ , ⟨3⟩},

v5D
′
2 = {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨5, 3⟩},

v6D
′
2 = {⟨5, 5⟩ , ⟨2, 5⟩},

citesD
′
2 = {⟨1, 6⟩ , ⟨6, 1⟩ , ⟨2, 3⟩ , ⟨3, 2⟩ , ⟨3, 5⟩ , ⟨5, 3⟩},

sameTopicD
′
2 = {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨5, 3⟩ , ⟨9, 12⟩},

and thus we have:

q4D
′
2 = {⟨1⟩ , ⟨2⟩ , ⟨3⟩ , ⟨5⟩ , ⟨6⟩},

q5D
′
2 = {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨5, 3⟩ , ⟨9, 12⟩}, and

q6D
′
2 = {⟨5, 5⟩ , ⟨5, 2⟩ , ⟨2, 2⟩ , ⟨2, 5⟩}.

D ′
2
can be viewed as aKH

-Herbrandmodel withKH = ({v4,v5,v6}
∪ {cites, sameTopic}, N). (D,D ′

2
) is a source database and valid

conservative global instance pair for I.

The instance D ′′ is defined by

v4D
′′

= {⟨1⟩ , ⟨2⟩ , ⟨3⟩ , ⟨6⟩},

v5D
′′

= {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨5, 3⟩ , ⟨9, 12⟩},

v6D
′′

= {⟨5, 5⟩ , ⟨2, 5⟩},

citesD
′′

= {⟨1, 6⟩ , ⟨6, 1⟩ , ⟨2, 3⟩ , ⟨3, 2⟩ , ⟨3, 5⟩ , ⟨5, 3⟩}∪{⟨i, i + 1⟩ | i ≥
11},

sameTopicD
′′

= {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨5, 3⟩ , ⟨9, 12⟩},

and thus we have:

q4D
′′

= {⟨1⟩ , ⟨2⟩ , ⟨3⟩ , ⟨5⟩ , ⟨6⟩},

q5D
′′

= {⟨1, 4⟩ , ⟨2, 3⟩ , ⟨5, 3⟩ , ⟨9, 12⟩}, and

q6D
′′

= {⟨5, 5⟩ , ⟨5, 2⟩ , ⟨2, 2⟩ , ⟨2, 5⟩}.

D ′′ can be viewed as aKH
-Herbrandmodel withKH = ({v4,v5,v6}

∪ {cites, sameTopic}, N). (D,D ′′) is a source database and valid

global instance pair for I. D ′′ is not conservative since ⟨9, 12⟩ ∈

v5D
′′

.

In the sequel, we may use the notations vgi for valid global

instance and vcgd for valid conservative global database. Using the

next definition, lemma 4.15 gives a characterization of valid global

instances for a DIS.

Definition 4.14. Associated sentence
Let I =

〈
G,S,MG,S

〉
be an integration system. Letm : s ⊆ q be

a sound LAV mapping, with Q(X ;Z) the definite query associated

to q. The sentence m′ :
(
∀X (s(X) → ∃Z Body(Q(X ;Z))

)
is the

associated sentence to the mappingm. Moreover we use the notation:

M ′G,S = {m
′ | s.t.m′ is the associated sentence to a mappingm

withm ∈ MG,S}.

Lemma 4.15. Let I =
〈
G,S,MG,S

〉
be an integration system

such that the mappings inMG,S are LAV mappings assuming OWA.
Let (D,D ′) a be a source database and global instance pair (D,D ′)
for I. The following statements are equivalent:
• (D,D ′) is a source database and valid global instance pair for
I.
• D ′ |=

(∧
Ddef

)
∧
(∧
M ′G,S

)
.

Proof. By Definition 4.7 and Proposition 4.11. �

Now, let’s give the definitions of the certain answers of a query,

and then of the query answering problem.

Definition 4.16. Certain answers of a query in a LAV mediation
system [1]
Let I =

〈
G,S,MG,S

〉
be an integration system, with LAV map-

pings inMG,S , assuming the OWA. Let D be a source database

for I. Let q be a conjunctive query on G. The certain answers of q
w.r.t. (I,D), noted Cert(q,I,D), is defined as follows:

Cert(q,I,D) =
⋂

D′ valid conservative

global database for (I,D)

qD
′

Definition 4.17. Query answering problem
Using the assumptions from definition 4.16, the query answering

problem ofqw.r.t. (I,D) is the problem of computing Cert(q,I,D).

The previous definition of certain answers is restricted to databases,

i.e. finite instances, that are conservative. These two restrictions are

abandoned in the following extended definition of certain answers.

Despite this relaxation, theorem 4.20 (via lemma 4.19), shows they

amount to the same set of tuples.

Definition 4.18. Herbrand certain answers of a query in a LAV
mediation system
TheHerbrand certain answers ofqw.r.t. (I,D), noted CertH (q,I,D),
is defined as follows:

Cert
H (q,I,D) =

⋂
D′ valid global

instance for (I,D)

qD
′

By definitions 4.16 and 4.18 and by proposition 4.9, it is easy to

show the following lemma.

Lemma 4.19. Let I =
〈
G,S,MG,S

〉
be an DIS, with LAV map-

pings inMG,S , assuming the OWA. Let D be a source database for
I. Let q be a conjunctive query on G. Let n be the arity of q. There is:
Cert

H (q,I,D) ⊆ Cert(q,I,D) ⊆ |D|n

Theorem 4.20. Certain answers compactness for conjunctive

query data integration

LetI =
〈
G,S,MG,S

〉
be an integration system, with LAVmappings

inMG,S , assuming the OWA. Let D be a source database for I. Let
q be a conjunctive query on G. We have:
Cert

H (q,I,D) = Cert(q,I,D)

Proof. Let D ′ be a valid global instance for (I,D). Let q :

q(X) ← ∃Z ,A1 ∧ . . . ∧Am be a query on G. Let n be the arity of q.

Characterizing certain answers via compactness Unpublished, November 2017,

For each answer c ∈ qD
′

∩ |D|n we choose tc such that:

D ′ |= (A1 ∧ . . . ∧Am) {X/c,Z/tc } .
We define the set of atomic formulas:

D ′q =
⋃

c ∈qD′∩|D |n

{
A1{X/c,Z/tc }, . . . ,Am {X/c,Z/tc }

}
We notice that

D ′q ⊆ D
′
def .

GivenS = {sj , j ∈ {1, . . . , r }} andMG,S = {mj , j ∈ {1, . . . , r }}.
Given the mappingmj : sj ⊆ qj , with j ∈ {1, . . . , r }, we define in a

similar way D ′qj ; we notice that D
′
qj ⊆ D

′
def .

Let D̂ ′ be the valid conservative global database for (I,D) de-

fined by: D̂ ′def = Ddef ∪D
′
q ∪D

′
q1 ∪ · · · ∪ D

′
qr .We notice that

D̂ ′def ⊆ D
′
def , hence by monotonicity q D̂

′
∩ |D|n ⊆ qD

′

∩ |D|n .

On the other hand, by construction, qD
′

∩ |D|n ⊆ q D̂
′
∩ |D|n .

Hence qD
′

∩ |D|n = q D̂
′
∩ |D|n . So:

Cert
H (q,I,D)

= Cert
H (q,I,D) ∩ |D|n

=
(⋂
D′ vgi for (I,D) q

D′
)
∩ |D|n

=
⋂
D′ vgi for (I,D)

(
qD

′

∩ |D|n
)

=
⋂
D′ vgi for (I,D)

(
q D̂

′
∩ |D|n

)
⊇

⋂
D′′ vcgd for (I,D)

(
qD

′′

∩ |D|n
)

(since D̂ ′ is a vcgd)

=
(⋂
D′′ vcgd for (I,D) q

D′′
)
∩ |D|n

= (Cert(q,I,D)) ∩ |D|n

= Cert(q,I,D)
With lemma 4.19, we obtain the wanted result. �

In order to characterize certain answers, we need to introduce

the clausal form and the clausal form theorem. We assume clauses

(cf. def. 2.1) are viewed as the finite set of their literals and thus

can be noted {A1, . . . ,An } or even A1, . . . ,An . This notation thus

represents the universal closure of the disjunction of its elements.

Definition 4.21. Tensor product [7]
Let A and A ′ two sets of clauses. We note A ⊗ A ′ the set {A ∪
A′ | A ∈ A and A′ ∈ A ′}.

Definition 4.22. Clausal form [7]
We define, for each first order formula φ, and each 0, 1-word w a

clause set Sw (φ) as follows (with α and β two first order formulas):

(1) Negations are put beside atomic formulas:

• Clw (¬(α ∧ β)) = Clw (¬α ∨ ¬β)
• Clw (¬(α ∨ β)) = Clw (¬α ∧ ¬β)
• Clw (¬(α → β)) = Clw (α ∧ ¬β)
• Clw (¬∀Xα) = Clw (∃X¬α)
• Clw (¬∃Xα) = Clw (∀X¬α)

(2) The clause set is computed by:

• Clw (α) = α if α is a literal.

• Clw (α ∧ β) = Clw0(α) ∪ Clw1(β).
• Clw (α ∨ β) = Clw0(α) ⊗ Clw1(β).
• Clw (α → β) = Clw (¬α ∨ β).
• Clw (∀Xα) = Clw (α)
• Clw (∃Xα) = Clw0(α {X/fw (X1, . . . ,Xn)})
whereX1, . . . ,Xn are the free variables of α different from

X , and fw is a new function symbol.

The clauses set Clϵ (φ) is called the clausal form of φ and is

denoted by Cl(φ).

Example 4.23. We keep on studying the running example. Ac-

cording to proposition 4.11, the mapping v4 ⊆ q4, with q4 defined
as q4(X) ← cites(X ,Y), cites(Y ,X), corresponds to the following

first order sentence φ1:
∀X v4(X) → (∃Y (cites(X ,Y) ∧ cites(Y ,X)))
Let’s compute the clausal form of this sentence. The negation pro-

cessing step is useless here since there is no negation in this sen-

tence. The computation of the clause set is the following:

Clϵ (φ1)
= Clϵ (∀X v4(X) → (∃Y (cites(X ,Y) ∧ cites(Y ,X))))
= Clϵ (v4(X) → (∃Y (cites(X ,Y) ∧ cites(Y ,X))))
= Clϵ ((¬v4(X)) ∨ (∃Y (cites(X ,Y) ∧ cites(Y ,X))))
= Cl0(¬v4(X)) ⊗ Cl1(∃Y (cites(X ,Y) ∧ cites(Y ,X)))
= {¬v4(X)}⊗
Cl10((cites(X ,Y) ∧ cites(Y ,X)){Y/f1(X)})
= {¬v4(X)} ⊗ Cl10(cites(X , f1(X)) ∧ cites(f1(X),X))
= {¬v4(X)}⊗
(Cl100(cites(X , f1(X))) ∪ Cl101(cites(f1(X),X)))
= {¬v4(X)} ⊗ {cites(X , f1(X)), cites(f1(X),X)}
= {{¬v4(X), cites(X , f1(X))},
{¬v4(X), cites(f1(X),X)}}
This set of clauses is quivalent to the following couple of definite

clauses:

{cites(X , f1(X)) ← v4(X) , cites(f1(X),X) ← v4(X)}.

Theorem 4.24. Clausal Form Theorem [7]

Let Γ be a set of L-formulas. Let φ be an L-formula. Then Γ |= φ ⇔
Cl (

∧
Γ) |= φ

We can now give the certain answers characterization, expressed

in terms of the definite program that models the DIS.

Definition 4.25. Let I =
〈
G,S,MG,S

〉
be an integration system

such that the mappings in MG,S are LAV mappings assuming

OWA. Let D a be a source database for I. The definite positive
program associated to (I,D), denoted by P(I,D), is defined by:

P(I,D) = Cl

((∧
Ddef

)
∧
(∧
M ′G,S

))
Theorem 4.26. Certain answers characterization

Let I =
〈
G,S,MG,S

〉
be an integration system such that the map-

pings inMG,S are LAV mappings assuming OWA. LetD be a source
database for I. Let q be a conjunctive query on G associated to a

definite query Q
(
X ;Z

)
. We have:

GQAT

(
Q

(
X ;Z

)
, P(I,D)

)
= Cert(q,I,D) .

Proof. We assume the notations given in definitions 4.7 and

4.12. We suppose that n is the arity of q,MG,S = {m1, . . . ,mr }

and thusM ′
G,S
= {m′

1
, . . . ,m′r }, and L

H
is a Herbrand language

for (I,D). We have:

Cert(q,I,D)
Theo .4.20
= Cert

H (q,I,D)
Lem .4.3 and 4.19

= N(CertH (q,I,D))
Def .4.18
=

⋂
D′ vgi for (I,D)N(q

D′)

Unpublished, November 2017, C. Rey, E. Tahhan-Bittar, J. Tomasik

Theo .3.15
=

⋂
D′ vgi for (I,D) GQAT

(
Q

(
X ;Z

)
, (D ′)def

)
Def .2.6
= {T ∈ Un |

for each D ′ vgi for (I,D),

there exists a ground substitution σ s.t.

T = Xσ and

D ′def |= (Body(Q
(
X ;Z

)
))σ }

= {T ∈ Un |

for each D ′ vgi for (I,D),

there exists a ground substitution σ s.t.

T = Xσ and

D ′def |= (Body(Q
(
T ;Zσ

)
))}

Corol .3.11
= {T ∈ Un |

for each D ′ vgi for (I,D),

there exists a ground substitution σ s.t.

T = Xσ and

D ′ |= (Body(Q
(
T ;Zσ

)
))}

= {T ∈ Un |

for each D ′ vgi for (I,D),

D ′ |= ∃Z (Body(Q
(
T ;Z

)
))}

= {T ∈ Un |

for all LH -Herbrand model D ′

if D ′ is a vgi for (I,D),

then D ′ |= ∃Z (Body(Q
(
T ;Z

)
))}

Lem . 4.15
= {T ∈ Un |

for all LH -Herbrand model D ′

if D ′ |=
∧ (
Ddef ∪ {m

′
1
, . . . ,m′r }

)
then D ′ |= ∃Z (Body(Q

(
T ;Z

)
))}

= {T ∈ Un |

for all LH -Herbrand model D ′

D ′ |=
∧ (
Ddef ∪ {m

′
1
, . . . ,m′r }

)
→

∃Z Body(Q(T ;Z))}
Theo . 4.5
= {T ∈ Un |

|=
∧ (
Ddef ∪ {m

′
1
, . . . ,m′r }

)
→

∃Z Body(Q(T ;Z))}

= {T ∈ Un |

Ddef ∪ {m
′
1
, . . . ,m′r } |= ∃Z Body(Q(T ;Z))}

Theo . 4.24
= {T ∈ Un | P(I,D) |= ∃Z Body(Q(T ;Z))}

Def .2.6
= GQAT(Q

(
X ;Z

)
, P(I,D))

�

5 CONCLUSION AND FUTUREWORKS
This papers revisits some classical notions and results from logic

programming, relational databases and data integration, from the

answer tuples point of view. This enables to give a new compactness

theorem concerning certain answers and then a new characteriza-

tion of these certain answers in terms of the answers of a definite

query w.r.t a definite program.

This work is a preliminary work for an on-going study about

query rewriting algorithms in data integration. Indeed, since it

justifies the use of SLD-resolution in this area, then other classical

algorithms, like for instance the bucket [15], the inverse-rules [8]

or the minicon [17] algorithms, might be valuably compared to

SLD-resolution. The deeper and synthetic understanding of these

algorithms that could emerge from this study may also be applied

thereafter on other query rewriting algorithms, like those in the

context of ontological query answering [11].

REFERENCES
[1] S. Abiteboul and O. Duschka. 1998. Complexity of answering queries using

materialized views. Proc. of the 17th ACM SIGACT SIGMOD SIGART Symposium
on Principles of Database Systems (PODS’98) (1998), 254–265.

[2] S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-
Wesley.

[3] Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset,

and Pierre Senellart. 2012. Web Data Management. Cambridge University Press.

432 pages. http://hal.inria.fr/hal-00847933 Open access of the full text on the

Web.

[4] Andrea Calì, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.

2002. Data Integration under Integrity Constraints. In Proc. of the 14th Int. Conf.
on Advanced Information Systems Engineering (CAiSE 2002) (Lecture Notes in
Computer Science), Vol. 2348. Springer, 262–279.

[5] Andrea Cali, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.

2002. Data Integration under Integrity Constraints. In Advanced Information
Systems Engineering, AnneBanks Pidduck, M.Tamer Ozsu, John Mylopoulos, and

CarsonC. Woo (Eds.). Lecture Notes in Computer Science, Vol. 2348. Springer

Berlin Heidelberg, 262–279. https://doi.org/10.1007/3-540-47961-9_20

[6] Andrea Calì, Diego Calvanese, and Maurizio Lenzerini. 2013. Data Integration

under Integrity Constraints. In Seminal Contributions to Information Systems
Engineering, Janis A. Bubenko Jr., John Krogstie, Oscar Pastor, Barbara Pernici,

Colette Rolland, and Arne Solvberg (Eds.). Springer, 335–352.

[7] R. David, K. Nour, and C. Raffalli. 2004. Introduction à la logique: théorie de la
démonstration : cours et exercices corrigés. Dunod.

[8] O.M. Duschka. 1997. Query Optimization Using Local Completeness. In Pro-
ceedings of the Fourteenth AAAI National Conference on Artificial Intelligence,
AAAI-97.

[9] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data

exchange: semantics and query answering. Theoretical Computer Science 336, 1
(2005), 89 – 124. Database Theory.

[10] M. Fitting. 1990. First-order Logic and Automated Theorem Proving. Springer

Verlag, Berlin, Germany. 326 pages.

[11] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2011. Ontological Query Answer-

ing via Rewriting. In Proc. of 15th East-European Conf. on Advances in Databases
and Information Systems (ADBIS). 1–18.

[12] John Grant and Jack Minker. 2002. A Logic-based Approach to Data Integration.

Theory Pract. Log. Program. 2, 3 (May 2002), 323–368. https://doi.org/10.1017/

S1471068401001375

[13] A.Y. Halevy. 2001. Answering Queries Using Views: A Survey. VLDB Journal
(2001).

[14] Christoph Koch. 2004. Query rewriting with symmetric constraints. AI Commun.
17, 2 (2004), 41–55.

[15] A. Levy, A. Rajaraman, and J. Ordille. 1996. Querying Heterogeneous Information

Sources Using Source Descriptions. In Proceedings of the 22nd VLDB Conference,
Bombay, India, T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nand-

lal L. Sarda (Eds.). Morgan Kaufmann, 251–262.

[16] Ulf Nilsson and Jan Maluszynski. 1995. Logic, Programming, and PROLOG (2nd

ed.). John Wiley & Sons, Inc., New York, NY, USA.

[17] R. Pottinger and A. Halevy. 2001. MiniCon: A scalable algorithm for answering

queries using views. The VLDB Journal 10, 2-3 (2001), 182–198.

A PROOFS
of lemma 3.9.

(1) This comes directly from definition 3.2 and FOL semantics.

(2) Let X be the tuple of free variables of ∃Z (ψ1 ∧ . . . ∧ ψm).
There is :(
D |=v ∃Z (ψ1 ∧ . . . ∧ψm)

)

http://hal.inria.fr/hal-00847933
https://doi.org/10.1007/3-540-47961-9_20
https://doi.org/10.1017/S1471068401001375
https://doi.org/10.1017/S1471068401001375

Characterizing certain answers via compactness Unpublished, November 2017,

⇔ there is a valuation v ′ which coincides with v on X s.t.

(D |=v ′ (ψ1 ∧ . . . ∧ψm));

⇔ there is a valuation v ′ which coincides with v on X s.t.

(Dν |=v ′ (ψ1 ∧ . . . ∧ψm));

⇔

(
Dν |=v ∃Z (ψ1 ∧ . . . ∧ψm)

)
.

�

of lemma 3.10.

(1) This equivalence is direct since a new ground atomic formula

cannot be inferred from a set of ground atomic formulas.

(2) Here we suppose, w.l.o.g. concerning the order of variables

and constants, that φ is the following atomic formula:

r (X1, . . . ,Xp1 , c
′
1
, . . . , c ′p2)with r ∈ R,∀i ∈ {1, . . . ,p1}, Xi ∈

Var and ∀j ∈ {1, . . . ,p2}, c ′j ∈ C
ν
. For every c ′ ∈ Cν let

c ∈ |D| be the interpretation c ′D
ν
of c ′; notice that N (c ′, c).

Moreover, ∀i ∈ {1, . . . ,p1}, N (Xiv
′,v(Xi)). Hence

< v(X1), . . . ,v(Xp1), c1, . . . , cp2 >∈ r
Dν

⇔ r (X1v
′, . . . ,Xp1v

′, c ′
1
, . . . , c ′p2) ∈ Ddef

(3) By the semantics of conjunction.

(4) Let X be the free variables tuple of (∃Z (φ1 ∧ . . . ∧ φn)). We

have:

Dν |=v (∃Z (φ1 ∧ . . . ∧ φn))
⇔ There is a valuationv1 such thatD

ν |=v1
φ1∧. . .∧

φn and such that v and v1 coincide for variables

in X .

⇔ There is a name substitution v ′
1
for v1

such that Ddef |= (φ1 ∧ . . . ∧ φn)v
′
1

and such that v ′ and v ′
1
coincide for variables in

X ;

⇔ There is a ground substitution v ′
1
such that

Ddef |= (φ1 ∧ . . . ∧ φn)v
′
1

and such that v ′ and v ′
1
coincide for variables in

X .

⇔ Ddef |=
(
∃Z (φ1 ∧ . . . ∧ φn)

)
v ′

We give some details for one direction of the last equivalence. If(
Ddef |= (∃Z (φ1 ∧ . . . ∧ φn))v

′
)
then, by compactness Theorem,

there is a finite subsetΦ ⊆ Ddef such that
(
Φ |= (∃Z (φ1 ∧ . . . ∧ φn))v

′
)
.

Hence, by Herbrand Theorem, there is a ground substitution v ′
1

such that Φ |= (φ1 ∧ . . . ∧ φn)v
′
1
and such that v ′ and v ′

1
coincide

for variables in X . �

of theorem 3.15.

Let Body
(
Q

(
X ;Z

))
= A1 ∧ . . . ∧Al , with

X = ⟨X1, . . . ,Xn⟩. We have:

GQAT(Q

(
X ;Z

)
,Ddef)

by def. 2.6

= {T ∈ QAT(Q

(
X ;Z

)
,Ddef) | T is ground}

by def. 2.5

= {Xσ |σ ∈ AS(Q
(
X ;Z

)
,Ddef) and Xσ is ground}

by def. 2.3

= {Xσ | σ ∈ TS and Ddef |= (A1 ∧ . . . ∧Al)σ and

Xσ is ground}

Since the FO language used to buildDdef is (R, Cν) and lemma

3.10 says (Ddef |= Aiσ) ⇔ (Aiσ ∈ Ddef) for any Ai and σ ,
we have:

= {Xσ ∈ (Cν)n | σ ∈ GTS and

Ddef |= (A1 ∧ . . . ∧Al)σ }

= {Xσ =
〈
c ′
1
, . . . , c ′n

〉
∈ (Cν)n | σ ∈ GTS and

σ�X= {X1/c
′
1
, . . . ,Xn/c

′
n } = σ

′
and

Ddef |= (A1 ∧ . . . ∧Al)σ }

= {
〈
c ′
1
, . . . , c ′n

〉
∈ (Cν)n | (∃σ ∈ GTS such that

σ�X= {X1/c
′
1
, . . . ,Xn/c

′
n } = σ

′
and

Ddef |=
(
∃Z (A1 ∧ . . . ∧Al)

)
σ ′)

Since, by construction of Dν
,

∀c ′i ∈ C
ν ∃ci ∈ |D

ν | | N (c ′i , ci), then we have:

= {
〈
c ′
1
, . . . , c ′n

〉
∈ (Cν)n | (∃σ ∈ GTS such that

σ�X= {X1/c
′
1
, . . . ,Xn/c

′
n } = σ

′
and

Ddef |=
(
∃Z (A1 ∧ . . . ∧Al)

)
σ ′) and

∃ ⟨c1, . . . , cn⟩ ∈ (|D
ν |)n s.t.

N (c ′
1
, c1), . . . ,N (c

′
n, cn)}

since |Dν | = |D|.

= {
〈
c ′
1
, . . . , c ′n

〉
∈ (Cν)n | (∃σ ∈ GTS such that

σ�X= {X1/c
′
1
, . . . ,Xn/c

′
n } = σ

′
and

Ddef |=
(
∃Z (A1 ∧ . . . ∧Al)

)
σ ′) and

∃ ⟨c1, . . . , cn⟩ ∈ (|D|)
n
s.t.

N (c ′
1
, c1), . . . ,N (c

′
n, cn)}

by lem. 3.10

= {
〈
c ′
1
, . . . , c ′n

〉
∈ (Cν)n |

∃ ⟨c1, . . . , cn⟩ ∈ (|D|)
n
s.t.

D |={X1/c1, ...,Xn/cn } ∃Z (A1 ∧ . . . ∧Al)
and N (c ′

1
, c1), . . . ,N (c

′
n, cn)}

by def. 3.14

= N

(
qD

)
�

of lemma 3.17. Let n be the arity of q1 and q2.

qD
1
⊆ qD

2

by def. 3.14

⇔ {⟨c1, . . . , cn⟩ ∈ |D|
n |

D |={X1/c1, ...,Xn/cn } ∃Z
(
Body(Q1

(
X ;Z

)
)

)
}

⊆

{⟨d1, . . . ,dn⟩ ∈ |D|
n |

D |={W1/d1, ...,Wn/dn } ∃V
(
Body(Q2

(
W ;V

)
)

)
}

Unpublished, November 2017, C. Rey, E. Tahhan-Bittar, J. Tomasik

⇔ for all ⟨c1, . . . , cn⟩ ∈ |D|
n

if D |={X1/c1, ...,Xn/cn } ∃Z
(
Body(Q1

(
X ;Z

)
)

)
then D |={X1/c1, ...,Xn/cn } ∃V

(
Body(Q2

(
X ;V

)
)

)
⇔ for all ⟨c1, . . . , cn⟩ ∈ |D|

n

D |={X1/c1, ...,Xn/cn } ∃Z
(
Body(Q1

(
X ;Z

)
)

)
→

∃V
(
Body(Q2

(
X ;V

)
)

)
⇔ D |= ∀X (∃ZBody

(
Q1

(
X ;Z

))
) →

(∃VBody
(
Q2

(
X ;V

))
)

�

	Abstract
	Résumé
	1 Introduction
	2 Definite program semanticsfrom the answer tuple p.o.v.
	2.1 Preliminary notations and definitions
	2.2 Goal answers and query answers

	3 Recalls in relational databases
	3.1 Relational structures and name extensions
	3.2 Relational databases
	3.3 From a structure to its ground theory
	3.4 Conjunctive queries

	4 Certain answers in mediation
	4.1 Herbrand Models
	4.2 Data integration system
	4.3 Query answering in a DIS

	5 Conclusion and future works
	References
	A Proofs

