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are conditional probabilities between syllable pairs (high within 
words and lower across word boundaries). A two-alternative forced 
choice test follows in which participants must choose between two 
items based on which sounds the most familiar: one item is a word 
from the language while the other is not.

ImplIcIt learnIng: specIfIc or general?
Eight-month-old infants can learn to segment words in a simple 
artificial language in 2 min (Saffran et al., 1996a). Similar results 
have also been reported for newborns and adults (Aslin et al., 1998; 
Gervain et al., 2008; Teinonen et al., 2009), indicating a certain 
degree of independence from the developmental stage. Statistical 
learning has also been described in non-human primates and rats 
(Toro and Trobalón, 2005; Saffran et al., 2008), suggesting that 
it is not unique to humans. Statistical learning also seems to be 
« modality independent » insofar as several results have shown 
efficient learning using visual stimuli (Fiser and Aslin, 2005), but 
also visual movement or shape sequences (Fiser and Aslin, 2002) as 
well as sequences of tactile stimulations (Conway and Christiansen, 
2005). Finally, learning takes also place when syllables are replaced 
with tones (Saffran et al., 1999). On a similar vein, Tillmann and 
McAdams (2004) replicated previous findings using complex non-
verbal auditory material (sounds of different musical instruments). 
They showed that listeners are sensitive to statistical regularities 
despite acoustical characteristics (timber) in the material that are 
supposed to affect grouping. Thus, although certain processing 
steps such as harmonic processing might be domain dependent 
(Peretz and Coltheart, 2003), these results reveal that this type of 
learning (i.e., statistical learning) is not specific to speech (and thus 
is not modular), but seems to be a more general-domain process.

prosody and segmentatIon
When comparing music and language processing, it is difficult 
not to acknowledge the similarity between the hierarchy of musi-
cal structures and the one of prosodic structures in speech (Nespor 

Language and music are both highly complex and articulated sys-
tems; both involve the combination of a small number of elements 
according to rules that allow the generation of unlimited numbers 
of utterances or musical phrases. Despite the complexity in lan-
guage input, most infants acquire their mother tongue with aston-
ishing ease and without formal instruction. This ability to learn new 
languages continues, though to a lesser extent, during adulthood. 
Musical skills, such as tapping along to a musical beat and singing, 
are also acquired without effort in early life. This similarity between 
speech and music acquisition, along with the extensive periods of 
musical training undergone by musicians allow us make several pre-
dictions. Firstly, that the learning of linguistic and musical structures 
may be similar. Secondly, that the learning of linguistic structures 
may be influenced by musical structures, and vice versa. And thirdly, 
that musical expertise may transfer to language learning.

statIstIcal learnIng and speech segmentatIon
In this paper we will focus on one of the first major difficulties in 
speech perception encountered by infants and second language 
learners: the ability to segment speech into separate units (words). 
Since the speech stream does not provide consistent acoustic cues 
to mark word boundaries, such as pauses or stresses, speech is 
more likely to be perceived as a continuous stream of sounds. The 
challenge for the learner, therefore, is to be able to segment this 
continuous speech stream into separate units, words, that will then 
be mapped onto conceptual representations.

In addition to prosodic cues the statistical structure of language 
is also an important cue for implicit speech segmentation (Saffran 
et al., 1996b; Kuhl, 2004; Rodríguez-Fornells et al., 2009). In general, 
“syllables that are part of the same word tend to follow one another 
predictably, whereas syllables that span word boundaries do not” 
(Saffran et al., 2001). The design typically used in this kind of inves-
tigation begins with a passive listening phase lasting few minutes. 
During this phase, participants listen to a synthetic and artificial 
language built in such a way that the only cues to segment words 
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and Vogel, 1983). Prosody refers to the patterns of rhythm, stress, 
and intonation in speech. Prosodic variations are crucial cues for 
communicating emotions, disambiguating syntax, and also at a 
segmental level. Metrical cues play an important role in word seg-
mentation: for instance, lexical stress typically implies increased 
duration, pitch, and loudness of specific syllables in a word, thus 
creating different perceptual rhythmic patterns (Abercrombie, 
1967) which affect segmentation. These metrical cues constrain 
the ordering of stressed and unstressed syllables and are at the origin 
of the perception of strong and weak points in speech. A similar 
perception of strong and weak beats occurs in music. When pro-
sodic cues are inserted, even subliminally, within the speech stream, 
performance on a speech segmentation task improves (Peña et al., 
2002; Cunillera et al., 2006, 2008; De Diego Balaguer et al., 2007). An 
interesting example of how prosody can ease speech segmentation 
is the specific and exaggerated intonation that is used when talking 
to infants (infant-directed speech, ID speech). Compared to adult 
directed (AD) speech, ID speech is characterized by a slower rate, 
larger pitch and contour variations, and longer pauses (Fernald, 
1992) and is easier to segment (Thiessen et al., 2005). Thus, if ID 
speech can be said to possess more exaggerated and more melodic 
prosodic features, a further step might be to consider how similar 
exaggerated and melodic features of singing might also ease speech 
segmentation.

Better learnIng of lInguIstIc structures In song
Most of the studies investigating the relationship between music 
and language have focused on one domain or the other separately 
and this is also the case for statistical learning investigations. This 
is somewhat problematic insofar as a comparison of results issued 
from different tasks, subjects, and types of analyses is not straight-
forward. Therefore, singing is particularly well-suited to the study 
of the relation between language and music, the advantage being 
that both linguistic and musical information are merged into one 
acoustic signal with two salient dimensions, allowing for a direct 
comparison within the same experimental material. Moreover, this 
allows asking subjects to perform a task while manipulating the 
relation between linguistic and musical dimensions, thus studying 
the potential interferences from one dimension to the other. Of 
course, care must be taken because, in song, the phonological and 
metrical structures of language are strongly influenced by the type 
of melody that is sung. For instance, vowels sung in a very high 
register have the tendency to be less recognizable (Scotto di Carlo, 
1994). We will review here three studies using a sung  language. 

The design we used was very similar to that used by Saffran et al. 
(1999) Participants listened to a continuous stream of sung syllables 
lasting a few minutes. The stream was built by a pseudo-random 
concatenation of 6 (Experiments 1 and 2) or 5 (Experiment 3) 
trisyllabic words. Each syllable was sung at a constant pitch. This 
learning phase was followed by a two-alternative forced choice test 
wherein one item was a word from the language while the other 
was not (i.e., a part-word built by merging the end of a word with 
the beginning of another). Participants had to choose the most 
familiar of the two presented items.

In Experiment 1 (Schön et al., 2008), we compared segmenta-
tion of a spoken language versus segmentation of a sung language 
(see Figure 1). Two groups of participants listened to either 7 min 
of a flat contour artificial language or to 7 min of an artificial lan-
guage with the same statistical structure wherein each syllable was 
sung on a specific pitch. The test, a two-alternative forced choice 
test, was identical for both groups and used spoken words only 
(flat contour).

While 7 min of listening were not enough to segment a lan-
guage when it was spoken, they were sufficient to learn the same 
language when it was sung. These results suggest that redundancy 
in statistical musical and linguistic structures benefits the learn-
ing process, even if more general factors linked to motivation and 
arousal can not be excluded. Indeed, the sung version might well 
have been more « arousing » than the spoken version. To gain a finer 
understanding of the mechanisms responsible for these differences 
between spoken and sung languages we ran a further experiment 
using a sung language, wherein linguistic and musical statistical 
structures mismatched. More precisely, musical boundaries were 
shifted of one step to the right (i.e., one syllable later). Thus, while 
the statistical of linguistic and musical structures were preserved, 
word and pitch boundaries did not occur at the same time anymore. 
Performances laid in between the spoken version and the original 
sung version obtained in the two first experiments. These results 
point to a beneficial effect of both structural (“statistical”) and 
motivational properties of music in the very first steps of language 
acquisition (Thiessen et al., 2005; Schön et al., 2008).

comparIng learnIng of lInguIstIc and musIcal 
structures
The test used in Experiment 1 only contained spoken items. Thus, we 
could not know whether learning of the musical structure took place. 
At this aim and in order to better understand how musical informa-
tion facilitated speech segmentation, we designed a  similar experi-

Figure 1 | illustration of the experimental design used in our three experiments: a learning phase is administered to participants and is followed by one 
(Schön et al., 2008) or two tests (Francois and Schön, 2010, 2011) depending on the experiment. The linguistic test uses spoken items while the musical test 
uses piano tones.
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and Roes, 1990; Hébert and Peretz, 2001; Peretz et al., 2004). 
Altogether, these results seem to suggest that linguistic information 
may be more resistant to interferences than musical information.

The second explanation is more stimulus related. Indeed, while 
the statistical structure of melodic and phonologic information was 
the same in our material, other important factors may come into play 
that make melodic segmentation more difficult than word segmen-
tation. For instance, phoneme discrimination is mostly influenced 
by transient information in the specter (e.g., “py” versus “gy”), while 
pitch discrimination is influenced by more stationary information 
(e.g., fundamental frequency). Moreover, phoneme transitions in 
our language were probably sensitive to the implicit phonotactic 
knowledge humans have in their mother tongue, dictating which 
sound sequences are allowed to occur within the words of a language 
(Friederici and Wessels, 1993). This is hardly transposable to music, 
wherein the implicit knowledge affecting music perception concerns 
tonal relationships between notes (Tillmann et al., 2000). Overall, 
it is very difficult to control and balance the perceptual saliency 
of the linguistic and musical structures and care must be taken in 
comparing and interpreting results across dimensions.

Nonetheless, when pooling the data across the two studies 
(Experiments 2 and 3), we observe a significant positive correla-
tion between performances in music and linguistic tests: the higher 
the performance in the linguistic test, the higher in the music 
test (Figure 3). This fits well with results showing a correlation 
between linguistic and musical abilities. For instance, several studies 
report a positive correlation between phonological awareness and 
music perception (Butzlaff, 2000; Anvari et al., 2002; Foxton et al., 
2003), suggesting that these competences may share some of the 
same auditory mechanisms. Interestingly, phonological awareness 
requires the ability to segment speech into its component sounds 
and to extract the phonological invariants. Similarly, the percep-
tion of music also requires the listener to be able to segment the 
stream of tones into relevant units and to be able to recognize these 
units when played with different timbers tempos, keys, and styles.

ment that tested both learning of musical and linguistic structures 
contained in the sung language, and also recorded event-related 
potentials during the tests (ERPs). Thus, two tests followed the learn-
ing phase, one using spoken items at a fixed pitch, and another 
using piano tone sequences. First, we ran a study with a random 
sample (Francois and Schön, 2010, henceforth Experiment 2), then 
we compared a group of musicians and non-musicians (Francois 
and Schön, 2011, henceforth Experiment 3). At the behavioral level, 
results showed that linguistic structures were better learned than 
musical ones (though significance was reached only when pooling 
the data across the two studies). Comparison of performance with 
chance level (0.5) showed that while the participants’ level of per-
formance was above chance in the test using spoken items, it was 
not in the test using tones. Indeed, as can be seen on Figure 2, the 
distribution of the performances in the musical test were highly het-
erogeneous across participants and only half of the subjects exhib-
ited performances higher than chance level. Several non-exclusive 
explanations can account for this difference.

First, linguistic storage and/or retrieval of “lexical” items might 
have been more efficient or less sensitive to interferences caused by 
part-words/tone-part-words. Schendel and Palmer (2007) recently 
showed that, overall, verbal items were better recalled than musical 
items. Moreover, they found a larger interference effect on musical 
recall than on verbal recall. Researches investigating memory rep-
resentations of song have also shown an advantage for words over 
melodies (Serafine et al., 1984; Crowder et al., 1990; Morrongiello 

Figure 2 | Percentage of correct responses: box plot of performances in 
the linguistic (left) and musical tests (right). Data from Experiments 2 and 
3 (Francois and Schön, 2010, 2011), are pooled together leading to N = 50 
subjects (dashed line = 50%, chance level).

Figure 3 | Correlation between performances in the linguistic and 
musical tests for 50 participants (Francois and Schön, 2010, 2011). The 
correlation is significant (p = 0.05), that is the better participants performance 
in the musical test, the better are performances in the linguistic test.
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 researchers in field of statistical learning typically call “words” are 
in fact nonsense words that are repeated in a random order for 
N minutes during the learning phase. Therefore, “words” do not 
have an entry in the lexicon. However, because they are repeated so 
many times (typically >100 each), they “pop out” of the continuous 
stream of syllables, due to statistical learning or associative mecha-
nisms. Thus, to a certain extent, “words” become familiar, and as 
such they can be distinguished from “part-words” acquiring a kind 
of proto-lexical status (Fernandes et al., 2009; Rodríguez-Fornells 
et al., 2009). Indeed, in an experiment using X words, if, during the 
learning phase, “words” are heard N times each, “part-words” are 
heard N/(X − 1) times (e.g., 216 and 44 times, respectively). This is 
because “part-words” are built by merging the end of a word with 
the beginning of another (and each word can be followed by X − 1 
possible words). Therefore, the linguistic status of the items used 
in the test is that of pseudo-words which are more or less familiar 
(words and part-words, respectively).

The most common use of pseudo-words in the ERP literature 
is found in studies concerned with lexicality. These studies most 
often compare a pseudo-word to a word condition. For instance, 
O’Rourke and Holcomb (2002) used a lexical decision task and 
found a larger negativity for pseudo-words than for words, most 
prominent at anterior sites. Moreover, the negative component to 
pseudo-words peaked around 600 ms, 200 ms later than the classical 
N400 effect described for words. The authors claimed that pseudo-
word processing may undergo an additional time consuming step, 
consisting of a top-down checking process. Interestingly, in our 
studies, the negative component to both familiar and unfamiliar 
items was also peaking around 600 ms.

Turning to familiarity effects, previous ERP studies have shown 
that the amplitude of the N400 is sensitive to familiarity. Indeed, 
low frequency words elicited a larger negativity peaking around 
400 ms compared to high frequency words (Van Petten and Kutas, 

statIstIcal learnIng: comparIng erps and BehavIor
Overall, behavioral data alone could not reveal whether participants 
could or could not segment the musical structure (Experiments 2 
and 3). Indeed, the lack of significance might simply be related to 
a lack in sensitivity of the testing procedure and of the dependent 
variable. ERPs seem to be more sensitive to the subtle mechanisms 
underlying implicit learning. Indeed, McLaughlin et al. (2004), in 
a study focusing on second language learning, showed that ERPs 
can be more sensitive in reflecting implicit learning than do explicit 
categorical judgments and that behavioral assessment might under-
estimate the extent to which learning has taken place. While behav-
ior reflects the combined effects of several processing stages, ERPs, 
thanks to their continuous time resolution, can (sometimes) show 
differences in brain activity even when this is not backed by an overt 
behavioral response. Several examples of ERP-behavior dissocia-
tions have been reported pointing the greater ERP sensitivity, for 
instance in the field of subliminal perception (Sergent et al., 2005) 
and learning (Tremblay et al., 1998).

In our studies (Experiments 2 and 3), ERPs were also more 
sensitive than behavior in that they revealed a significant differ-
ence between familiar and unfamiliar items in both linguistic and 
musical test. Indeed, even subjects with a performance that could 
be hardly interpreted as higher than chance (e.g., subjects with 55% 
of correct responses), did show different ERPs to words and part-
words. These results seem to point to a greater sensitivity of the ERP 
data compared to the behavioral data in implicit learning designs.

lexIcalIty, famIlIarIty, and the n400
Electrophysiological data of the linguistic test showed a negative 
component at fronto-central sites in the 450- to 800-ms latency 
band which was larger for part-words than for words (see Figure 4). 
In order to interpret this ERP difference it is important to clar-
ify the respective “linguistic” status of the two conditions. What 

Figure 4 | grand average across two experiments (Francois and Schön, 2010, 2011; N = 50), for the linguistic (left), and musical test (right) at Cz electrode. 
Solid lines illustrate ERPs to familiar words/tone-words; dashed lines illustrate ERPs to unfamiliar part-words/tone-part-words. Current Source Density Maps illustrate 
the topographic distribution of the familiarity effect in the significant time windows.
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latencies of many ERP components such as the N1, P2, MMN, P300 
(Pantev et al., 1998; Koelsch et al., 1999; Shahin et al., 2003; Van 
Zuijen et al., 2005). In our study on statistical learning (Experiment 
3) the N1 component was larger for musicians than non-musicians 
in both the linguistic and the musical tasks. Interestingly, recent 
results support the view that increased auditory evoked potentials in 
musicians (N1–P2) reflect an enlarged neuronal representation for 
specific sound features of these tones rather than selective attention 
biases (Baumann et al., 2008). Even at the sub-cortical level, musi-
cians show more robust encoding of linguistic and musical features 
as reflected by earlier and larger brainstem responses compared to 
non-musicians (Kraus and Chandrasekaran, 2010). Overall, these 
differences can be interpreted as reflecting a greater efficiency of 
musicians’ auditory system in processing sound features and can 
be accompanied by morphological differences, showing that musi-
cians have a larger gray matter concentration in the auditory cortex 
(Bermudez and Zatorre, 2005), an increased gray matter density 
and volume in the left inferior frontal gyrus, Broca’s area (Sluming 
et al., 2002) and a larger planum temporale (Schlaug et al., 1995; 
Keenan et al., 2001).

The fact that musicians perceive some sound features more 
accurately than non-musicians is not so surprising. After all, they 
spent hours and hours of their life focusing on sounds and the way 
they are generated, paying close attention to pitch, timber, dura-
tion, and timing. It would be rather surprising and even deceiving 
if this did not affect the way they hear, and as a consequence their 
brain functioning. What seems to us less evident is that such an 
intensive musical practice also seems to affect non-musical abilities. 
For example, both adult and child musicians perform better than 
matched controls when asked to detect fine contour modifications 
in the prosody of an utterance (Schön et al., 2004; Magne et al., 
2006). Adult musicians also have better performances and larger 
ERP components to metric incongruities at the end of an utterance 
(Marie et al., 2011). There is also evidence for a possible correlation 
between musical and linguistic aptitudes in both children (Anvari 
et al., 2002; Milovanov et al., 2008, 2009) and adults (Foxton et al., 
2003; Slevc and Miyake, 2006) as well as a benefit of music training 
on linguistic skills (Butzlaff, 2000; Overy, 2003; Gaab et al., 2005; 
Tallal and Gaab, 2006; Forgeard et al., 2008; Moreno et al., 2009; 
Parbery-Clark et al., 2009).

Better segmentatIon of the melodIc structure In musIcIans
When using a sung language in artificial language learning, one 
needs to choose a series of pitches that are mapped onto syllables. 
The choice of pitches is an important one as it determines the tonal 
or atonal character of the stream. Although one may guess that a 
tonal structure will benefit language learning more than an atonal 
one, further work is needed to understand how and to what extent 
the tonality of the musical structure influences learning of the pho-
nological one. In the experiments described here we used a musical 
structure with a rather strong tonal center (10 notes out of 11 were 
in C major). Thus, it is possible that participants keep in memory a 
representation of a tonal center during the post-learning test, which 
influences the processing of the musical items rather early on. In 
fact, once a tonal center is established, each individual pitch can be 
processed and categorized relative to that tonal center, even in the 
absence of absolute pitch abilities. Indeed, musicians, in the musical 

1990; Young and Rugg, 1992). Thus, the N400 amplitude seems 
to be sensitive to the ease of accessing the information from 
long-term memory (Federmeier and Kutas, 2000). In statistical 
learning experiments, during the passive listening phase, only suf-
ficiently reinforced items may “survive” concurrent interference 
and become stored in a long lasting manner (Perruchet and Vinter, 
2002). Therefore, the observed differences between words (famil-
iar) and pseudo-words (unfamiliar) in the negative component, 
might reflect the difficulty of accessing and/or retrieving item 
representations.

Electrophysiological data of the musical test revealed a similar 
ERP component whose amplitude was larger for unfamiliar than 
for familiar items: a fronto-central negative component peaking 
around 900 ms after stimulus onset (Experiments 2 and 3).

In the studies described, insofar as the sung language was built 
by concatenating trisyllabic words, participants were (implicitly) 
familiarized with the three-pitch melodies corresponding to the 
melodic contour of the trisyllabic words. Therefore the same issues 
on lexical representation and familiarity described for linguistic 
items also apply when testing with musical sequences. Interestingly, 
in both Experiments 2 and 3, we found a fronto-central negative 
component larger for unfamiliar than familiar musical items, with 
a topographic distribution quite similar to the one observed in 
the linguistic test for the same contrast (unfamiliar – familiar, see 
Figure 4). However, although sensitive to the same factor (familiar-
ity) and with a similar topography, this negative component peaked 
at around 600 ms to linguistic items and at 900 ms to musical 
items, possibly due to the fact that participants found the musi-
cal test harder than the linguistic test. One may interpret these 
differences in latencies in terms of functional differences, that is, 
different underlying processes. We favor the interpretation of these 
differences in terms of difficulty in item retrieval: participants prob-
ably needed more time to “search” whether an item was familiar 
or not in the musical test than in the linguistic test. Although less 
commonly described in the literature, late negative components 
have been observed in response to musical stimuli following for 
instance, unexpected harmonies (Steinbeis and Koelsch, 2008) but 
also following musical excerpts that do not match the concept of 
a previous verbal context (Daltrozzo and Schön, 2009) or at the 
familiarity emergence point of a melody (Daltrozzo et al., 2010).

musIcal expertIse affects BehavIoral and BraIn IndIces
Comparing experts to non-experts in a given domain is an elegant 
way to study the effect of extensive training on brain plasticity. 
The musicians’ brain has long been considered a model of plas-
ticity (Münte et al., 2002). Thus, comparing musicians to non- 
musicians allows the effects of extensive audio-motor training on 
the functional and structural organization of the brain to be studied 
(even if causation is only showed using a longitudinal design). At 
a perceptual level, it has been shown that musicians outperform 
non-musicians on a variety of music related task: musicians have 
a lower frequency threshold (Spiegel and Watson, 1984; Kishon-
Rabin et al., 2001; Micheyl et al., 2006) and exhibit finer rhythmic 
processing than non-musicians (Yee et al., 1994; Jones et al., 1995). 
Compared to non-musicians, musicians also show an enhanced 
cortical attentive and pre-attentive processing of linguistic and 
musical features as reflected by larger amplitude and/or shorter 

Schön and François Musical expertise and statistical learning

www.frontiersin.org July 2011 | Volume 2 | Article 167 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/auditory_cognitive_neuroscience/archive


conclusIon
Based on the similarity between music and speech acquisition we 
made several predictions. Firstly, we predicted that the learning 
of linguistic and musical structures may be similar. We found 
that ERP responses to linguistic and musical test-items present 
a similar (although not identical) morphology and topography 
(Experiments 2 and 3). While this cannot be interpreted in terms 
of a similar learning process, it seems that the linguistic and musi-
cal representations that are a consequence of the learning process 
are similar. This further supports previous findings showing that 
statistical learning can apply to non-linguistic stimuli. Secondly, 
we predicted that speech segmentation may be influenced by 
musical structure. Results of Experiment 1 directly address and 
confirm this hypothesis. By clarifying the structure of the language 
and by increasing the motivation/arousal of participants, music 
seems to facilitate speech segmentation. Finally, we predicted that 
musical expertise may transfer to language learning. Experiment 
3 addressed and confirmed this prediction, by showing that musi-
cians have more robust representations of both musical and lin-
guistic structures, possibly via a more efficient brain network 
involving both auditory and more integrative processing.

future QuestIons
learnIng process versus learnIng outcome
Most studies on word segmentation and language learning rely on 
behavioral measures. These are typically obtained using the head-
turning procedure in infants and a familiarity two-alternative forced 
choice procedure in adults. These procedures are used after the listen-
ing phase, in which learning takes place. Thus, these procedures test 
the result of learning rather than the learning process itself. The data 
presented here (Experiments 2 and 3) suffer from the same limitation. 
Researchers in the field of implicit learning have more recently realized 
the importance of better defining the status of the representations 
derived from the learning processes and promote the combined use 
of both subjective behavioral measures (guessing criterion and zero 
correlation criterion) and EEG or fMRI measures (Seth et al., 2008). 
In this sense, studies measuring EEG during learning are promising, 
pointing to several possible electrophysiological indices, ERPs, or oscil-
lations that may reflect how learning takes place over time (Rodríguez-
Fornells et al., 2009; De Diego Balaguer et al., 2011). The challenge for 
the coming years is to access to a temporally detailed learning curve. 
Ideally, one would want to know how each word presented during 
the learning has been processed. As some studies seem to point out, 
learning curves may differ across individuals (Abla et al., 2008). This 
might be crucial in studying pathology, since similar behavioral results 
(null effects) may rely upon different learning curves.

extendIng musIc and language comparIsons
The literature comparing music and language processing (and 
also in studies on language learning) is mostly focused on the 
perceptual side, with production having received little attention. 
While the statistical learning framework is a brilliant way of study-
ing language learning in a laboratory, it lacks by construction the 
rich context and complex behaviors that are typically found in 
language acquisition. For instance the natural context typically 
implies a word to world mapping: once a unit/word is identified, 
it is mapped onto one or several concepts. Moreover, learning 

test, showed a significant effect of familiarity 200 ms after the first 
tone onset and before the beginning of the second tone on the P2 
component (larger to unfamiliar that familiar items), possibly due 
to a more difficult categorization of the unfamiliar than familiar 
items (Liebenthal et al., 2010). Thus, musicians were sensitive to 
the tonal structure of the language, which in turn influenced their 
perception of the first tone of the items in the test, despite poor 
behavioral performance.

This benefit of musical expertise in segmenting the musical 
structure was also evident in later ERP components. For instance, 
compared to familiar items, unfamiliar items yielded a larger mis-
match negativity (MMN) in response to the second tone of the 
melody (Experiment 3). Overall, both familiarity effects on the P2 
and MMN-like components suggest that musicians did indeed learn 
the musical structure better than non-musicians and this in turn 
affected the way they processed the musical items presented during 
the test. This is in line with previous findings showing that implicit 
learning of 12-tone music is influenced by expertise. Indeed, only 
participants with routine exposure to atonal music do (implic-
itly) perceive the distinction between different types of transforms 
(Dienes and Longuet-Higgins, 2004).

musIcal traInIng facIlItates ImplIcIt learnIng of Both 
lInguIstIc and musIcal structures
The most striking finding of the series of experiments reviewed here 
is that compared to non-musicians, musicians seem to have more 
“robust” representations of both musical and linguistic structures 
that have been shaped during the listening phase. Indeed, musicians 
showed a larger familiarity N400-like effect than non-musicians, 
in both dimensions (Experiment 3).

We interpret these findings as evidence that musical expertise 
facilitates regularity extractions and sequence learning in general 
(Janata and Grafton, 2003). For instance, it is known that musi-
cians can organize a sound sequence according to number regular-
ity, implicitly distinguishing segments containing four tones from 
the segments containing five tones. By contrast, such a percep-
tual organization of sound in terms of number is less relevant for 
non-musicians (Van Zuijen et al., 2005). Moreover, recent findings 
showed that deaf children with cochlear implants are impaired 
in visual sequence learning, suggesting that a period of auditory 
deprivation may have a major impact on cognitive processes that 
are not specific to the auditory modality (Conway et al., 2010). 
Therefore, sound seems to provide a cognitive scaffolding for the 
development of serial-order behavior: whether sound processing is 
impaired or whether it is extensively practiced have opposite effects. 
Interestingly, Sluming et al. (2002) reported an increased gray mat-
ter density and volume in the left inferior frontal gyrus, Broca’s area. 
Moreover, neuroplastic development throughout a musicians’ life 
seems to promote the retention of cortical tissue (Sluming et al., 
2002). Broca’s area is known to be involved in on-line speech and 
tone stream segmentation as well as in music harmonic percep-
tion (Tillmann et al., 2003, 2006; McNealy et al., 2006; Abla and 
Okanoya, 2008; Cunillera et al., 2009). Overall our results support 
an “auditory scaffolding hypothesis” (Conway et al., 2009) as we 
presently show that increased exposure to sounds leads to a benefit 
for implicit learning, putatively via anatomical and/or functional 
modifications going beyond the auditory regions.
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