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scat: Learning from a Single Execution
of a Binary

Franck de Goér
Laboratoire Informatique de Grenoble
Univ. Grenoble Alpes
France

Abstract—Retrieving information from a binary code is re-
quired in several application domains such as system integration
or security analysis. Providing tools to help engineers in this task
is therefore an important need. We present in this paper scat,
an open-source toolbox, relying on lightweight runtime instru-
mentation to infer source-level and behavioral information from
a binary code, like function prototypes or data-flow relations.
We explain the functioning principle of this toolbox, and we give
some results obtained on real examples to show its effectiveness.

Index Terms—Reverse-engineering, data-flow, binary code,
dynamic analysis, memory allocation

I. INTRODUCTION

“ Reverse engineering, also called back engineering, is the
processes of extracting knowledge or design information from
anything man-made. ” [3]]

In computer sciences, one often wants to understand a pro-
gram behavior, either for integration, for testing, for security
analysis, etc. This analysis of the behavior is much easier to
do from the source code, but sometimes the only thing we
have is a binary file. This can be the case with commercial
products as well as with malwares for instance.

In this paper, we introduce scat, a tool based on Pin
for reverse-engineering binaries in a few executions with an
acceptable overhead. The goal of scat is to retrieve source-
level (in particular prototypes of functions) and behavior-
level (coupling, memory management, etc.) information from
a binary under some critical constraints: no source code, no
compilation with special flags, possibly stripped. For each
analysis, scat works over one single instrumented execution,
and performs heuristics-based inferences.

Section || presents scat as a toolbox, ie how to use it and
what it is capable of. Section presents some interesting
aspects of scat under the hood. Finally, section [[V]| presents
some experiments we conducted and some numeric results.

II. USING scat

In this section, we present the main capabilities of scat
through a chosen example: mupdf. Mupdf is an open-source
PDF reader. Selecting an open-source system enables us to
validate our results, but our tool does not rely on it nor does
it require specific compilation options.
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A. Recover Prototypes

The first feature of scat is to recover prototypes of
functions. To do so, two kinds of information need to be
recovered: the arity (i.e., the number of parameters) and the
type of each parameter (plus the type of the return value). Each
of the following two steps is performed in one single execution
with a low overhead due to instrumentation (see sections
and for more details).

1) Arity: The first step to retrieve function prototypes is to
retrieve the arity of functions. We execute the program under
the analysis called arity:

| scat> launch arity mupdf-x11 poc.pdf

This command runs the program mupdf-x11 under anal-
ysis, and logs the results of the inference in a file. After this,
we can display the results using the command display, but
it is more interesting to complete the prototype inference by
retrieving type of parameters before displaying results.

2) Type: Note that we only consider a subset of all high-
level types that exist: INT (integers), ADDR (pointers) and
FLOAT (floating values). We consider that it is not a priority to
differentiate a short int from a long int, nor a pointer
to a string from a pointer to an object. What we want to know
is if we can dereference a parameter or not.

| scat> launch type mupdf-x11l poc.pdf

After this step, we can display the prototypes inferred by
scat:

scat> display mupdf-x11 type

|

[

| addr fz_keep_font (addr, addr);
| void fz_drop_font (addr, addr);
|

One can check that these prototypes correspond to functions

we can find in the source code of Mupdfﬂ
scat also gives general information about what was in-
ferred:

Inference

| Date: 2016-10-07 16:00:59
| Total functions inferred: 841

- Program functions inferred: 517

ISee for instance http://mupdf.com/docs/browse/include/mupdf/fitz/font.h.
html


http://mupdf.com/docs/browse/include/mupdf/fitz/font.h.html
http://mupdf.com/docs/browse/include/mupdf/fitz/font.h.html

3) Remarks:

« Due to the single execution, we miss a lot of functions
as we only catch the ones that are executed during this
particular trace. This point will be discussed in section
[V-Al

« In this paper, we present results including function names.
scat uses function names as identifiers if the symbol
table is embedded in the binary, but it is not required:
scat works as well on stripped binaries.

« Every analysis we present in the following sections use
the prototype inference as a base.

B. Memory Analysis

Another interesting feature of scat, from the results of the
previous one, is to perform memory use analysis of various
kind. First, scat runs once again the binary under analysis
in order to collect runtime information about addresses used
(see section . Then, from the data collected, we can infer
behavioral information (see section [[I-B2), retrieve allocators
(see section [[I-B3)), reconstruct memory blocks (see section
II-B4) and perform some safety and security checks (see
section [[I-BS5).

1) Online - Collecting Data: The first step to perform
memory analysis using scat is to collect data at runtime. This
can be done using the module memcollect which traces
every call and return from a function that deals with addresses
(either in parameter or in return value).

| scat> launch memcollect mupdf-xll poc.pdf

This step outputs a log file containing lines of the type
io:type:val:func:tc where:

e 1o is either in if the line corresponds to a parameter or
out if it corresponds to a return value ;

e type is the type of the value (ADDR, INT or FLOAT) ;

o val is the concrete value of the parameter ;

e func is the function that is taking this value as a
parameter or returning this value ;

e tc is the timecounter of the call or return.

The following steps are based on this log file.

2) Coupling: The idea of coupling (detailed in [2f]) is to
illustrate relevant dataflows between functions. More precisely,
we say that a function f is p-coupled to g if the parameter
of g comes from a value output by f with a proportion
of at least p. Note that we only consider coupling between
ADDR parameters. Figure [1] illustrates the idea on a forged
example. On this figure, an arrow from g to f labeled with
the percentage p represents the dataflow between the output
of f and the input of g with a proportion of p. For instance,
the parameters of free come from alloc with a proportion
of 70% and from realloc with a proportion of 30%.

To compute couples, the command is couple:

scat > couple mupdf-x11
[*] parsing memory blocks...
[x] #f: 706 | #g: 228 | #in:

|

|

| 2379871 | #out:
| [*] computing couples...

|

|

687874

("fz_malloc_array’, ’'js_free’, 0.9914)

50%
o
70% ‘GIH’

Fig. 1. Illustration of the idea of coupling on a forged example

100%

s

Coupling gives a good idea of the interactions between func-
tions. In this example, we find coupling between allocating
and liberating functions. Note that there are a lot of couples
output in this case, but with a few different functions (706
left-functions and 228 right-functions). Some additional work
is required to extract the relevant data from this output, but
automatic tools can use this to discover dataflows and track
the user inputs for example.

3) Retrieve Allocators: From the memory trace, scat can
also try to retrieve the allocating and liberating functions.
Technical details are given in section[[lI-B2] The knowledge of
allocators is very helpful to track memory bugs (e.g., memory
leaks, read-before-write, ...) and memory vulnerabilities (e.g.,
use-after-free). This is a problem when memory blocks are
managed by a custom embedded allocator that one does not
know a priori. The command to launch the allocator retrieving
analysis is memcomb:
| scat > memcomb mupdf-x11
| [*] allocator found - mupdf-x11:4210672:
| [*x] liberator found - mupdf-x11:4211232:

In the case of mupdf, the allocator found is the Global
Offset Table relative to malloc from the standard 1ibc. This
is the result one can expect, as mupdf does not use a custom
allocator. An example with a program embedding a custom
allocator is presented in section Note that this is a work
in progress: we are currently experimenting deeper to validate
our approach at a larger scale.

4) Reconstruction of Memory Blocks: Once ALLOC and
FREE have been retrieved, it is possible to reconstruct the
history of the memory during the execution (using the data
produced in section [[I-BI). To do so, scat uses a simulated
memory that allocates and liberates blocks each time ALLOC
or FREE is called. The size of each block is assumed to be the
first INT parameter of ALLOC. Performing this reconstruction
ca be useful, for example, to perform some checks on memory
use during the execution.

5) Memory Checks: The next step is to use this memory
reconstruction to check accesses. For instance, we can check
that every address given as a parameter corresponds to an
allocated block. We can also check that blocks are freed before



the end of execution, etc. This work is currently in progress,
and the implementation is not available yet.

C. Modularity

In addition to the capabilities of scat we presented in this
section, one can develop its own analysis and include it to our
tool easily. The process is described in the GitHub page of the
projec

III. INSIDE scat

For its analysis, scat works on two levels. It leverages the
instrumentation facilities offered by the Pin software [5] to
execute the program, collect some runtime data about it and
store them. Then, the offline step uses these runtime data to
deduce high-level information.

A. Dynamic Instrumentation with Pin

1) Register Access: Thanks to Pin, scat can keep track of
register accesses. This is the cornerstone of the arity analysis.
Consider this simple execution of pseudo-instructions :

WRITE register X

// ... other instructions

// (where register X is not modified)

CALL callee

// ... other instructions

// (where register X is not modified)

READ register X

In this sample, the value of register X read by

function callee is the same value written by the caller.
This kind of pattern is most likely due to a parameter of
function callee being passed in the register X.
Building on this, scat monitors register accesses and function
calls/returns to infer functions arity. See Algorithms [1] & 2]

Input: reg: register being written

Data: call_stack: Stack of the function calls,
last_write: Tells for each register the last
function from the call stack which wrote this
parameter

Result: Update last_write according for the register

being written
begin
| last_write[reg] <— call_stack.current()

end
Algorithm 1: on_register_write

2) Address Tracking: The main part of the type analy-
sis is to differentiate between parameters of type INT and
parameters of type ADDR. Indeed, FLOAT parameters are
actually straightforward to detect because they are passed
through specific registers ($xmm0 to $xmm7). To do this,
scat executes the program and does two things :

o Monitor memory writes to infer the range which corre-

sponds to valid memory addresses.

o Keep for each function parameter a fixed number of

values.

Zhttps://github.com/Frky/scat#add- your-own- pintool

Input: reg: register being read
Data: call_stack: Stack of the function calls,
last_write: Tells for each register the last
function inside the call_stack which wrote
this parameter, param_detections:
param_detections[f][p] is the number of times the
parameter of index p for function f has been
detected.
Result: Modify param_detections to account for
the new parameter detection
begin
foreach f in call_stack from last_write[reg]
up to the top do
param_index = param_index_for_reg(reg) ;
param_detections[f][param_index] ++ ;
end

end
Algorithm 2: on_register_read

Once this is done, for each parameter, if a sufficient portion
of the stored values (empirically fixed at 75%) is inside one
of the inferred address ranges, the parameter is then deduced
to be of type ADDR.

3) Hollow Stack: For the arity and type analysis for which
the recovered data are related to functions, scat has to keep
tracks of the current call stack. In order to do this accurately,
i.e., keep track of a good sampling of the calls for each
functions but not each and every calls, and to avoid some
performance and memory issues with heavy recursive calls,
it was necessary to design a (new) dedicated solution we
named Hollow Stack. The Hollow Stack behaves exactly like a
straightforward fixed-size stack until the limit size is reached,
in which case it will discard elements in the middle. The
intuition is that with a reasonably-sized stack (for example,
the number of functions inside the executable can be used as
a large upper bound), overflows will only occur in cases of
heavy recursion, and when this happens the stack will be filled
with a lot of redundant calls in its middle while the bottom
and the top will contain relevant calls (head and tail of the
recursive calls chain). The principle of this stack is shown in

Figure [2|
B. Offline Analysis

1) Prototype Result Analysis: scat provides a way to
validate its results on prototype recovery using the source code
of the binary under analysis and/or debugging information.
This can only be done in a particular context of testing where
this kind of information is available. This requires two steps.
First, create an oracle from the source code (using clang)
and/or from the debugging information (using dwarf). This
oracle contains the source-level prototype of each function,
including its arity and the type of each one of its parameters.

| scat > parsedata mupdf-x11 src/mupdf/

Second, once this oracle is generated, we can compare
the results extracted from dynamic analysis (as described in
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Fig. 2. Recursive calls chain and the corresponding hollow stack

section [[I-A)), either for the arity inference or for the type
inference. For arity, it outputs the accuracy as the percentage
of functions where the arity (including the return value) was
inferred correctly among the functions inferred (this means
that functions that were not inferred are not included in the
computation of arity). For types, the accuracy is the number
of parameters (including return values) for which the type
was inferred correctly relatively to the number of parameters
inferred.

scat > accuracy arity mupdf-x11
Accuracy of inference

|

|

| | Params Ok/Total tested: 561/568
| | Return Ok/Total tested: 565/568
| | Ratio params: 98.77%
| - Ratio return: 99.47%

Some results on a few open-source programs are presented
in section [Vl

2) (WIP) Retrieve ALLOC and FREE: As mentioned in
section [[I-B3| scat provides a module to retrieve allocators
from a memory trace. We propose here to present the heuristics
based method that scat implements. For ALLOC, the idea
stands in one sentence:

ALLOC is the function that outputs the greatest
number of new addresses.

This heuristic leads to a simple algorithm to retrieve ALLOC
from the memory trace we obtained in section [[I-BI} see
Algorithm [3]

To retrieve FREE, we also base our approach on heuristics
that can be summed up in one sentence:

Statistically, FREE is the last function that accesses
addresses output by ALLOC (assuming that uses-
after-free are rare).

Some results of ALLOC and FREE retrieving experiments
are presented in section

IV. SOME RESULTS

We present in Table [[| some results to illustrate the relevancy
and the practical usability of our implementation. To obtain
these results, we used a set of open source programs written
mostly in C, which were compiled from source using the
standard options (except for the additional debug flag to get the

Data: log trace of execution (as produced by section
1I-B1)
Result: The best ALLOC candidate
foreach param in trace log do
/+ param.id contains the function
that uses this param */
if param.id is external then
| continue;
end
if param.val already seen then
| continue;
end
if param is ADDR and param is return value then
mark param.val as seen;
increment number of ADDR produced by the
function param.id,
end

end
return max(all functions, key = number of ADDR
produced)

Algorithm 3: Detection of ALLOC

function information for comparison). Sections and
comment the accuracy of arity and type detection. These two
detections are easy to test: as explained in section [lII-B1| we
compare the results obtained with scat with data we extract
either from the source code or from dwarf information. Section
IV-C| comments the preliminary results in allocator detection,
but this part is harder to evaluate strongly, because of the lack
of benchmark in this way. Finally, section presents some
overhead measurements.

A. Arity

The arity detection, first presented in [2], has been improved
since, and now gives very accurate results, as shown in Table
[l with an acceptable overhead. We remind that this detection
is performed over a single execution. This means that:

o given the low overhead per execution, the detection is
light in time,

« however functions that are not called during the one
execution will not be recovered.

Relatively to the functions that are wrongly inferred, the
main sources of error are:

o Variadic functions: a function that does not take the
same number of parameters at each call is currently a
problem for our arity detection algorithm.

o Unused parameters: some functions never use a param-
eter (often the last one), often because it is deprecated
but it has been kept for compatibility reasons.

o Incomplete trace: some functions use some parameters
in specific cases (depending, for instance, on the value of
other parameters). Because we do not use code-coverage
tools, we may miss some paths in the control flow graph
and thus miss parameters.



TABLE I

ACCURACY AND OVERHEAD OF scat ON SEVEN OPEN-SOURCE PROGRAMS

[ bash | grep [ mupdf | git [ tar [ xterm [ vim
total #functions 4176 1559 16680 10597 1154 1103 4978
arity #functions inferred 53 81 569 476 79 54 198
accuracy (in %) 94 94 99 95 78 95 96
tvpe #parameters 143 204 1500 1112 166 151 443
yP accuracy (in %) 94 94 97 97 95 95 95
no instrumentation (in s) | 0.005 | 0.006 2.430 213.698 | 7.523 0.043 1.316
overhead arity (in x) x350 x314 x4.24 x1.04 x1.18 x129 x8.00
v type (in x) | x311 x259 x4.22 x0.996 | x1.15 x137 x7.04
memcollect (in x) x366 x435 x10.2 x1.14 x6.02 x238 x6.57

B. Type

In the same way, we significantly improved our results since
[2]] relatively to type detection. Types of parameter are detected
with an accuracy of about 95%, with a lower overhead than
the arity detection (see Table [).

The identified sources of error for type are:

e« NULL pointers: some pointer parameters are optional,
and sometimes the caller always set it to NULL. In this
scenario, scat is not able to detect that the type of this
parameter is ADDR, and this leads to a detection mistake.
This also affects ”out parameter” whose function use the
common idiom of accepting NULL as a way for the caller
to tell the callee to allocate the required space.

« Random integers: random parameters or return values
are likely to be detected as addresses, because these
values are often in the range of valid addresses.

C. Allocator Detection

The first results of our allocator detection are encouraging,
though this is a work in progress. The lack of benchmark (to
our knowledge) adapted to allocator retrieving makes an au-
tomation of tests difficult. However, we tested our tool on four
open-source programs. Three of them use the standard 1ibc
allocator (malloc/free), and one is a program we wrote
that embed a custom allocator (mem_alloc/mem_free).
On those four examples, we successfully retrieve the expected
allocators. Adding more tests over well-known open-source
programs will be addressed in a future work.

D. Overhead

The last lines of Table [I| present some experiments to
illustrate the scalability of our approach. For each runtime
analysis, we give the overhead as a multiple of the normal
time of execution. These results are very spare for several
reasons (fixed cost of the intrumentation, logging into files,
etc.). However, on large programs running for a long time (eg
mupdf or git), the overhead is very acceptable.

V. RELATED WORK

Analysis of binaries with no source-code is a field for which
a lot of tools have been developed. Among them, the most
famous are probably gdb [7], IDA [4] and Valgrind [6].
GDB is a debugger that is useful to manually analyze an

execution, but does not perform analysis automatically, such
as prototype inference. On the other hand, IDA is a fantastic
toolbox for a reverse-engineer, which includes a lot of features
and powerful capabilities. However, IDA is mainly designed to
work statically, so it comes with some limitations (for instance
if the binary under analysis is packed). Finally, Valgrind is
really interesting to analyze the memory use of a program, but
it relies on the knowledge of the allocator.

Relatively to allocator detection, the most advanced research
work in this domain is [1]. scat has an approach similar
to what is done in this paper: it uses Pin as well as
heuristics. However, there are some points of differentiation.
For example, they rely on the assumption that the initial
allocation (of a large block within the memory handled by a
custom allocator) is done by a well-known allocator (typically
malloc or memmap/brk). Our approach does not rely on
such an assumption. In addition, by opposition to membrush,
our tool is open-source’|

VI. CONCLUSION

In this paper, we presented scat, an open-source toolbox
that we designed to perform scalable dynamic analysis of
binaries in one execution. We showed that scat allows to
retrieve prototype of functions with a reasonable overhead,
and we presented an approach to perform memory inspection,
combining an online and an offline step. The central idea,
allocator detection, is not mature yet but is promising.
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