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Embedding Untrusted ImperativeML Oracles
into Coq Verified Code∗

SYLVAIN BOULMÉ and THOMAS VANDENDORPE,

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, France,

This paper investigates a lightweight approach – combining Coq and OCaml typecheckers – in order to
formally verify higher-order imperative programs in partial correctness. In this approach, the user does never
formally reason about effects of imperative functions, but only about their results. Formal guarantees are
obtained by combining parametric reasoning over polymorphic functions (i.e. “theorems for free” a la Wadler)
with verified defensive programming. This paper illustrates the approach on several examples. Among them:
first, the certification of a polymorphic memoized fixpoint operator using untrusted hash-tables; second, a
certified Boolean SAT-solver, invoking internally any untrusted but state-of-the-art SAT-solver (itself generally
programmed in C/C++).

Additional Key Words and Phrases: The Coq Proof Assistant, Monads, Polymorphism, Parametricity

1 INTRODUCTION
The CompCert certified compiler [Leroy 2009a,b] is the first C compiler with a formal proof of
correctness that is used in industry [Bedin França et al. 2012; Kästner et al. 2018]. It is a major
success of software verification, because CompCert does not have the bugs which are usually
found in optimizing compilers [Yang et al. 2011]. Its success partly comes from its smart design,
focusing the formal proof in Coq on the partial correctness of compilation passes, while reasonings
on their performance (including thus their termination) remain informal. In particular, CompCert
invokes untrusted oracles from the certified code. For example, register allocation in compilers
is a NP-complete problem: finding a valid allocation is difficult, while checking the validity of
an allocation is easy. In CompCert, the allocation is found by an oracle, i.e. an untrusted OCaml
function; and, only a checker of the allocation is programmed and certified correct in Coq [Rideau
and Leroy 2010]. Generally speaking, introducing such an oracle has the following benefits: first,
this avoids to program and prove a difficult algorithm in Coq; second, this offers the opportunity
to use (or even reuse) an efficient imperative implementation as the oracle; at last, this makes the
software more modular. Indeed, the checker is actually certified for a family of oracles: the oracle
can still be improved or tuned for some specific cases, without requiring to reprove the checker.
In some certified software like the certified UNSAT prover of [Cruz-Filipe et al. 2017a], oracles

are invoked before certified code which only checks their outputs. This is not the case in CompCert:
oracles are directly invoked in themiddle of certified transformations of the input. Hence,CompCert
uses a standard FFI (Foreign Function Interface) of the Coq programming language, in order to
invoke external OCaml code from certified code. However, there is no formal justification that
using this FFI is sound. Section 1.1 details the main pitfall of this FFI. Section 1.2 sketches a proposal
to fix this issue. Section 1.3 summarizes the contributions of the paper.
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1.1 Unsoundness of the Standard FFI w.r.t OCaml
The register allocation of CompCert is declared in Coq by1

Parameter regalloc: RTL.function → res LTL.function.

Here, “Parameter” is synonymous of “Axiom” and “res” is quite similar to the “option” type
transformer. Some Coq directive in CompCert instructs Coq extraction [Letouzey 2008] to replace
this “regalloc” axiom by a function of the same name from the Regalloc OCaml module. While
very common, this approach is potentially unsound.
Let us consider the Coq example on the
right-hand side. It first defines a constant one
as the Peano’s natural number representing 1.
Then, it declares an axiom test replaced at
extraction by a function oracle . Finally, a
lemma cong is proved, using the fact that test
is a function.

Definition one: nat B (S O).
Axiom test: nat → bool.
Extract Constant test ⇒ "oracle".

Lemma cong: test one = test (S O).
auto.

Qed.

However, implementing oracle by “let oracle x = (x == one)” in OCaml makes the lemma
cong false at runtime. Indeed, (oracle one) returns true whereas (oracle (S O)) returns false,
because “==” tests equality between pointers. Hence, the Coq axiom is unsound w.r.t this imple-
mentation. A similar unsoundness is obtained with another implementation of oracle, that returns
the value of a global reference, containing true at the first call, and false at the second call.2 This
unsoundness comes from the fact that a Coq function f satisfies “∀x , (f x) = (f x)”, whereas an
OCaml function may not satisfy this property. Actually, CompCert is probably free from such a
bug, because its Coq proof does probably not depend on this property of regalloc : the remaining
of the compiler does not depend on whether regalloc is pure or not.3

1.2 Foreign Functions as Non-Deterministic Functions
[Fouilhé and Boulmé 2014] have proposed to avoid this unsoundness by axiomatizing external
OCaml functions using a notion of non-deterministic computations. For example, if the result of
test is declared to be non-deterministic, then the property cong is no more provable. For a given
typeA, type ??A represents the type of non-deterministic computations returning values of typeA: it
can be interpreted as P(A), the type A → Prop of predicates over A. Formally, the type transformer
“ ?? . ” is axiomatized as a monad that provides a may-return relation {A: ??A → A → Prop.
Intuitively, when “ ??A” is seen as “P(A)”, then “{” simply corresponds to identity. At extraction,
??A is extracted like A, and its binding operator is efficiently extracted as an OCaml let-in. See
details in Section 2.
For example, replacing the test axiom by “Axiom test : nat → ?? bool” avoids the above

unsoundness w.r.t the OCaml oracle. The cong property can still be expressed as below, but it is
no longer provable – because it is not satisfied when interpreting ??A as P(A) and interpreting
test as the function returning the trivially true predicate (in this interpretation, the goal below
reduces to the false property that all Booleans are equals).

cong: ∀ b b', (test one){b →(test (S O)){b' →b=b'.

1See https://github.com/AbsInt/CompCert/blob/master/backend/Allocation.v
2For example defined with “let oracle = let h=ref false in (fun x -> h:=not !h; !h)”.
3The current implementation of regalloc uses imperative hash-tables: it is not obvious if it is observationally pure or
not – in the Coq sense.

https://github.com/AbsInt/CompCert/blob/master/backend/Allocation.v


Embedding Imperative ML Oracles into Coq 3

Of course, this approach does not suffice to avoid all pitfalls of axiomatizing oracle types in Coq.
Some other pitfalls are detailed in the paper, with proposal of remedies.

1.3 Contributions of the Paper
The may-return monad of [Fouilhé and Boulmé 2014] aims to ensure that Coq proofs like those
of CompCert do not rely on the purity of external oracles. Based on a variant of the may-return

monad, this paper proposes a library called Impure which is conjectured to provide a safe FFI
for almost any well-typed OCaml function (see details in Section 2). Hence, this FFI allows to
embed many impure OCaml features into Coq certified code. This is illustrated along the paper on
I/O operations, exception-handling, mutable data-structures and physical equality. Whereas this
approach inherits of the full programming power of OCaml, its reasoning power is rather limited
as detailed just below.

For example, on I/O operations, Impure does not provide any reasoning support unlike the coq.io
library of Guillaume Claret. Actually, embedding I/O in Coq code is already very convenient, even
without any formal proof about those I/O. In particular, this allows us to write the main function of
our executables in Coq: when such a main function is sufficiently small, it can be considered itself
as a part of the formal specification (see Figure 15 at page 16).

On exception-handling and on polymorphic mutable data-structures, Impure supports “theorems

for free” a la Wadler [Wadler 1989] that are derived by embedding invariants into the polymorphic
types of OCaml oracles. Even if this technique suffers from a very incomplete reasoning power
(for example, it cannot even prove that “x:=1; !x” returns “1”), it suffices to formally prove many
interesting properties “for free”.

Actually, in counter-part of this limited reasoning power, there is only a very small bureaucratic
overhead with respect to reasoning about pure code.4 The only overhead comes from the fact
that every impure computation is encapsulated in a monad. And, in realistic developments like
CompCert, even pure computations are often handled through an error monad. So, we believe that
replacing the error monad of CompCert by the may-return monad would not make the proofs
heavier.5
In other words, the Impure library provides a framework to combine Coq and OCaml type-

checkers. Surprisingly, in a defensive style (i.e. with dynamic checks of oracle results), this simple
framework is very effective. This is illustrated on two main examples: first, the certification of a
polymorphic memoized fixpoint operator using untrusted hash-tables; second, a certified frontend
to any untrusted but state-of-the-art SAT-solver. This second—very significant—example is partly
inspired by the Coq-verified checker of UNSAT certificates proposed by Cruz-Filipe et al. [2017a].
Our main contribution on this example is to illustrate how our “theorems for free” technique helps
to develop a code, which is much faster than this previous one—with a very modest development
effort.
This paper is more experimental than theoretical. It proposes a very pragmatic solution to the

formal verification of complex software like SAT solvers or compilers. In particular, with some of
our colleagues, we have also fruitfully applied our approach to extend a CompCert backend with
an efficient postpass scheduling. This other significant development (20Kloc of Coq + 4Kloc of
OCaml) is presented in [Six et al. 2019].

4Full reasoning on imperative functions often requires to write (and prove) bureaucratic specifications of functions with
respect to their effect on the global environment. For examples, see Frama-C [Kirchner et al. 2015] or CFML [Charguéraud
2011]. The drastic simplicity of our approach comes from the fact that it handles only two effects: “nothing” (for pure Coq
functions) or “everything-compatible-with-typing” (for Coq functions embedding OCaml code).
5However, such a replacement would require a significant amount of work, because the two monads differs.

http://coq.io
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1.4 Overview of the Paper
Section 2 presents our proposal of FFI (through the Impure library) and conjectures its soundness.
Section 3 applies it to extend the Coq programming language with some polymorphic impure
operators: exception-handling and fixpoints. Finally, Section 4 applies it to certified SAT-solving.
An appendix details some technical points of the paper.

2 TOWARD A SOUND FFI W.R.T OCAML THROUGHMAY-RETURN MONADS
As sketched in introduction, this section will define a type A → ??B to represent the type of
impure functions from type A into type B. Informally, we interpret the type ??B as P(B) the type
of predicates characterizing the possible results. This interpretation represents thus each impure
function as a function of A → P(B), or equivalently, as a relation of P(A × B), because of the
bijection between this two types. Section 2.1 defines type ??B using axioms in order to provide an
efficient extraction into OCaml, where “ ??” are simply removed. Based on this notion of impure
computations, Section 2.2 presents our FFI and conjectures its soundness. Section 2.3 explains how
this conjecture is related to a parametricity property of the underlying “Coq+OCaml” type system.
Finally, Section 2.4 extends the FFI with pointer equality.

2.1 Definition of the May-Return Monad in the Impure library
This section introduces in an informal syntax the theory of the may-return monads and presents
the informal interpretation of these axioms. See the sources online6 for the full Coq syntax with
the proofs. The definition of may-return monads in this paper – given below – is inspired by the
original definition of [Fouilhé and Boulmé 2014], itself inspired by the structure of monads in
functional programming languages [Wadler 1995]. There are however two differences between the
definition below and the original one. First, in this paper, the congruence “≡” over computations
has been omitted. Indeed, in the VPL, the Verified Polyhedra Library of [Fouilhé and Boulmé 2014],
this congruence is only needed in order to prove a property on a higher-order operator that is
absent of the case studies of this paper. Moreover, as discussed in Appendix A, the meaning of such
an equality with respect to the extracted code is counter-intuitive: an issue that we keep out of the
scope of this paper. Second, this paper introduces the “mk_annotA” operator, that is invoked in
order to prove properties on higher-order operators by parametricity (see Section 3).

Definition 2.1 (May-return monad). For any type A, type ??A represents impure computations
returning values of type A, and provides a may-return relation

{A: ??A → A → Prop

where “k { a” means that “k may return a”. It also provides the three following operators
• Operator ≫=A,B : ??A → (A → ??B) → ??B encodes an impure OCaml sequence “let x =
k1 in k2” into “k1 ≫= λx ,k2”. This operator must satisfy

k1 ≫= k2 { b ⇒ ∃a,k1{a ∧ k2 a{b

• Operator retA : A → ??A lifts a pure value as an impure computation. It must satisfy

reta1{a2 ⇒ a1=a2

• Operator mk_annotA : ∀(k : ??A), ??{ a | k { a} annotates the result of a computation k
with an assertion expressing that it has been returned by k .

6http://github.com/boulme/Impure/blob/master/ImpMonads.v

http://github.com/boulme/Impure/blob/master/ImpMonads.v
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In the Coq code, “k1 ≫= λx ,k2” is written with a “DO” notation reminiscent of Haskell
“DO x f k1 ; ; k2” (or “k1 ; ; k2” if x does not appear in k2). And ret is also written with cases
“RET” to increase readability of impure code.

2.1.1 Interpretations of May-Return Monads. Here is the informal interpretation of “ ??A” as the
type of predicates “P(A)”: {A is identity on P(A); retA is the identity relation of A → P(A);
≫=A,B returns the image of a predicate on A by a binary relation of A → P(B); mk_annot returns
the trivially true predicate. Theses definitions are formalized in Figure 1. They satisfy axioms of
may-return monads.

Actually, it is worth noticing that usual monads are naturally embedded as a may-return monad.
For example, Figure 2 corresponds to the embedding of the identity monad. And, Figure 3 corre-
sponds to the embedding of the state-monad on a given global state of type S .

??A ≜ A → Prop k{a ≜ (k a) reta ≜ λx ,a = x

k1 ≫= k2 ≜ λx ,∃a, (k1 a) ∧ (k2 a x) mk_annotk ≜ λx ,True

Fig. 1. Power-set instance of may-return monads

??A ≜ A k{a ≜ k=a reta ≜ a k1 ≫= k2 ≜ (k2 k1)

mk_annotk ≜ exist{ k eq_reflk
where • exist{ is the constructor of the dependent pair { a | k { a}

• eq_reflk is a proof of k = k
Fig. 2. Identity instance of may-return monads

??A ≜ S → A × S k{a ≜ ∃s, fst(k s) = a reta ≜ λs, (a, s)

k1 ≫= k2 ≜ λs, let (a, s ′) := (k1 s) in (k2 a s
′)

mk_annotk ≜ λs, let (a, s ′) := (k s) in (exist{ a pk,s , s
′)

where pk,s is a proof of ∃s0, fst(k s0) = fst(k s)
Fig. 3. State-transformer instance on a global state of type S

In order to handle impure computations in Coq, the Impure library declares an abstract may-
return monad (i.e. its implementation remains hidden). It is extracted as like as the identity may-
return monad of Figure 2 except that, in order to enforce the expected evaluation order, operator
≫= is extracted to operator (|>) of OCaml.7

2.1.2 Reasoning on Impure Computations with Weakest-Liberal-Preconditions. Having introduced
axioms for impure computations in Definition 2.1, we automate Coq reasonings about such compu-
tations, by reusing a weakest-precondition calculus introduced by [Fouilhé and Boulmé 2014] and
programmed as a very simple Ltac tactic. They define in Coq an operator
7See http://github.com/boulme/Impure/blob/master/ImpConfig.v

http://github.com/boulme/Impure/blob/master/ImpConfig.v
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“wlpA : ??A → (A → Prop) → Prop” such that “wlp k P ≜ ∀a,k{a ⇒ (P a)”.

In other words, (wlp k P) expresses the weakest (liberal) precondition ensuring that any result
returned by computation k satisfies postcondition P . More simply, when ??A is interpreted as P(A),
wlp corresponds to inclusion of predicates. Now, we define the notion of WLP-theorems.

Definition 2.2 (WLP-theorems). A WLP-theorem is a Coq theorem with a conclusion of the form
“(wlp k P)”. Such a theorem means that (under the hypotheses of the theorem),

For all r , if the extraction of k returns the extraction of r , then r satisfies P .

In particular, when the extraction of k does not terminate or raises an uncaught exception,
WLP-theorems do not give any useful information (as usual in partial correctness). In our Coq code,
we write (wlp f λr , P) with the notation “WHEN f { r THEN P”. For example, let us consider the
following Coq code:
Variable f: nat → ?? nat.
Definition g (x:nat): ?? nat B DO r f f x;; RET (r+1).
Lemma triv: ∀ x, WHEN g x { r THEN r > 0.

The Ltac tactic simplifies this goal into the trivial property “∀n : N,n+1> 0” (See [Fouilhé and
Boulmé 2014] for details).

2.2 The Foreign-Function-Interface provided by Impure
As shown in introduction, declaring externalOCaml oracles in Coqmay be unsound, by authorizing
Coq theorems that can be false at runtime. The may-return monad has been introduced in order to
avoid the pitfall of embedding impure computations as pure functions. But this is not sufficient
to ensure soundness. To this end, we need to define a class “permissive” of Coq types and a class
“safe” of OCaml values satisfying Conjecture 2.4 below, with “being permissive” and “being safe”
automatically checkable, and as expressive as possible. In this paper, we consider the following
definition for “safe”. The definition of “permissive” will be gradually introduced in Section 2.2.1
upto Definition 2.5.

Definition 2.3 (Safe OCaml value). An OCaml value is “safe” iff it is well-typed and without
calls to external values like Obj.magic, and without using cyclic values like “let rec v = S v”
on Coq extracted types.8 NB: The last restriction does not forbid recursive functions nor cyclic
mutable data-structures in safe OCaml values.

Conjecture 2.4 (Soundess of permissive Coq types). Every “permissive” Coq typeT according
to Definition 2.5 satisfies the following property:

every safe OCaml value compatible with the extraction of T is “soundly” axiomatized
in Coq with type T – in the sense that WLP-theorems deduced from the axiom cannot
be falsified when running the extracted code, in which the axiom has been replaced by
the OCaml value.

Ideally, we aim to extend Coq with a “Import Constant” construct of the form:
Import Constant ident: permissive_type B "safe_ocaml_value".

and acting like “Axiom ident : permissive_type”, but with additional checks during Coq and
OCaml typechecking in order to ensure soundness of extraction. However, defining precisely such
typechecking algorithms is left for future work.
8Appendix B details issues of cyclic values.
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2.2.1 Definition of Permissivity. This section gradually introduces our definition of permissivity

in order to enforce Conjecture 2.4 on its soundness. We first give examples of unsound types,
and examples that are conjectured to be sound. Section 1.1 have illustrated that type nat→bool

is unsound: thus, it cannot be permissive. On the contrary, type nat→?? bool is conjectured to
be sound. We also conjecture that nat→?? nat is sound. But, type nat→? ? { n : nat | n ≤ 1 0 } –
extracted to “nat->nat” – is not. Indeed, such a Coq type corresponds to assume a postcondition on
the oracle that the OCaml typechecker cannot ensure.
Similarly, type nat→? ? ( nat→nat ) – extracted to “nat->(nat->nat)” – is unsound because the

Coq side expresses that the result of type nat→nat is pure, whereas this (implicit) postcondi-
tion cannot be ensured by OCaml typechecker. Actually, the same phenomenon happens with
nat→( nat→?? nat ) (extracted on the same OCaml type): the partial application on the first argu-
ment is declared pure in Coq, whereas this cannot be ensured by OCaml typechecker.
On the contrary, types nat→? ? ( nat→?? nat ) and ( nat→?? nat )→?? nat are conjectured to

be sound. And also { n | n ≤ 1 0 }→?? nat . On this last example, the Coq axiom requires a
precondition that OCaml typechecker can safely ignore. A similar phenomenon happens with
( nat→nat )→?? nat (the purity of the parameter is an implicit precondition thatOCaml typechecker
can safely ignore). Note that currying in sound oracle types—like in nat→? ? ( nat→?? nat )—allows
for more imperative OCaml implementations (at the price of more bureaucracy on the Coq side)
than tupling—like in nat ∗ nat→?? nat .
In the general case, permissitivity can be viewed as a given supertyping relation between Coq

types and OCaml types: a Coq type is permissive if and only if it is a supertype of its extraction.
In this view, permissivity of arrow types requires to distinguish “inputs” (negative occurrences)
from “outputs” (positive occurrences): outputs are covariant and inputs are contravariant. We thus
also need to introduce a subtyping relation between Coq types and OCaml types. On “basic” types,
motivated by the correctness of Coq extraction[Letouzey 2008], we consider that a Coq type is
always a subtype of its extraction. For example, { n : nat | n ≤ 1 0 } is a subtype of OCaml nat.
In order to deal with more complex types, the subtyping relation must be mutually defined together
with the supertyping relation. Here, we leave the precise definition of the subtyping relation for
future works. These considerations leads us to the following definition of permissivity.

Definition 2.5 (Permissivity). The permissivity of a Coq type is defined inductively over the
syntax of types:

• An inductive type is permissive whenever its sort is not Prop and whenever the type of each
input of each constructor is permissive. See example below.

• An arrow type is permissive whenever the arrow is followed by a “??”, and its output type is
permissive, and its input type is a subtype of its extraction.

• ML polymorphism – i.e. prenex universal polymorphism – preserves permissivity.

For example, given type foo below, type nat→?? foo is permissive. But this would not be the
case if constructor Bar has no “??” in the type of its argument.

Inductive foo B Bar: (nat → ??nat) → foo

A more advanced example of permissive type is given by the polymorphic type of make_cref in
Figure 4. Section 2.3 illustrates that Conjecture 2.4 implies a powerful parametricity property on
such a polymorphic oracle.

2.2.2 Application to Imperative Programming in Coq. Let us start exploring basic imperative pro-
gramming in Coq, by using mutable data-structures and I/O. Let us first consider the embedding
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Record cref {A} B { set: A → ?? unit; get: unit → ?? A }.
Axiom make_cref: ∀ {A}, A → ?? cref A.

Fig. 4. A Coq FFI of mutable references

let make_cref x =

let r = ref x in { set = (fun y -> r:=y); get = (fun () -> !r) }

Fig. 5. Standard OCaml implementation of make_cref

let make_cref x =

let h = ref [x] in {

set = (fun y -> h:=y::!h);

get = (fun () -> List.nth !h (Random.int (List.length !h))) }

Fig. 6. Iconic variant of make_cref

of mutable references with the Coq code of Figure 4: it defines the record type cref that repre-
sents references in a kind of object-oriented style (as the pair of a mutator set and a selector
get), and declares an oracle make_cref building values of this type. On the OCaml side, type
cref is extracted to “type 'a cref = { set: 'a -> unit; get: unit -> 'a }”. Then, we define
make_cref: 'a -> 'a cref such that it allocates a fresh reference r and returns the pair of set/get
function to update/access the content of r (see the code in Figure 5). Conjecture 2.4 states that
it is sound to implement make_cref by any safe OCaml function of type 'a -> 'a cref like in
Figure 5. Having implemented make_cref according to Figure 5, the user can thus program with
mutable references in Coq. However, most properties of this implementation cannot be formally

proven in Coq.
Indeed, from the point-of-view of the formal logic, any safeOCaml function of type 'a -> 'a cref

is admitted as a sound implementation of make_cref, including the iconic implementation of Fig-
ure 6. This implementation typifies what any OCaml implementation of make_cref can do: store
inputs of make_cref and set such that get outputs one of the previously stored input. For example,
every execution using the implementation of Figure 5 can be emulated by an execution using the
implementation of Figure 6 where each call to Random.int returns 0: in this way, get outputs the
last received input.
Hence, all formal properties provable from the interface of Figure 4 should be satisfied by the

oracle of Figure 6. Thus, they can only express that if all the inputs of a given reference satisfy some
given invariant, then the value returned by get will also satisfy this invariant. Such a property can
be partly expressed in Coq by instantiating the parameter A of cref in Figure 4 on a Σ-type that
constrains this reference to preserve the given invariant. Whereas this technique seems a bit weak
on this example, Sections 3.3 and 4 present interesting applications of this lightweight technique
for constraining polymorphic mutable data-structures (like hash-tables). Finally, let us note that
our embedding of ML references does not forbid aliases as soon as they are compatible with Coq
typing: see details in Appendix C.

However, extending extracted code with an OCaml main could in theory break some properties
proved on the Coq side (see also Appendix C). It is thus safer to define the main function of
executables on theCoq side. This motivates to embed some I/O functions inCoq. Such an embedding
is very easy. Currently, the Impure library provides a few wrapper of some functions of OCaml
standard library, like the below two (where pstring is a Coq type to represent strings).



Embedding Imperative ML Oracles into Coq 9

Axiom read_line: unit → ?? pstring. (* reads a line from stdin *)
Axiom println: pstring → ?? unit. (* prints a line on stdout *)

However, the Impure library does not provide any formal reasoning support on these I/O
functions. Hence, in this approach, reasoning with I/O on Coq code remains informal – more or
less like on OCaml code. The programmer is only much more protected against stupid mistakes
when combining formally proved code and trusted (but informally verified) code, because the Coq
type system is more accurate.

2.3 Coq “Theorems for Free” about Polymorphic ML Oracles
According to Definition 2.5, a polymorphic type like “∀ A , A→?? A” is permissive. Together with
Conjecture 2.4, this implies a “theorem for free” on safe OCaml values of the corresponding
extracted type. For example, we now prove that any safe OCaml value pid of type 'a -> 'a satisfies

when (pid x) returns normally some y then y = x.
In the following, we say that a function pid satisfying the above property is a pseudo-identity
(indeed, such a pid may not be the identity because it may not terminate normally or produce
side-effects).
In order to prove that any safe “pid:'a -> 'a” is a pseudo-identity, we first declare pid as an

external function in Coq. Then, we build a Coq function cpid, which is proved to be a pseudo-
identity, and which is extracted to OCaml as “let cpid x = pid x |> (fun z -> z)”. In the Coq
source, for a type B and a value x : B, ( cpid x ) invokes pid on the type { y : B | y=x } , which
constrains it to produce a value that is equal to x. Below, `z returns the first component of the
dependent pair z of type { y : B | y=x } ; the Program environment allows for terms with “holes”
(like here in the implicit coercion of x : B into a value of { y : B | y=x } ) and generates static proof
obligations to fill the holes.9

Axiom pid: ∀ A, A→??A.
Program Definition cpid{B}(x:B):??B B DO z f pid {y|y=x} x;; RET `z.
Lemma cpid_correct A (x y:A): WHEN (cpid x) { y THEN y=x.

Let us point out that we cannot prove in Coq that pid – declared as the axiom given above – is
a pseudo-identity. Indeed, we provide a model of this axiom where pid detects – through some
dynamic typing operators – if its parameter x has a given type Integer and in this case returns a
constant value, or otherwise returns x. Such a counter-example already appears in [Vytiniotis and
Weirich 2007]. This function is now provided in Java syntax.
static <A> A pid(A x) {

if (x instanceof Integer) / / A== I n t e g e r , b e c a u s e I n t e g e r i s f i n a l

return (A)(new Integer (0));

return x;

}

The soundness of cpid extraction is thus related to a nice feature of ML: type-safe polymorphic
functions cannot inspect the type to which they are applied. In other words, type erasure inML
semantics ensures that functions handle polymorphic values in a uniform way.
However, a similar counter-example can be built for OCaml by using an external C function

that is sound with type 'a -> 'a (i.e. for allML type T , it behaves like a function of type T → T ).
Such a function inspects the bit of its parameter that tags unboxed integers, and returns integer 0
9This small example also illustrates how our approach benefits from powerful features of Coq like Program .
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when instantiated on type int, or behaves like an identity otherwise. This explains why such a
counter-example must be rejected by Definition 2.3.

In summary, our Coq proof is not about pid, but about cpidwhich instantiates pid on a dependent
type. Actually, cpid and pid coincide, but only in the extracted code. This proof can be viewed as a
“theorem for free” in the sense of Wadler [1989]: it is a parametricity proof for a unary relation,
i.e. a predicate that we call here an invariant. Bernardy and Moulin [2012, 2013] have previously
demonstrated that parametricity reasoning can be constructively internalized in the logic from an
erasure mechanism. Here, in our “Coq+OCaml” logic of programs, it derives from the fact that the
invariant instantiating the polymorphic type variable in the Coq proof is syntactically removed by
Coq extraction.

But, whereas parametricity of pure system F has been established a long time ago by Reynolds
[1983], its adaptation to imperative languages with higher-order references a la ML is much more
recent [Birkedal et al. 2011]. Indeed, because higher-order references allows to build recursive
functions without explicit recursion (see Figure 9 page 12), it is even hard to define what is a
predicate over such a higher-order reference. See [Ahmed et al. 2002; Appel et al. 2007; Hobor et al.
2010]. This paper leaves Conjecture 2.4 for future works, and focuses on its poweful applications.

2.4 Axioms of the Trusted Equality of Pointers
We now extend the FFI described at Section 2.2, by embedding the physical equality (i.e. pointer
equality) of OCaml into Coq. At the difference of all other oracles in this paper, we impose the
phys_eq oracle to satisfy an axiom – called phys_eq_true – in addition to its declaration. Thus,
the implementation of this oracle must be trusted.

Axiom phys_eq: ∀ {A}, A → A → ?? bool.
Extract Constant phys_eq ⇒ "(==)".
Axiom phys_eq_true: ∀ A (x y: A), phys_eq x y { true →x=y.

As illustrated on the example of Section 1.1, because “(==)” distinguishes pointers: it can dis-
tinguish values that the Coq logic cannot. It is thus necessary to declare phys_eq as a non-
deterministic function. The phys_eq_true axiom is useful in order to replace some tests about
structural equality by faster tests using physical equality instead. This axiom is similar to the one
introduced by Breitner et al. [2018] to model the pointer equality of Haskell. Section 3.3 gives
an example. It also been used to implement a verified hash-consing mechanism in the CompCert
backend of Six et al. [2019].

3 CERTIFYING “FOR FREE” POLYMORPHIC IMPERATIVE FUNCTIONS
This section applies our FFI in order to extend the Coq programming language with some poly-
morphic impure operators10: exception-handling at Section 3.1, loops at Section 3.2 and fixpoints at
Section 3.3. Our goal is to formally prove the usual rules of Hoare logic for these operators in partial

correctness. This is achieved by applying the technique of “parametricity by invariants” (introduced
at Section 2.3): we derive these correctness rules by instantiating the polymorphic type of well-
chosen oracles on a well-chosen sigma-type. In other words, we illustrate that “parametricity by
invariants” interpretsML polymorphic types as “higher-order invariants”, i.e. invariant properties
(of ML values) depending on type variables which names themselves some invariant. Hence, with
this interpretation,ML typecheckers are powerful engine to infer higher-order invariants in partial
correctness.

10The full Coq/OCaml code of these examples is online at https://github.com/boulme/ImpureDemo

https://github.com/boulme/ImpureDemo
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3.1 Exception-Handling Operators
First, we declare an external function fail which is (informally) expected to raise an error
parametrized by a string.

Axiom fail: ∀ {A}, pstring → ?? A.

This axiom is safely implemented by the following OCaml function fail: pstring -> 'a.
exception ImpureFail of pstring

let fail msg = raise (ImpureFail msg)

But, this axiom is also safely implemented by the following OCaml function fail: 'a -> 'b.
let rec fail msg = fail msg

Actually, while our formal Coq reasonings will be valid for any of these implementations, our
informal reasonings will only consider the first implementation.

For its formal correctness, fail does never return a value, or equivalently it returns only values
satisfying any predicate. In order, to get this property “for free”, we wrap fail into a function
FAILWITH of the same type, but which internally call fail on the empty type False . For any
value r:False returned by fail , we are thus able to build any value of any type (by destructing r).

Definition FAILWITH {A:Type} msg: ?? A B
DO r f fail (ABFalse) msg;; RET (match r with end).

Lemma FAILWITH_correct A msg (P: A → Prop):
WHEN FAILWITH msg { r THEN P r.

Now, we use FAILWITH to define dynamic assert checking. Below, “assert_b” ensures that a
(pure) Boolean expression is true or aborts the computation otherwise.

Program Definition assert_b (b: bool) (msg: pstring ): ?? b=true B
match b with
| true ⇒ RET _
| false ⇒ FAILWITH msg end.

Lemma assert_correct msg b: WHEN assert_b b msg { _ THEN b=true.

This approach is extended to exception-handling with the following oracles, which are used in
Figure 15. See Appendix D for details about formal reasoning on exception-handling.

Axiom exn: Type. Extract Inlined Constant exn ⇒ "exn".
Axiom raise: ∀ {A}, exn → ?? A. Extract Constant raise ⇒ "raise".
Axiom try_with_any: ∀ {A}, (unit → ?? A) * (exn → ??A) → ??A.
Notation "'TRY ' k1 'WITH_ANY ' e '⇒ ' k2" B

(try_with_any (fun _ ⇒ k1, fun e ⇒ k2)) . . .

Here try_with_any is implemented in OCaml by
let try_with_any (k1, k2) = try k1() with e -> k2 e

3.2 Generic Loops in Coq
This section defines a verifiedWHILE-loop in partial correctness. Let us first introduce our untrusted
oracle for generic loops. We use type A as the type of “(potential) reachable states” in the loop
(i.e. A is the loop invariant). We also use type B as the type of “(potential) final states” (i.e. B
is the post-condition of the loop). Our loop oracle is parametrized by an initial state of type A

and by a function “step:A -> ??(A+B)” computing the next state from a non-final state (see the
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declaration of loop in Figure 7). Typically, the Coq type “ ( A+B ) ” being extracted on OCaml

Axiom loop: ∀ {A B}, A * (A → ?? (A+B)) → ?? B.
Definition wli{S} (cond:S→bool)(body:S→??S)(I:S→Prop) B

∀ s, I s → cond s = true → WHEN body s { s' THEN I s'.
Program Definition

while {S} cond body (I: S → Prop | wli cond body I) s0
: ?? {s | (I s0 → I s) ∧ cond s = false}

B loop (AB{s | I s0 → I s})
(s0,

fun s ⇒

match (cond s) with
| true ⇒

DO s' f mk_annot (body s) ;;
RET (inl (AB{s | I s0 → I s }) s')

| false ⇒

RET (inr (BB{s | (I s0 → I s) ∧ cond s = false}) s)
end).

Fig. 7. Implementation of a WHILE-loop in Coq

type ('a, 'b) sum = Coq_inl of 'a | Coq_inr of 'b

let rec loop (a, step) =

match step a with

| Coq_inl a' -> loop (a', step)

| Coq_inr b -> b

Fig. 8. Standard OCaml implementation of oracle loop by a tail-recursive loop

let loop (a0, step) =

let fix = ref (fun _ -> failwith "init") in

(fix := fun a -> match step a with

| Coq_inl a' -> (!fix) a'

| Coq_inr b -> b);

(!fix) a0

Fig. 9. Emulating recursion in OCaml with a cyclic higher-order reference

type “ ( ' a , ' b ) sum” defined in Figure 8, we implement this loop oracle by the tail-recursive
function of Figure 8. Any safe OCaml implementation of a compatible type is also admitted, like
the alternative implementation of Figure 9. In this alternative implementation, recursion is not
explicit in the code, but is emulated by a reference fix containing a function accessing fix. Here,
the OCaml typechecker is able to verify that this obfuscated piece of code has the expected type.
After defining the wli predicate (acronym for “while-loop-invariant”), Figure 7 defines our

verified while function. It is parametrized by a pure test cond , by an impure state-transformer
body , by a predicate I preserved by one iteration of the loop (wli condition) and by an initial state
s0. Parameter A (resp. B) of loop is instantiated on the loop invariant (resp. the postcondition). On
this code, the Program plugin generates 3 trivial proof obligations:
(1) “I s0 → I s0”.
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(2) “ ( I s0 → I s ) → cond s = true → body s{s ' →( I s0 →I s ' ) ” (trivial from wli

hypothesis).
(3) “ ( I s0 → I s ) → cond s = false → ( I s0 → I s ) ∧ cond s = false”.

Let us remark that mk_annot is necessary to get the appropriate hypothesis on s ' in the second
proof obligations. Figure 21 in Appendix E illustrates how to apply this while-loop operator to an
iterative computation of Fibonacci’s numbers.

This technique could be applied to other kind of generic loops. For example, Figure 17 on page 24
defines a generic loop dedicated to refutation of unreachability properties. This generic loop is
applied in Figure 18 to check an UNSAT property, as detailed in Section 4.4.3.

3.3 Generic Fixpoints in Coq
This section now extends the previous approach to generic fixpoints of functions. The simplest
version of such a fixpoint in OCaml is given by fixp function in Figure 10. The fixp function
computes the fixpoint of step a function performing one unfolding step of a recursive computation.
For example, it is instantiated for the naive recursive computation of Fibonacci’s number as
“fixp (fun fib p -> if p <= 2 then 1 else fib(p-1)+fib(p-2))”.

Of course, with the implementation in Figure 10, this naive computation of Fibonacci’s number
performs an exponential number of additions. By using the memoized implementation on Figure 11,
the number of additions remains linear. However, a bug in the implementation of fixp like in
Figure 12 leads to incorrect results. Here, the implementation in Figure 12 represents an erroneous
version of the memoized version of Figure 11 where all recursive results are crashed into a single
memory cell (instead of associating each recursive result to its corresponding input into a dedicated
memory cell).

let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =

let rec f x = step f x in f

Fig. 10. Standard fixpoint in OCaml

let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =

let memo = Hashtbl.create 10 in

let rec f x =

try Hashtbl.find memo x

with Not_found -> let r = step f x in (Hashtbl.replace memo x r); r

in f

Fig. 11. Memoized fixpoint in OCaml

let fixp (step: ('a -> 'b ) -> 'a -> 'b): 'a -> 'b =

let memo = ref None in

let rec f x =

match !memo with

| Some y -> y

| None -> let r = step f x in (memo:=Some r); r

in f

Fig. 12. An erroneous memoized fixpoint in OCaml
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Hence, Figure 12 gives a safe implementation of type (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b

that does not compute a correct fixpoint, even in partial correctness. This illustrates that the
property “be a correct fixpoint” cannot be derived by pure parametric reasoning (on the contrary of
the WHILE-loop of Section 3.2). However, we build a verified fixpoint operator from any fixpoint
oracle of type (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b, by combining parametricity-by-invariants
and (inexpensive) defensive checks. In the case of implementation in Figure 12, the incorrect fixpoint
computations will abort (because of the defensive checks). Hence, we declare the following oracle
in Coq. And, we build a formally correct fixpoint operator by wrapping this oracle.

Axiom fixp: ∀ {A B}, ((A → ?? B) → A → ?? B) → ?? (A → ?? B).

Usually, proving the correctness of a (non-tail)recursive functions requires to prove that a given
relation between inputs and outputs is preserved by the unfolding step of recursion. Here, we need
to encode this binary relation – called R below – into the unary invariant B. The trick is thus to store
both the input (of type A) and the output (of type B) in this invariant. In the following, A B : Type

and R : A → B → Type are implicit parameters of the formally proved fixpoint operator.

Record answ B { input:A; output:B; correct:R input output }.

Then, we add a defensive check on each recursive result r – returned through the oracle – that
( input r ) “equals to” the actual input of the call.
Thus, our fixpoint operator is also parametrized by an equality test beq : A → A → ?? bool

that is expected to satisfy the following formal property.

∀ x y, WHEN beq x y { b THEN b=true → x=y.

For example, beq could be instantiated by the pointer equality phys_eq or a more structural
equality test (as detailed later).

Then, we introduce a wrapper wapply of the application, such that each recursive call k returning
a value of type answ is converted into a function ( wapply k ) returning a value of type B, but
with a defensive check that the input field equals to the x parameter.

Definition wapply (k: A → ?? answ) (x:A): ?? B B
DO a f k x;;
DO b f beq x (input a);;
assert_b b msg;;
RET (output a).

Lemma wapply_correct k x: WHEN wapply k x { y THEN R x y.

The parameter “step : ( A → ?? B ) → A → ?? B”, that unfolds one step of recursion, is ex-
pected to preserve relation R, as formalized by step_preserv predicate.

Definition step_preserv (step: (A → ?? B) → A → ?? B) B ∀ f x,
WHEN step f x { z THEN (∀ x', WHEN f x' { y THEN R x' y) → R x z.

Our proved rec operator is thus defined by:

Program Definition rec step (H:step_preserv step R): ?? (A → ?? B) B
DO f f fixp (BBansw R)

(fun k x ⇒

DO y f mk_annot (step (wapply k) x);;
RET {| input B x; output B `y |}

);;
RET (wapply f).
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Lemma rec_correct step (H:step_preserv step R):
WHEN rec step H { f THEN ∀ x, WHEN f x { y THEN R x y.

Appendix E illustrates how to instantiate this rec operator on the naive recursive computation
of Fibonacci’s numbers. Actually, for performance issue, beq must be chosen at instantiation of
operator rec according to fixp implementation. If beq is too much discriminating, then it may reject
valid computations. On the contrary, if beq inspects too much the structure of its inputs, then it may
slow down computations. For example, phys_eq is well-suited for the fixpoint implementation in
Figure 10. But it is too much discriminating for the fixpoint implementation of Figure 11. Actually,
for the latter, beq must correspond to the equality test involved in the hash-table implementation:
here structural equality. Hence, our approach could be improved by passing beq as a parameter
of the oracle, which then could use it as the equality test of the hash-table instead of structural
equality.

4 CERTIFYING A CHECKER OF (BOOLEAN) SAT-SOLVER ANSWERS
This section presents a major contribution of our paper, by applying the Impure library to a
realistic use-case: SatAnsCert, a verifier of SAT-solver answers, itself certified in Coq. Actually,
for verifying UNSAT answers, we were inspired by a previous Coq development, called “lrat
checker”, documented in [Cruz-Filipe et al. 2017a] and available online11. Our main contribution is
to illustrate how our “theorems for free” technique helps to develop a code, which is much scalable
than this previous one—for a very modest development effort.12

4.1 Overview of SatAnsCert and its formal correctness

SAT Answer UNSAT Answer

Fig. 13. Overview of SatAnsCert

11https://imada.sdu.dk/~petersk/lrat/
12The full Coq/OCaml code of these examples is online at https://github.com/boulme/satans-cert.

https://imada.sdu.dk/~petersk/lrat/
https://github.com/boulme/satans-cert
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Definition var B positive.
Record literal B { is_pos: bool ; ident: var }.
Definition model B var → bool. (* boolean mapping *)
Definition clause B list literal. (* syntactic clause *)
Fixpoint sat (c: clause) (m: model): Prop B

match c with
| nil ⇒ False
| l::c' ⇒ m(ident l)=( is_pos l) ∨ sat c' m
end.

Definition iclause B clause_id * clause. (* clause with an id *)
Definition cnf B list iclause. (* syntactic cnf *)
Fixpoint sats (f: cnf) (m: model): Prop B

match f with
| nil ⇒ True
| c::f' ⇒ sat (snd c) m ∧ sats f' m
end.

Fig. 14. Coq definitions of the abstract syntax of a CNF

1 Program Definition main: ?? unit B
2 TRY
3 DO f f read_input ();; (* Command -line + CNF parsing *)
4 DO a f sat_solver f;; (* solver (+drat -trim) wrapper *)
5 match a with
6 | SAT_Answer mc ⇒

7 assert_b (satProver f mc) "wrong SAT model";;
8 ASSERT (∃ m, JfK m);;
9 println "SAT !"
10 | UNSAT_Answer ⇒

11 unsatProver f;;
12 ASSERT (∀ m, ¬JfK m);;
13 println "UNSAT !"
14 WITH_ANY e ⇒

15 DO s f exn2string e;;
16 println ("Certification failure: " +; s).

Fig. 15. (simplified) Coq code of the main function of SatAnsCert

SatAnsCert reads a proposition f in Conjunctive Normal Form and outputs whether f is “SAT”
or “UNSAT” (see Definition 4.1 below). This proposition f must be syntactically given in DIMACS file
– a standard format13 of SAT competitions. Internally, SatAnsCert invokes – according to options
on its command line – some state-of-the-art SAT-solver like Glucose14, Riss15, CryptoMinisat16
or CaDiCaL17. This SAT-solver is expected to produce a witness of its answer (such a witness
is mandatory for SAT competitions since 2016). SatAnsCert thus checks this witness before to
output the answer or to fail on an error. The execution of SatAnsCert is depicted in Figure 13.
13https://www.satcompetition.org/2009/format-benchmarks2009.html
14http://www.labri.fr/perso/lsimon/glucose
15http://tools.computational-logic.org/content/riss.php
16https://github.com/msoos/cryptominisat
17http://fmv.jku.at/cadical

https://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.labri.fr/perso/lsimon/glucose
http://tools.computational-logic.org/content/riss.php
https://github.com/msoos/cryptominisat
http://fmv.jku.at/cadical
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The external SAT-solver is run in a separate process and communicates with SatAnsCert through
the file system. As later detailed, SatAnsCert also invokes some OCaml oracles through the FFI of
the Impure library (presented in Section 2): these oracles are thus part of the SatAnsCert process.
The external SAT-solver is actually invoked through one of this OCaml oracle.

Definition 4.1 (Conjunctive Normal Form). A Boolean variable x is a name and is encoded as a
positive integer. A literal ℓ is either a variable x or its negation ¬x . A clause c is a finite disjunction
of literals and is encoded as a set of literals. A CNF f is a finite conjunction of clauses and is encoded
as a list of clauses. A modelm of CNF f is a mapping that assigns each variable to a Boolean such
that “Jf K m” is true – where “Jf K m” is the Boolean value obtained by replacing in f each variable
x by its value “mx”. A CNF is said “SAT”, if it has a model, and “UNSAT” otherwise.

Our Coq definitions of CNF abstract syntax is given in Figure 14. These definitions involve
external clause identifiers of type clause_id without formal semantics. These identifiers are
intended to relate clauses to their name in the UNSAT witness during its parsing by an untrusted
oracle (which is later introduced). Here, type clause_id is opaque for the Coq proof: it remains
uninterpreted. In the following, we use the bracket notations J.K for both predicates “sat” and
“sats”.

We now describe the formal property proved on SatAnsCert in Coq+Impure+OCaml. First,
like in CompCert, I/O (ie parsing and printing) are not formally proved and thus must be trusted.
More precisely, the formal correctness of SatAnsCert only deals with the abstract syntax (defined
in Figure 14) of the input CNF. And, it is directly expressed in the main function of SatAnsCert
through statically proved “ASSERT” (see Figure 15). Here, “ASSERT P” (where P : Prop) is simply a
macro for “RET ( ABP ) _”: it declares a proof of proposition P that must be (statically) provided
as a proof obligation generated by “Program Definition”. We consider that the ability to use
imperative code in Coq with statically verified assertions improves the approach of CompCert–
where formally proved components and unproved (but trusted) components are linked together in
OCaml only.
Hence, our code in Figure 15, thus combines static assertions (“ASSERT”) and dynamic asser-

tions, like “assert_b” defined on page 11. The static “ASSERT” proved at line 8 derives from
the defensive check of line 7: satProver simply evaluates CNF f in the model mc found by the
SAT-solver. Similarly, the static “ASSERT” proved at line 13 derives from a defensive check of line
12: unsatProver checks that the UNSAT witness (here implicit) provided by the SAT-solver is
valid, or fails otherwise. The next sections sketch how this latter verification is achieved. Section 4.3
defines a first simple version with type:

unsatProver (f: cnf): ?? (∀ m, ¬JfK m)

And, Section 4.4 defines a second refined version with the equivalent type:

unsatProver (f: cnf): ?? ¬(∃ m, JfK m)

4.2 Certifying UNSAT answers of SAT-solvers: a brief overview
Since the pioneering works of [Goldberg and Novikov 2003] and [Zhang and Malik 2003], the
verification of UNSAT answers has been well studied. Several proof formats have been proposed,
and currently, the DRAT format [Heule 2016; Wetzler et al. 2014] is the standard format in SAT
competitions. Actually, most SAT-solvers generate only DRUP proofs [Gelder 2008; Heule et al.
2013] – a previous format that DRAT has later extended with RAT clauses [Wetzler et al. 2013]. In
theory, using RAT clauses may lead to exponentially shorter proofs than using only pure (D)RUP
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proofs. But, in practice, the SAT-solving community is still looking for efficient algorithms to find
such RAT proofs [Heule et al. 2017].

4.2.1 Background on Resolution, RUP proofs and CDCL (Conflict-Driven Clause Learning). In a
first step, this paper focuses only on (D)RUP proofs: they are simpler to understand. Actually, we
even consider a strict subset of RUP proofs, introduced as “restricted RUP proofs” in [Cruz-Filipe
et al. 2017b], that we rename (for clarity) into “backward resolution proofs”. Indeed, we consider a
variant of the resolution proof systemwhere the resolution rule is specialized for backward reasoning
through the rule BckRsl of Definition 4.2 below. Together with rule Triv, we recover the usual
resolution rule: for any literal ℓ, any clauses c1 and c2, there exists a list of clauses f included in
the list of two clauses “{ℓ} ∪ c1, {¬ℓ} ∪ c2” such that “f ⊢BRC c1 ∪ c2”. Indeed, if ℓ < c1 ∪ c2, then
we define f as the whole list, and “f ⊢BRC c1 ∪ c2” because ({ℓ} ∪ c1)\(c1 ∪ c2) = {ℓ} (BckRsl) and
({¬ℓ} ∪ c2)\({¬ℓ} ∪ c1 ∪ c2) = ∅ (Triv). Otherwise, we define f as the single clause “{ℓ} ∪ c1”, and
we have f \(c1 ∪ c2) = ∅ (Triv).

Definition 4.2 (Backward Resolution Chain). Given these two clause derivation rules,

BckRsl
c1 {¬ℓ} ∪ c2

c2
c1\c2 = {ℓ } Triv

c1

c2
c1\c2 = ∅

for n ≥ 1, we write “c1, . . . , cn ⊢BRC c” iff
there is a bottom-up derivation – like on the right
hand-side – that first iterates BckRsl from c on the
list c1, . . . , cn−1 and then concludes by Triv on cn .

BckRsl
c1

BckRsl
cn−1

Triv
cn

. . .

. . .

c

When “f ⊢BRC c”, we say that f is a Backward Resolution Chain (BRC) of c .

The correctness & completeness of the resolution proof system is rephrased by Theorem 4.3.

Theorem 4.3 (Refutation correctness & completeness). A CNF f is UNSAT iff there exists

a sequence c1, . . . , cn (with n ≥ 1) such that

• forall i ∈ [1,n], there exists a list of clauses fi ⊆ f ∪ {c1, ..., ci−1} such that fi ⊢
BRC ci

• and, cn = ∅

Such a sequence c1, . . . , cn is called a RUP proof of the unsatisfiability of f .

Now, we sketch how RUP proofs are naturally found by CDCL SAT-solvers, a refinement of
DPLL algorithms, at the heart of modern SAT-solvers (see [Silva et al. 2009] for details). The BckRsl
rule corresponds to the fact that, under its side-condition, the proposition “c1 ∧ ¬c2” implies the
proposition “ℓ ∧ ¬c2”, the latter being equivalent to “¬(¬ℓ ∨ c2)”. Actually, this corresponds exactly
in DPLL SAT-solving to a unit-propagation on clause c1 where “¬c2” represents the assignment of
literals before the propagation and “¬({¬ℓ} ∪ c2)” represents the assignment after the propagation.
Similarly, Triv corresponds to the fact that, under its side-condition, the proposition “c1 ∧ ¬c2”
is UNSAT. Hence, Triv corresponds exactly to a conflict on clause c1 where “¬c2” represents the
current assignment of literals. A CDCL SAT-solver learns lemma (under assumption of the input
CNF) from conflicts: each of this lemma is actually a clause provable from a BRC involving the
input clauses and previously learned clauses. The solver answers “UNSAT”, when it has learned
the empty clause: the sequence of its learned clauses is then exactly a RUP proof.

4.2.2 Checking DRUP proofs. Historically, some CDCL SAT-solvers have dumped full resolution
proofs on UNSAT answers (see [Zhang and Malik 2003]). Certifying a resolution proof checker is
not too difficult and, in Coq, a first checker has been certified by [Armand et al. 2010]. However,
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instrumenting SAT-solvers to output full resolution proofs is very intrusive. Thus, RUP proofs
have been proposed as a very lightweight alternative for the design of SAT-solvers [Gelder 2008].
In counterpart, checking RUP proofs requires to recover all BRCs, typically by replaying unit-
propagations (RUP is the acronym of “Reverse Unit Propagation”). In practice, a RUP-checker
does not need all the heuristics of a CDCL SAT-solver, but the data-structures necessary for
unit-propagation (e.g. two-watched literals).

The DRUP proof format [Heule et al. 2013] is an ASCII file format to describe a RUP proof as a list
of clauses, one by line. There are also lines to delete clauses which are nomore involved in remaining
resolution chains. The standard checker of DRUP proofs in SAT competitions is currently DRAT-
trim18 of [Wetzler et al. 2014]. Of course, it also checks DRAT proofs, a conservative extension of
DRUP with RAT clauses (detailed at Section 4.4).

Actually, checking DRAT proofs is still a complex task (see [Rebola-Pardo and Cruz-Filipe 2018])
and DRAT-trim is an untrusted program written in C. Hence, DRAT-trim has been designed to
output the full BRC of learned clauses, in an other proof format called LRAT. As indicated by its
name, DRAT-trim first prunes from the proof (by processing it backward) many learned clauses
that are not necessary to derive the empty clause. This reduces a lot the size of LRAT proofs (and
of DRAT-trim running times).

Then, [Cruz-Filipe et al. 2017a] have developed
two certified checkers of LRAT proofs: one certi-
fied in Coq and extracted to OCaml; the other
certified in ACL2 and extracted to C. As shown
in Figure 16 – built from the benchmark ta-
ble published by Peter Schneider-Kamp on his
webpage11 – their Coq/OCaml version is terribly
slow compared to their ACL2/C version.
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Fig. 16. Benchmark of [Cruz-Filipe et al. 2017a]

Our work illustrates that, by using the Impure library, we can improve the efficiency of the
Coq/OCaml implementation, while simplifying substantially the Coq proof.

4.3 Verification of (D)RUP proofs in SatAnsCert
This section describes how unsatProver introduced at page 17 is implemented by checking the
LRAT file generated with DRAT-trim from a DRUP proof (itself generated by the SAT-solver, as
represented in Figure 13).

4.3.1 A Shallow-Embedded RUP Checker in Coq. First, we introduce our shallow embedding of
RUP proofs in Coq. In our implementation, besides the type iclause of the abstract syntax, we
have a more computational representation of clauses, called cclause , where a clause is represented
as two finite sets of positive integers: one for the positive literals, and one for the negative literals.
Such finite sets are efficiently defined in the standard library of Coq using radix trees. For the sake
of simplicity, the Coq definitions of our paper omit this type cclause and use iclause instead.
Given f : cnf , we define the type “conscJf K” of clauses that are “logical consequences” of f .

Actually, type consc is parametrized by a set of models s and constrains its field rep to satisfy all
models of s (through rep_sat property).

18Available at https://www.cs.utexas.edu/~marijn/drat-trim

https://www.cs.utexas.edu/~marijn/drat-trim
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Record consc(s:model→Prop): Type B
{ rep: iclause; rep_sat: ∀ m, s m →Jsnd repK m }.

Then, we define emptiness test of the following type. Actually, assertEmpty c terminates iff
( rep c ) is the empty clause. Otherwise, it raises an exception.

assertEmpty {s}: consc s → ??(∀ m, ¬(s m)).

Checking a Backward Resolution Chain is defined by the following function, called learn (it
builds a new consequence of the set of models).

learn: ∀{s}, list(consc s) → iclause → ??( consc s)

It is implemented (for “performance” only) such that if l ⊢BRC c then ( learn l c ) returns c '
where ( rep c ' ) = c. An exception is raised on an invalid BRC.

4.3.2 Embedding the verified RUP-Checker into an untrusted LRAT Parser. The unsatProver

function needs to parse the LRAT file and to check that it corresponds to a valid RUP proof of
the input CNF. It delegates the parsing of the LRAT file to an external untrusted OCaml oracle.
Moreover, it exploits the cooperation mechanism of Coq and OCaml typechecker in order to make
this untrusted oracle compute directly “certified learned clauses” through a certified API. This API is
called a Logical Consequence Factory (LCF) and builds correct-by-construction proofs, without an
explicit “proof object” – in the style of the old LCF prover [Gordon et al. 1978].

The LRAT parser is declared in Coq by the rup_lratParse axiom (see below). This function is
parametrized by:

• an abstract type of clause: this type – called C – is abstract for the untrusted parser but
instantiated by “conscJf K” in the Coq proof;

• a logical consequence factory of type “ ( rupLCF C ) ”: this factory allows the oracle to build
logical consequences (ie new abstract clauses) with a BRC from existing ones thanks to
rup_learn (instantiated by the previous learn in the Coq proof).19

• the input CNF f given as a list of “axioms”, ie abstract clauses of type C.

Record rupLCF C B
{ rup_learn :(list C) → iclause → ?? C; get_id: C → clause_id }.

Axiom rup_lratParse: ∀ {C}, (rupLCF C)*list(C) → ?? C.

By using the get_id function, the parser first builds a map from clause identifiers in the DIMACS
input to their corresponding abstract clause (ie axiom). Then, it maintains this map while parsing
the LRAT file, ie when deleting clauses or adding new learned clauses. On a non-RUP clause or
on unexpected issues in the LRAT file, it raises an exception. Otherwise, it eventually returns the
abstract clause corresponding to the empty clause.

Thus, unsatProver is simply defined by the code below. It first calls the mkInput function that
builds the parameters expected by the parser (we omit the details here). Afterwards, unsatProver
simply invokes the parser and checks that its result is the empty clause. Here, the polymorphism
over “logical consequences” in the untrusted OCaml parser ensures that this latter cannot forge
unsound clauses.

19Note that, type rupLCF only appear in input of our oracle: it is thus not constrained by permissivity checking. Here,
rup_learn is declared impure because it may raise exceptions: alternatively, we also could have use an option monad.
However, this would probably produce a slightly less efficient extracted code.
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Definition mkInput (f: cnf): rupLCF(conscJfK) * list(conscJfK) B. . .
Definition unsatProver f: ?? (∀ m, ¬JfK m) B

DO c f rup_lratParse (mkInput f);; assertEmpty c.

The Polymorphic LCF style design of our RUP checker has the following benefits w.r.t. the design
of the prover found in [Cruz-Filipe et al. 2017b] (a preliminary version of the Coq implementation of
the LRAT prover of [Cruz-Filipe et al. 2017a]): BRCs are verified “on-the-fly” in the oracle, and this
is much easier to debug; the dictionary mapping clause identifiers to clause values is only managed
by the OCaml oracle (in a efficient hash-table); hence, the deletion of clauses from memory is also
only managed by the oracle; the Coq code is thus very simple and very small.
Polymorphic LCF style is also strictly more powerful than standard LCF style, where type

abstraction is provided by an abstract type. Indeed, standard LCF style requires to represent each
“learned RUP clause” as a sequent of the form “f ⊢ c” which means that clause c is a logical
consequence of CNF f . Handling such sequents enables to forbid derivations “c1, . . . , cn ⊢BRC c”
where some ci are consequences of two distinct CNFs: otherwise, when called several times during
a run, an erroneous oracle could mix consequences of a CNF with consequences of a previous (and
maybe contradictory) one. In Polymorphic LCF style, the antecedent f is represented by a type
variable: mixing consequences of distinct CNFs is statically forbidden by typechecking. On the
contrary, in standard LCF style, this is only prevented by a dynamic check: it is both less simple
and less efficient.

4.4 Generalization to (D)RAT proofs
A RUP proof can be thought as a sequence of transformations on the input CNF: each learned
clause is added to the CNF. These transformations preserves logical equivalence. The motivation of
RAT clauses – introduced in [Wetzler et al. 2013] – is to allow transformations which may break
logical equivalence but preserve satisfiability. This could dramatically reduce the size of the CNF,
and thus the size of its potential UNSAT proof.

Example 4.4. Let us define two CNFs f1 and f2 over arbitrary literals (li )i ∈[1,n] and (l ′j )j ∈[1,p] and
over a distinct variable x :

f1 =
∧n

i=1
∧p

j=1(li ∨ l ′j ) f2 = (
∧n

i=1(¬x ∨ li )) ∧
∧p

j=1(x ∨ l ′j )

Whereas f1 has n · p clauses (of two literals), f2 has only n + p clauses (of two literals). These two
CNF are equisatisfiable, which is easy to check by rewriting each of them into an equivalent DNF:

f1 ⇔ (
∧n

i=1 li ) ∨ (
∧p

j=1 l
′
j ) f2 ⇔ (x ∧

∧n
i=1 li ) ∨ (¬x ∧

∧p
j=1 l

′
j )

But, f1 and f2 are generally not equivalent, because f2 constrains x whereas f1 does not.

4.4.1 Introduction to RAT bunches. In this section, following [Lammich 2017a], we slightly gener-
alize the definition of RAT clauses of [Cruz-Filipe et al. 2017a] by considering the learning at once
of a “bunch” of several RAT clauses on the same pivot. We first need to reintroduce the notion of
RUP clause originally defined by [Gelder 2008].

Definition 4.5 (RUP clause). Given a CNF f and a clause c , we say that “c is RUP w.r.t f ” – and we
write f ⊢RUP c – iff one of the two following conditions is verified:

(1) there exists l such that {l ,¬l} ⊢BRC c (ie c is a trivial tautology)
(2) or, there exists f ′ with f ′ ⊆ f such that f ′ ⊢BRC c .

It is obvious that “f ⊢RUP c” implies “f ⇒ c”.
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Definition 4.6 (RAT bunch). Given two CNFs f1 and f2 and a literal l , we say that f2 is a bunch
of RAT clauses w.r.t. f1 for pivot l – and we write f1 ⊢

RAT
l f2 – iff for each clause c2 ∈ f2 the two

following conditions are satisfied:
(1) l ∈ c2 ; (2) f1 ⊢RUP (c1\{¬l}) ∪ c2 for each clause c1 of f1.

Lemma 4.7 (SAT preservation of RAT). Let us assume f1 ⊢
RAT
l f2 and Jf1Km. Then, there exists

m′
such that Jf1 ∧ f2Km′

.

Proof. If Jf2Km then the property is trivially satisfied for m′ = m. Otherwise, let m′ be the
model defined fromm by assigning l to true. By condition (1), we have Jf2Km′. Let c2 ∈ f2 such
that ¬Jc2Km. For all c1 ∈ f1, from Jf1Km and condition (2) we deduce that J(c1\{¬l}) ∪ c2Km, and
thus Jc1\{¬l}Km, and thus Jc1Km′. Hence, we have also Jf1Km′. □

Let us remark that if c1 = c1\{¬l} then condition (2) of Definition 4.6 is trivially satisfied. This
leads to introduce the notion of “basis” by Definition 4.8 below. Indeed, it suffices to only check
condition (2) on clauses c1 that are in the basis of f1 w.r.t. pivot l .

Definition 4.8 (Basis). Given a CNF f1 and a literal l , the basis of f1 w.r.t. pivot l is defined as the
set of clauses in f1 containing ¬l .

Example 4.9 (RAT bunches of Example 4.4). Clauses of f2 are checked w.r.t f1 in two RAT bunches:
(1) f1 ⊢

RAT
¬x

∧n
i=1(¬x ∨ li ): checking this RAT bunch is trivial because the basis is empty.

(2) f1 ∧
∧n

i=1(¬x ∨ li ) ⊢
RAT
x

∧p
j=1(x ∨ l ′j ): here the basis is

∧n
i=1(¬x ∨ li ). We simply check that

for all (i, j) ∈ [1,n] × [1,p], we have (li ∨ l ′j ) ⊢
BRC (li ∨ x ∨ l ′j ) with (li ∨ l ′j ) ∈ f1.

From Theorem 4.7, we deduce that if f1 is SAT then f1 ∧ f2 is also SAT, and finally that f2 is SAT
(deleting clauses also trivially preserves satisfiability).

Example 4.10 (Contradictory RAT bunches). Given x and y two distinct variables. We check the
two following RAT bunches: x ⊢RAT¬y ¬y and x ⊢RATy y. This check is trivial because the basis is
empty in both cases.

This last example shows that two contradictory RAT clauses can be learned from the same
satisfiable CNF. Hence, “learning” a RAT clause is not like “learning” a new lemma: “learning” a
RAT clause is like adding an axiom which preserves consistency.

4.4.2 Formalization of RAT bunches. In the syntax of LRAT files (see [Cruz-Filipe et al. 2017a] for
details), each RAT clause comes with a list of BRC, one for each clause of the basis. Note that a
valid BRC is at least of length 1. Here, by convention, a BRC of length 0 simply encodes the case (1)
of Definition 4.5 (trivial tautology). Moreover, when these lists of BRC share a common prefix,
this prefix can be given separately. We reflect these syntactic informations of LRAT files in the
following Coq structure: field clause_to_learn is the clause to learn, propag is the common
prefix of the BRC, and rup_proofs is the list of suffix of the BRC (one by clause of the basis).
Here type C represents the type of clauses that are logical consequences of the current CNF (like in
Section 4.3.2).

Record RatSingle C: Type B
{ clause_to_learn:iclause; propag:list C; rup_proofs:list(list C) }.

Learning a RAT bunch is defined in Coq by the function learnRat below. In this function,
parameter s is the set of models of the current CNF. The bunch is given in field bunch of parameter
R where pivot is the pivot and basis (resp. rem – for remainder) is a list of clauses containing
(resp. not containing) the negation of the pivot. If f2 is the list of clause to learn in bunch , then
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learnRat either returns the CNF “(basis ∧ rem ∧ f2)” or fails if it cannot prove that the bunch is
a correct RAT bunch.
Record RatInput C: Type B
{ pivot:literal; rem:list C; basis:list C; bunch:list(RatSingle C) }.

Definition learnRat {s:model→Prop} (R:RatInput(consc s)):?? cnf B . . .
Lemma learnRat_correct (s: model → Prop) (R: RatInput (consc s)):

WHEN learnRat R { f THEN ∀ m, s m → ∃ m', JfK m'.

Example 4.11 (Learning RAT bunches of Example 4.9). The running example can be turned into
two successive formal invocations of learnRat :
(1) On the first time, we learn CNF “f1 ∧

∧n
i=1(¬x ∨ li )” with the empty basis, with

∧n
i=1(¬x ∨ li )

as the bunch, and with f1 as remainder;
(2) On the second time, we learn CNF “f2” with

∧n
i=1(¬x ∨ li ) as the basis, with

∧p
j=1(x ∨ l ′j ) as

the bunch, and with the empty remainder.
In the second case, it is formally not necessary to give f1 as the remainder: f1 already appears in
the rup_proofs field of the bunch. Hence, it is useless to put f1 in the remainder if we aim to
delete it from the current CNF just after.

4.4.3 Formalization of the RAT checker. In order to define and prove the main loop of unsatProver
with RAT checking, it is convenient to introduce a generic loop, called loop_until_None , dedi-
cated to refutation of unreachability properties. This loop – defined in Figure 17 – iterates a body
of type S → ? ? ( option S ) until to reach a None value. This body is assumed to preserve an
invariant and to never reach None under the assumption of this invariant. Hence, if None is finally
reached, then the invariant was false in the initial state. The loop_until_None loop reuses the
loop oracle of Figure 7 and is very similar to the generic WHILE-loop.
At last, we extend our untrusted LRAT parser of Section 4.3.2. As discussed on Example 4.10,

“learning” a RAT clause replaces the whole CNF by a new one. Thus, our parser learns RUP clauses
until it finds a bunch of RAT clauses. Then, it stops, requiring the CNF to be updated. Afterwards,
if the RAT bunch is correct, the certified checker restarts the untrusted parser for the updated CNF.
This loop runs until the parser finds an empty RUP clause w.r.t. the current CNF. The untrusted
parser, called next_RAT in Figure 18, behaves as an iterator over RAT bunches. This iterator is
expected to return either the empty clause (left case) or a new RAT bunch to learn (right case). The
looping process in unsatProver is a simple instance of loop_until_None : see Figure 18.

4.5 Performances & Comparison with other works
Our evaluation of SatAnsCert is split according to SAT and UNSAT answers. Our SAT benchmark
– illustrated in Figure 19 – has been established with the CaDiCaL SAT-solver over 120 instances
of the SAT competition 2018. Considering the logarithmic scales, the running times of the SAT
checker of SatAnsCert in Figure 19 are negligible w.r.t. those of the solver. And, as expected, the
running times of our SAT checker are linear w.r.t the size of the input CNF (being given either in
number of clauses or in number of literals).
The UNSAT benchmark has been established by using two different solvers: CaDiCaL (sc18)

which generates only RUP clauses and CryptoMiniSat (v4.5.3) which produces both RUP and
RAT clauses. It is based on more than 170 instances from the SAT competition 2015, 2016 and
2018. Figure 20 represents – for each tested instance – the contribution of each tool in the running
time, by cumulating their runtimes on upward ordinates. Along the abscissia axis, the instances
are ordered by running times of the SAT-solver. By comparing the overhead of the Coq checkers
w.r.t DRAT-trim in Figure 16 and in Figure 20, we see that our LRAT checker is much faster
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Let luni {S} (body: S → ??( option S)) (I: S → Prop) B
∀ s, I s → WHEN (body s) { s'

THEN match s' with Some s1 ⇒ I s1 | None ⇒ False end.
Program Definition loop_until_None{S} body (I:S→Prop|luni body I) s0

: ?? ¬(I s0)
B loop (AB{s | I s0 → I s})

(s0, fun s ⇒

DO s' f mk_annot (body s) ;;
match s' with
| Some s1 ⇒ RET (inl (AB{s | I s0 → I s }) s1)
| None ⇒ RET (inr (BB¬(I s0)) _)
end).

Fig. 17. A Generic Loop to Refute Unreachability Properties

Axiom next_RAT: ∀ {C}, (rupLCF C) * (list C) → ??(C + RatInput C).
Program Definition unsatProver: ∀ (f:cnf), ?? ¬(∃ m, JfKm) B

loop_until_None
(fun f ⇒ (* loop body *)
DO step f next_RAT (mkInput f) ;;
match step with
| inl c ⇒

assertEmpty (rep c);;
RET None

| inr ri ⇒ (* build a new CNF from the RAT bunch *)
DO f' f learnRat ri;;
RET (Some f')

end)
(fun f ⇒ ∃ m, JfKm). (* loop invariant *)

Fig. 18. The RAT prover of SatAnsCert

than the Coq/OCaml checker of [Cruz-Filipe et al. 2017a] which has inspired it. We believe that
our lightweight design, based on parametric reasoning has a significant impact on performances
here (and it makes the formal proof much more simpler). As also shown in Figure 20, our LRAT
checker is most often slower than the ACL2/C checker of [Cruz-Filipe et al. 2017a]. We could
probably significantly improve the performance of SatAnsCert, by encoding literals with native
integers instead of Coq positives (aka lists of bits), and by encoding clauses with native persistent
arrays instead of radix-trees. These native data-structures were experimentally introduced in Coq
by [Armand et al. 2010] and had a positive impact on their resolution checker. Currently, they have
however still an experimental status in Coq.

The GRAT toolchain [Lammich 2017b] is an alternative for certified checking of DRAT files. As
the DRAT-trim toolchain, it takes a CNF in DIMACS format and a DRAT file in input, generate
some intermediate files through an untrusted C++ tool, and gives a certified answer from this
intermediate files thanks to an Isabelle/MLton checker. According to [Lammich 2017a], the GRAT
toolchain is faster than the DRAT-trim one. Because SatAnsCert is itself based on DRAT-trim,
we did not find very significant to compare it experimentally to the GRAT toolchain.

In conclusion, SatAnsCert is not the most optimized DRAT checker. But the bottleneck of
running times in our UNSAT checking is DRAT-trim (the standard checker in SAT competitions).
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Fig. 19. Our SAT benchmark based on the CaDiCaL (sc18) SAT-solver
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Fig. 20. Our UNSAT benchmarks

Indeed, on average of the UNSAT benchmark depicted in Figure 20, the solver takes 30% of the
running time, DRAT-trim takes 50%, and our certified LRAT checker takes the 20% remaining. This
demonstrates that SatAnsCert reasonably scales up on state-of-the-art SAT-solvers. One of our
most noticeable achievement is that SatAnsCert only results from a modest effort: we evaluate
the whole development at 2 person.months for 1Kloc of Coq (including all proof scripts) and 1Kloc
of OCaml files (including .mll files). These figures exclude the development of the Impure library
itself.

5 CONCLUSION AND FUTUREWORKS
This paper proposes a new FFI to embed OCaml code into Coq verified code. It illustrates its
application to formal but lightweight reasonings about imperative functions. This FFI is based on
may-return monads, originally introduced for the first version of the VPL (Verified Polyhedra Li-
brary) [Fouilhé and Boulmé 2014]. In this first version, each oracle of the VPL generated some terms
(in a given abstract syntax), which were interpreted by the Coq certified frontend as monotonic
transformations over convex polyhedra. Then, it appeared that the deep embedding of these mono-
tonic transformations could be advantageously replaced by a shallow embedding. Hence, the VPL
has been reimplemented [Maréchal 2017] with Polymorphic LCF style oracles: the oracles perform
directly monotonic transformations through a certified API using polymorphism for abstracting
types. This style resulted in a significant reduction of both Coq and OCaml code size. Moreover,
the oracles were much more easier to debug. Finally, it was understood that Polymorphic LCF style
exploits a kind of “theorem for free” corresponding to parametric reasonings with invariants. With
respect to these previous works, our contribution in this work is to have extracted the Impure
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library from the sources of the VPL and to have applied it to other contexts than convex polyhedra.
This may contribute to convince other Coq users of the interest of this approach.

The theoretical foundations of this approach still remain to be investigated: our soundness
conjecture needs to be formalized and proved, while permissivity checking needs to be formally
defined and implemented. Moreover, as discussed in Appendix A, extending the approach to
reasonings about program equivalences would also probably require to modify the extraction
mechanism itself.
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A THE ISSUE OF EQUALITY ON IMPURE COMPUTATIONS
When interpreting formal proofs based on the Impure library, the user must be aware that only
WLP-theorems (defined in Section 2.1.2) have a meaning on the extracted code. In particular, the
meaning of Coq equality on impure computations is currently very counter-intuitive as explained
just now.

In the Coq logic, all reduction strategies are equivalent. In particular, for any term foo the Coq
logic cannot distinguish between the two following β-convertible terms

( ( fun x ( _ : unit ) ⇒ x ) foo ) versus ( fun ( _ : unit ) ⇒ foo )
But in OCaml, the two following expressions are very different

((fun x (_:unit) -> x) (print_string "hello"))

versus (fun (_:unit) -> print_string "hello")

The first expression prints “hello” whereas the second one is silent. This corresponds to the call-by-
value semantics of OCaml.

Let us use this idea to build a counter-intuitive Coq theorem. Consider the following code, that
defines the repeat operator, a higher-order iterator repeating n times a computation k. It is applied
in print3 to print a string three times.

Fixpoint repeat (n:nat) (k: unit → ?? unit): ?? unit B
match n with
| 0 ⇒ RET()
| S p ⇒ k();; repeat p k
end.

Definition print3 (s:pstring ):?? unitB repeat 3 (fun _ ⇒ println s).

A careless user could instead provide the wrong implementation below, where wprint3 prints
the string only once. Actually, the careful user will have in mind that the parameter k : ? ? unit of
wrepeat is extracted to k:unit in OCaml. Thus, at extraction, k is () – the single value of type
unit.

Fixpoint wrepeat (n:nat) (k: ?? unit): ?? unit B
match n with
| 0 ⇒ RET()
| S p ⇒ k;; wrepeat p k
end.

Definition wprint3 (s:pstring ): ?? unit B wrepeat 3 (println s).

Unfortunately, for the Coq logic, print3 and wprint3 are the same as attested by the following
lemma.

Lemma wrong_IO_reasoning s: (print3 s)=( wprint3 s).

In order to avoid this counter-intuitive meaning of equality, we could use an alternative extraction,
based on the deferred monad below, instead of the identity monad:

??A ≜ unit → A k{a ≜ k()=a reta ≜ λ(),a k1 ≫= k2 ≜ λ(),k2 (k1()) ()

The extraction on the deferred monad is consistent with Coq equality, but it slows down the
computations at runtime (and makes the type of OCaml oracles more heavyweight).

A better solution consists in keeping the extraction on the identity monad as much as possible,
by building a type-system to detect Coq terms that are wrongly extracted in the identity monad
(like wrepeat above) and extract them with the deferred monad instead. This feature requires a
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non-trivial type-system and a non-trivial modification of the extraction, and is out of the scope of
this paper.

However, we conjecture that this counter-intuitive equality cannot lead to wrong WLP-theorems,
even for the extraction on the identity monad without restriction. In other words, we conjecture
that while the results observed at runtime in the deferred monad or in the identity monad can
differ, WLP-theorems can only state properties which are satisfied in both extractions.

B THE ISSUES OF CYCLIC VALUES
Consider the following Coq code. It defines a type empty which is provably empty: the proposition
empty → False is provable by induction. Thus, any function of unit→?? empty is proved to never
return (normally).

Inductive empty: TypeB Absurd: empty → empty.
Lemma never_return_empty (f:unit→??empty): WHEN f() { _ THEN False.

Thus, unit→?? empty is not permissive in presence of OCaml cyclic values like the loop value
defined below (with type empty).

let rec loop = Absurd loop

let f: unit -> empty = fun () -> loop

Besides this pathological case, forbidding cyclic values on Coq extracted types is also necessary
for the soundness of the physical equality inside Coq introduced at Section 2.4. Indeed, otherwise
there is an unsoundness issue with axiom phys_eq_true .
For example, let us consider the phys_eq_pred lemma about type nat of Peano’s natural

number, defined in the standard library. This lemma derives from the fact that O is the only n : nat
such that pred n = n.

Definition is_zero (n:nat): bool B
match n with
| O ⇒ true
| (S _) ⇒ false
end.

Lemma phys_eq_pred n:
WHEN phys_eq (pred n) n { b THEN b=true → (is_zero n)=true.

Let us now consider the following cyclic value – called fuel – because some Coq users define such
an “infinite fuel” in order to circumvent the structural recursion imposed by Coq.

let rec fuel: nat = S fuel

At runtime, the OCaml test “pred fuel == fuel” returns true, but “is_zero fuel” returns false.
This contradicts the phys_eq_pred lemma. Hence, in order to formally reason about physical
equality in Coq, it is necessary to forbid – in OCaml oracles – cyclic values on types extracted
from Coq.
In conclusion, Definition 2.3 forbids oracles to define cyclic values on Coq extracted types. A

way to check this property of oracles would consist in adding to the OCaml language an (optional)
“inductive” tag on OCaml variant types that forbids cyclic values of these types. Then, Coq
inductive types would be extracted on OCaml variant types tagged with “inductive”.
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C MIXING COQ INVARIANTS AND ALIASES
This section illustrates interactions between aliases and Coq typing with examples using type
cref defined in Figure 4 page 8 (for the implementation of the oracle given in Figure 5). First, we
introduce the following Coq code:

Definition may_alias{A} (x:cref A) (y:cref nat ):?? AB
y.(set) 0;; x.(get) ().

Now, let us consider x : cref mydata where mydata is constrained by invariant bounded . We
are able to prove that ( may_alias x y ) returns a value satisfying this invariant as expressed by
mydata_preserved lemma below:

Record mydata B { value: nat; bounded: value > 10 }.
Lemma mydata_preserved (x: cref mydata) (y: cref nat):

WHEN may_alias x y { v THEN v.(value) > 10.

Let us remark that mydata_preserved property could be broken by extending the extracted code
with arbitrary OCaml code (even for safe OCaml code). Indeed, in the extracted code, type mydata

is extracted to nat (because mydata is a record type with a single field that is not a proposition).
And, given any “x : cref nat”, ( may_alias x x ) returns 0 (while changing the contents of x for
this value). Actually, Conjecture 2.4 states that such an alias cannot break WLP-theorems proven
in Coq if we consider only on the extracted code (linked to the oracle for make_cref). Informally,
this is because the typing discipline of Coq itself forbids any alias that breaks Coq typing: in the
Coq code, aliasing references of ( cref mydata ) with references of ( cref nat ) is forbidden.

However, this does not forbid the presence of all aliases in the Coq code itself. For example, the
code below defines a reference r2 containing a reference r1, and run ( may_alias r2 r1 ) which
thus changes the contents of the contents of r2.

Program Definition alias_example (r1: cref nat) : ?? { r | r=r1 } B
DO r2 f make_cref (exist (fun r ⇒ r = r1) r1 _);; may_alias r2 r1.

Here, through Coq typing, we also formally prove that the result of ( may_alias r2 r1 ) is
reference r1. But, the fact that r1 contains 0 at the end cannot be formally proven (it depends on
make_cref implementation).

The preceding example illustrates that extending extracted code with an OCaml main function
could in theory break some properties proved on the Coq side. It seems thus important to define
the main function of executables on the Coq side.

Moreover, the cref example illustrates that permissitivity checking is a bit more complex than
the sketch of Section 2.2.1. In particular, the parameter A of type cref is both used in input
(on set) and on output (on get). Thus, type ( cref nat )→?? nat and nat → ? ? ( cref nat )
are permissive, because type nat of Coq coincides with its OCaml extraction (in particular,
because of the restriction on cyclic-values, see Appendix B). But ( cref mydata )→?? nat and
nat → ? ? ( cref mydata ) are not permissive, because type mydata of Coq does not coincide
with its extraction.

D FORMAL REASONING ABOUT EXCEPTION HANDLERS IN IMPURE
This section presents how to derive a WLP property about the “try_with_any” operator of
Section 3.1. Below, we define the following wrapper that requires from the user an additional
post-condition P satisfied by both branches of the exception handler.

Definition is_try_post {A} (P: A → Prop) k1 k2: Prop B
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wlp (k1 ()) P ∧ ∀ (e:exn), wlp (k2 e) P.
Program Definition try_catch_ensure

{A} k1 k2 (P:A→Prop|is_try_post P k1 k2): ?? { r | P r } B
TRY DO r f mk_annot (k1 ());; RET (exist P r _)
WITH_ANY e ⇒ DO r f mk_annot (k2 e);; RET (exist P r _).

Providing the following notation
Notation "'TRY ' k1 'CATCH ' e '⇒ ' k2 'ENSURE ' P" B

(try_catch_ensure (fun _ ⇒ k1) (fun e ⇒ k2) (exist _ P _)) . . .

This operator is illustrated in the following simple example which generates an (easy) proof
obligation from the user to discharge the prove the is_try_post property.
Program Example tryex {A} (x y:A) B

TRY (RET x) CATCH _ ⇒ (RET y) ENSURE (fun r ⇒ r = x ∨ r = y).

Then, we can easily proves consequences of this postcondition as illustrated below.
Program Example tryex {A} (x y:A):

WHEN tryex x y { r THEN `r <> x → `r = y.

Let us remark that on the above example, we cannot formalize the informal reasoning that
( tryex x y ) necessarily returns x. Indeed, our untrusted implementation of try_with_any

could contain a bug while remaining sound w.r.t the formal declaration in Coq. In particular, for
the following buggy implementation, ( tryex x y ) necessarily returns y.
let try_with_any (k1, k2) = try k2 (ImpureFail "") with _ -> k1()

More generally, except if we can prove that a given branch of a “TRY” cannot return normally
like in “TRY ( FAILWITH ". . ." ) . . .”, we can never formally prove which branch has returned. In
other words, “TRY” should be considered formally as a non-deterministic operator. If this weakness
becomes an issue, it is still possible to use option types instead of exceptions. In counterpart, these
“formally weak” exceptions provide a nice feature: the formal specifications of functions have never
to declare which exceptions may be raised or not.

E INSTANTIATING GENERIC LOOPS AND FIXPOINTS OF SECTION 3
Figure 21 illustrates how to instantiate the while-loop operator of Figure 7 (page 12) to an iterative
computation of Fibonacci’s numbers. Figure 22 instantiates the fixpoint of Section 3.3 on a naive
recursive computation of Fibonacci’s numbers: given any correct beqZ: Z -> Z -> ?? bool, it
derives a correct Fibonacci’s implementation fib . The last paragraph of Section 3.3 explains how
the definition of beqZ may impact the performance of fib according to the implementation of the
fixp oracle.
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(* Specification of Fibonacci 's numbers by a relation *)
Inductive isfib: Z → Z → Prop B
| isfib_base p: p ≤ 2 → isfib p 1
| isfib_rec p n1 n2:

isfib p n1 → isfib (p+1) n2 → isfib (p+2) (n1+n2).

(* Internal state of the iterative computation *)
Record iterfib_state B { index: Z; current: Z; old: Z }.

Program Definition iterfib (p:Z): ?? Z B
if p ≤? 2
then RET 1
else

DO s f
while (fun s ⇒ s.(index) <? p)

(fun s ⇒ RET {| index B s.(index )+1;
current B s.(old) + s.( current );
oldB s.( current) |})

(fun s ⇒ s.(index) ≤ p
∧ isfib s.(index) s.( current)
∧ isfib (s.(index)-1) s.(old))

{| index B 3; current B 2; old B 1 |};;
RET (s.( current )).

(* Correctness of the iterative computation *)
Lemma iterfib_correct p: WHEN iterfib p { r THEN isfib p r.

Fig. 21. Iterative computation of Fibonacci’s numbers with the WHILE-loop

Parameter beqZ: Z → Z → ?? bool.
Parameter beqZ_correct: ∀ x y, WHEN beq x y { b THEN b=true → x=y.

Program Definition fib (z: Z): ?? Z B
DO f f rec beqZ isfib (fun (fib: Z → ?? Z) p ⇒

if p ≤? 2
then RET 1
else

let prev B p-1 in
DO r1 f fib prev ;;
DO r2 f fib (prev -1) ;;
RET (r2+r1)) _;;

(f z).

Lemma fib_correct (x: Z): WHEN fib x { y THEN isfib x y.

Fig. 22. Computation of Fibonacci’s numbers with the generic fixpoint
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