Sylvain Boulmé
email: sylvain.boulme@univ-grenoble-alpes.fr

Thomas Vandendorpe
email: thomas.vandendorpe@etu.univ-grenoble-alpes.fr.2019

Embedding Untrusted Imperative ML Oracles into Coq Verified Code *

Keywords: The Coq Proof Assistant, Monads, Polymorphism, Parametricity

This paper investigates a lightweight approach -combining Coq and OCaml typecheckers -in order to formally verify higher-order imperative programs in partial correctness. In this approach, the user does never formally reason about effects of imperative functions, but only about their results. Formal guarantees are obtained by combining parametric reasoning over polymorphic functions (i.e. "theorems for free" a la Wadler) with verified defensive programming. This paper illustrates the approach on several examples. Among them: first, the certification of a polymorphic memoized fixpoint operator using untrusted hash-tables; second, a certified Boolean SAT-solver, invoking internally any untrusted but state-of-the-art SAT-solver (itself generally programmed in C/C++).

INTRODUCTION

The CompCert certified compiler [Leroy 2009a,b] is the first C compiler with a formal proof of correctness that is used in industry [START_REF] Bedin França | Formally verified optimizing compilation in ACG-based flight control software[END_REF][START_REF] Kästner | CompCert: Practical Experience on Integrating and Qualifying a Formally Verified Optimizing Compiler[END_REF]]. It is a major success of software verification, because CompCert does not have the bugs which are usually found in optimizing compilers [START_REF] Yang | Finding and understanding bugs in C compilers[END_REF]. Its success partly comes from its smart design, focusing the formal proof in Coq on the partial correctness of compilation passes, while reasonings on their performance (including thus their termination) remain informal. In particular, CompCert invokes untrusted oracles from the certified code. For example, register allocation in compilers is a NP-complete problem: finding a valid allocation is difficult, while checking the validity of an allocation is easy. In CompCert, the allocation is found by an oracle, i.e. an untrusted OCaml function; and, only a checker of the allocation is programmed and certified correct in Coq [START_REF] Rideau | Validating register allocation and spilling[END_REF]. Generally speaking, introducing such an oracle has the following benefits: first, this avoids to program and prove a difficult algorithm in Coq; second, this offers the opportunity to use (or even reuse) an efficient imperative implementation as the oracle; at last, this makes the software more modular. Indeed, the checker is actually certified for a family of oracles: the oracle can still be improved or tuned for some specific cases, without requiring to reprove the checker.

In some certified software like the certified UNSAT prover of [Cruz-Filipe et al. 2017a], oracles are invoked before certified code which only checks their outputs. This is not the case in CompCert: oracles are directly invoked in the middle of certified transformations of the input. Hence, CompCert uses a standard FFI (Foreign Function Interface) of the Coq programming language, in order to invoke external OCaml code from certified code. However, there is no formal justification that using this FFI is sound. Section 1.1 details the main pitfall of this FFI. Section 1.2 sketches a proposal to fix this issue. Section 1.3 summarizes the contributions of the paper.

Unsoundness of the Standard FFI w.r.t OCaml

The register allocation of CompCert is declared in Coq by 1 Parameter regalloc : RTL . function → res LTL . function .

Here, "Parameter" is synonymous of "Axiom" and "res" is quite similar to the "option" type transformer. Some Coq directive in CompCert instructs Coq extraction [START_REF] Letouzey | Extraction in Coq: An Overview[END_REF]] to replace this "regalloc" axiom by a function of the same name from the Regalloc OCaml module. While very common, this approach is potentially unsound.

Let us consider the Coq example on the right-hand side. It first defines a constant one as the Peano's natural number representing 1. Then, it declares an axiom test replaced at extraction by a function oracle. Finally, a lemma cong is proved, using the fact that test is a function. However, implementing oracle by "let oracle x = (x == one)" in OCaml makes the lemma cong false at runtime. Indeed, (oracle one) returns true whereas (oracle (S O)) returns false, because "==" tests equality between pointers. Hence, the Coq axiom is unsound w.r.t this implementation. A similar unsoundness is obtained with another implementation of oracle, that returns the value of a global reference, containing true at the first call, and false at the second call. 2 This unsoundness comes from the fact that a Coq function f satisfies "∀x, (f x) = (f x)", whereas an OCaml function may not satisfy this property. Actually, CompCert is probably free from such a bug, because its Coq proof does probably not depend on this property of regalloc: the remaining of the compiler does not depend on whether regalloc is pure or not. 3 1.2 Foreign Functions as Non-Deterministic Functions [START_REF] Fouilhé | A Certifying Frontend for (Sub)Polyhedral Abstract Domains[END_REF] have proposed to avoid this unsoundness by axiomatizing external OCaml functions using a notion of non-deterministic computations. For example, if the result of test is declared to be non-deterministic, then the property cong is no more provable. For a given type A, type ??A represents the type of non-deterministic computations returning values of type A: it can be interpreted as P(A), the type A → Prop of predicates over A. Formally, the type transformer " ?? . " is axiomatized as a monad that provides a may-return relation A : ??A → A → Prop. Intuitively, when " ??A" is seen as "P(A)", then " " simply corresponds to identity. At extraction, ??A is extracted like A, and its binding operator is efficiently extracted as an OCaml let-in. See details in Section 2.

For example, replacing the test axiom by "Axiom test : nat → ? ? bool" avoids the above unsoundness w.r.t the OCaml oracle. The cong property can still be expressed as below, but it is no longer provable -because it is not satisfied when interpreting ??A as P(A) and interpreting test as the function returning the trivially true predicate (in this interpretation, the goal below reduces to the false property that all Booleans are equals).

Of course, this approach does not suffice to avoid all pitfalls of axiomatizing oracle types in Coq. Some other pitfalls are detailed in the paper, with proposal of remedies.

Contributions of the Paper

The may-return monad of [START_REF] Fouilhé | A Certifying Frontend for (Sub)Polyhedral Abstract Domains[END_REF] aims to ensure that Coq proofs like those of CompCert do not rely on the purity of external oracles. Based on a variant of the may-return monad, this paper proposes a library called Impure which is conjectured to provide a safe FFI for almost any well-typed OCaml function (see details in Section 2). Hence, this FFI allows to embed many impure OCaml features into Coq certified code. This is illustrated along the paper on I/O operations, exception-handling, mutable data-structures and physical equality. Whereas this approach inherits of the full programming power of OCaml, its reasoning power is rather limited as detailed just below.

For example, on I/O operations, Impure does not provide any reasoning support unlike the coq.io library of Guillaume Claret. Actually, embedding I/O in Coq code is already very convenient, even without any formal proof about those I/O. In particular, this allows us to write the main function of our executables in Coq: when such a main function is sufficiently small, it can be considered itself as a part of the formal specification (see Figure 15 at page 16).

On exception-handling and on polymorphic mutable data-structures, Impure supports "theorems for free" a la Wadler [START_REF] Wadler | Theorems for Free![END_REF]] that are derived by embedding invariants into the polymorphic types of OCaml oracles. Even if this technique suffers from a very incomplete reasoning power (for example, it cannot even prove that "x:=1; !x" returns "1"), it suffices to formally prove many interesting properties "for free".

Actually, in counter-part of this limited reasoning power, there is only a very small bureaucratic overhead with respect to reasoning about pure code. 4 The only overhead comes from the fact that every impure computation is encapsulated in a monad. And, in realistic developments like CompCert, even pure computations are often handled through an error monad. So, we believe that replacing the error monad of CompCert by the may-return monad would not make the proofs heavier. 5In other words, the Impure library provides a framework to combine Coq and OCaml typecheckers. Surprisingly, in a defensive style (i.e. with dynamic checks of oracle results), this simple framework is very effective. This is illustrated on two main examples: first, the certification of a polymorphic memoized fixpoint operator using untrusted hash-tables; second, a certified frontend to any untrusted but state-of-the-art SAT-solver. This second-very significant-example is partly inspired by the Coq-verified checker of UNSAT certificates proposed by Cruz-Filipe et al. [2017a]. Our main contribution on this example is to illustrate how our "theorems for free" technique helps to develop a code, which is much faster than this previous one-with a very modest development effort.

This paper is more experimental than theoretical. It proposes a very pragmatic solution to the formal verification of complex software like SAT solvers or compilers. In particular, with some of our colleagues, we have also fruitfully applied our approach to extend a CompCert backend with an efficient postpass scheduling. This other significant development (20Kloc of Coq + 4Kloc of OCaml) is presented in [START_REF] Six | Certified Compiler Backends for VLIW Processors Highly Modular Postpass-Scheduling in the CompCert Certified Compiler[END_REF]].

Overview of the Paper

Section 2 presents our proposal of FFI (through the Impure library) and conjectures its soundness. Section 3 applies it to extend the Coq programming language with some polymorphic impure operators: exception-handling and fixpoints. Finally, Section 4 applies it to certified SAT-solving. An appendix details some technical points of the paper.

TOWARD A SOUND FFI W.R.T OCAML THROUGH MAY-RETURN MONADS

As sketched in introduction, this section will define a type A → ??B to represent the type of impure functions from type A into type B. Informally, we interpret the type ??B as P(B) the type of predicates characterizing the possible results. This interpretation represents thus each impure function as a function of A → P(B), or equivalently, as a relation of P(A × B), because of the bijection between this two types. Section 2.1 defines type ??B using axioms in order to provide an efficient extraction into OCaml, where " ??" are simply removed. Based on this notion of impure computations, Section 2.2 presents our FFI and conjectures its soundness. Section 2.3 explains how this conjecture is related to a parametricity property of the underlying "Coq+OCaml" type system. Finally, Section 2.4 extends the FFI with pointer equality.

Definition of the May-Return Monad in the Impure library

This section introduces in an informal syntax the theory of the may-return monads and presents the informal interpretation of these axioms. See the sources online6 for the full Coq syntax with the proofs. The definition of may-return monads in this paper -given below -is inspired by the original definition of [START_REF] Fouilhé | A Certifying Frontend for (Sub)Polyhedral Abstract Domains[END_REF], itself inspired by the structure of monads in functional programming languages [START_REF] Wadler | Monads for Functional Programming[END_REF]]. There are however two differences between the definition below and the original one. First, in this paper, the congruence "≡" over computations has been omitted. Indeed, in the VPL, the Verified Polyhedra Library of [START_REF] Fouilhé | A Certifying Frontend for (Sub)Polyhedral Abstract Domains[END_REF], this congruence is only needed in order to prove a property on a higher-order operator that is absent of the case studies of this paper. Moreover, as discussed in Appendix A, the meaning of such an equality with respect to the extracted code is counter-intuitive: an issue that we keep out of the scope of this paper. Second, this paper introduces the "mk_annot A " operator, that is invoked in order to prove properties on higher-order operators by parametricity (see Section 3). Definition 2.1 (May-return monad). For any type A, type ??A represents impure computations returning values of type A, and provides a may-return relation

A : ??A → A → Prop
where "k a" means that "k may return a". It also provides the three following operators

• Operator ≫= A, B : ??A → (A → ??B) → ??B encodes an impure OCaml sequence "let x = k 1 in k 2 " into "k 1 ≫= λx, k 2 ". This operator must satisfy

k 1 ≫= k 2 b ⇒ ∃a, k 1 a ∧ k 2 a b
• Operator ret A : A → ??A lifts a pure value as an impure computation. It must satisfy ret a 1 a 2 ⇒ a 1 =a 2

• Operator mk_annot A : ∀(k : ??A), ??{ a | k a} annotates the result of a computation k with an assertion expressing that it has been returned by k.

In the Coq code, "k 1 ≫= λx, k 2 " is written with a "DO" notation reminiscent of Haskell "DO x k1 ; ; k2" (or "k1 ; ; k2" if x does not appear in k2). And ret is also written with cases "RET" to increase readability of impure code.

Interpretations of May-Return Monads.

Here is the informal interpretation of " ??A" as the type of predicates "P(A)": A is identity on P(A); ret A is the identity relation of A → P(A); ≫= A, B returns the image of a predicate on A by a binary relation of A → P(B); mk_annot returns the trivially true predicate. Theses definitions are formalized in Figure 1. They satisfy axioms of may-return monads.

Actually, it is worth noticing that usual monads are naturally embedded as a may-return monad. For example, Figure 2 corresponds to the embedding of the identity monad. And, Figure 3 corresponds to the embedding of the state-monad on a given global state of type S.

??A ≜ A → Prop k a ≜ (k a) ret a ≜ λx, a = x k 1 ≫= k 2 ≜ λx, ∃a, (k 1 a) ∧ (k 2 a x) mk_annot k ≜ λx, True
??A ≜ A k a ≜ k =a ret a ≜ a k 1 ≫= k 2 ≜ (k 2 k 1) mk_annot k ≜ exist k eq_refl k where • exist is the constructor of the dependent pair { a | k a} • eq_refl k is a proof of k = k
??A ≜ S → A × S k a ≜ ∃s, fst(k s) = a ret a ≜ λs, (a, s) k 1 ≫= k 2 ≜ λs, let (a, s ′) := (k 1 s) in (k 2 a s ′) mk_annot k ≜ λs, let (a, s ′) := (k s) in (exist a p k,s , s ′)
where p k,s is a proof of ∃s 0 , fst(k s 0) = fst(k s) In order to handle impure computations in Coq, the Impure library declares an abstract mayreturn monad (i.e. its implementation remains hidden). It is extracted as like as the identity mayreturn monad of Figure 2 except that, in order to enforce the expected evaluation order, operator ≫= is extracted to operator (|>) of OCaml.7 2.1.2 Reasoning on Impure Computations with Weakest-Liberal-Preconditions. Having introduced axioms for impure computations in Definition 2.1, we automate Coq reasonings about such computations, by reusing a weakest-precondition calculus introduced by [START_REF] Fouilhé | A Certifying Frontend for (Sub)Polyhedral Abstract Domains[END_REF] and programmed as a very simple Ltac tactic. They define in Coq an operator "wlp A : ??A → (A → Prop) → Prop" such that "wlp k P ≜ ∀a, k a ⇒ (P a)".

In other words, (wlp k P) expresses the weakest (liberal) precondition ensuring that any result returned by computation k satisfies postcondition P. More simply, when ??A is interpreted as P(A), wlp corresponds to inclusion of predicates. Now, we define the notion of WLP-theorems.

Definition 2.2 (WLP-theorems). A WLP-theorem is a Coq theorem with a conclusion of the form "(wlp k P)". Such a theorem means that (under the hypotheses of the theorem), For all r , if the extraction of k returns the extraction of r , then r satisfies P.

In particular, when the extraction of k does not terminate or raises an uncaught exception, WLP-theorems do not give any useful information (as usual in partial correctness). In our Coq code, we write (wlp f λr , P) with the notation "WHEN f r THEN P". For example, let us consider the following Coq code:

Variable f : nat → ?? nat . Definition g (x : nat): ?? nat DO r f x ;; RET (r +1). Lemma triv : ∀ x , WHEN g x r THEN r > 0.

The Ltac tactic simplifies this goal into the trivial property "∀n : N, n +1 > 0" (See [START_REF] Fouilhé | A Certifying Frontend for (Sub)Polyhedral Abstract Domains[END_REF] for details).

The Foreign-Function-Interface provided by Impure

As shown in introduction, declaring external OCaml oracles in Coq may be unsound, by authorizing Coq theorems that can be false at runtime. The may-return monad has been introduced in order to avoid the pitfall of embedding impure computations as pure functions. But this is not sufficient to ensure soundness. To this end, we need to define a class "permissive" of Coq types and a class "safe" of OCaml values satisfying Conjecture 2.4 below, with "being permissive" and "being safe" automatically checkable, and as expressive as possible. In this paper, we consider the following definition for "safe". The definition of "permissive" will be gradually introduced in Section 2.2.1 upto Definition 2.5.

Definition 2.3 (Safe OCaml value). An OCaml value is "safe" iff it is well-typed and without calls to external values like Obj.magic, and without using cyclic values like "let rec v = S v" on Coq extracted types.8 NB: The last restriction does not forbid recursive functions nor cyclic mutable data-structures in safe OCaml values.

Conjecture 2.4 (Soundess of permissive Coq types). Every "permissive" Coq type T according to Definition 2.5 satisfies the following property: every safe OCaml value compatible with the extraction of T is "soundly" axiomatized in Coq with type T -in the sense that WLP-theorems deduced from the axiom cannot be falsified when running the extracted code, in which the axiom has been replaced by the OCaml value.

Ideally, we aim to extend Coq with a "Import Constant" construct of the form:

Import Constant ident : permissive_type " safe_ocaml_value ".

and acting like "Axiom ident : permissive_type", but with additional checks during Coq and OCaml typechecking in order to ensure soundness of extraction. However, defining precisely such typechecking algorithms is left for future work.

2.2.1 Definition of Permissivity. This section gradually introduces our definition of permissivity in order to enforce Conjecture 2.4 on its soundness. We first give examples of unsound types, and examples that are conjectured to be sound. Section 1.1 have illustrated that type nat→bool is unsound: thus, it cannot be permissive. On the contrary, type nat→? ? bool is conjectured to be sound. We also conjecture that nat→? ? nat is sound. But, type nat→? ? { n : nat | n ≤ 1 0 }extracted to "nat->nat" -is not. Indeed, such a Coq type corresponds to assume a postcondition on the oracle that the OCaml typechecker cannot ensure.

Similarly, type nat→? ? (nat→nat) -extracted to "nat->(nat->nat)" -is unsound because the Coq side expresses that the result of type nat→nat is pure, whereas this (implicit) postcondition cannot be ensured by OCaml typechecker. Actually, the same phenomenon happens with nat→(nat→? ? nat) (extracted on the same OCaml type): the partial application on the first argument is declared pure in Coq, whereas this cannot be ensured by OCaml typechecker.

On the contrary, types nat→? ? (nat→? ? nat) and (nat→? ? nat)→? ? nat are conjectured to be sound. And also { n | n ≤ 1 0 }→? ? nat. On this last example, the Coq axiom requires a precondition that OCaml typechecker can safely ignore. A similar phenomenon happens with (nat→nat)→? ? nat (the purity of the parameter is an implicit precondition that OCaml typechecker can safely ignore). Note that currying in sound oracle types-like in nat→? ? (nat→? ? nat) -allows for more imperative OCaml implementations (at the price of more bureaucracy on the Coq side) than tupling-like in nat * nat→? ? nat.

In the general case, permissitivity can be viewed as a given supertyping relation between Coq types and OCaml types: a Coq type is permissive if and only if it is a supertype of its extraction. In this view, permissivity of arrow types requires to distinguish "inputs" (negative occurrences) from "outputs" (positive occurrences): outputs are covariant and inputs are contravariant. We thus also need to introduce a subtyping relation between Coq types and OCaml types. On "basic" types, motivated by the correctness of Coq extraction [START_REF] Letouzey | Extraction in Coq: An Overview[END_REF]], we consider that a Coq type is always a subtype of its extraction. For example, { n : nat | n ≤ 1 0 } is a subtype of OCaml nat.

In order to deal with more complex types, the subtyping relation must be mutually defined together with the supertyping relation. Here, we leave the precise definition of the subtyping relation for future works. These considerations leads us to the following definition of permissivity.

Definition 2.5 (Permissivity). The permissivity of a Coq type is defined inductively over the syntax of types:

• An inductive type is permissive whenever its sort is not Prop and whenever the type of each input of each constructor is permissive. See example below. • An arrow type is permissive whenever the arrow is followed by a "??", and its output type is permissive, and its input type is a subtype of its extraction. • ML polymorphism -i.e. prenex universal polymorphism -preserves permissivity.

For example, given type foo below, type nat→? ? foo is permissive. But this would not be the case if constructor Bar has no "??" in the type of its argument.

Inductive foo

Bar : (nat → ?? nat) → foo

A more advanced example of permissive type is given by the polymorphic type of make_cref in Figure 4. Section 2.3 illustrates that Conjecture 2.4 implies a powerful parametricity property on such a polymorphic oracle. of mutable references with the Coq code of Figure 4: it defines the record type cref that represents references in a kind of object-oriented style (as the pair of a mutator set and a selector get), and declares an oracle make_cref building values of this type. On the OCaml side, type cref is extracted to "type 'a cref = { set: 'a -> unit; get: unit -> 'a }". Then, we define make_cref: 'a -> 'a cref such that it allocates a fresh reference r and returns the pair of set/get function to update/access the content of r (see the code in Figure 5). Conjecture 2.4 states that it is sound to implement make_cref by any safe OCaml function of type 'a -> 'a cref like in Figure 5. Having implemented make_cref according to Figure 5, the user can thus program with mutable references in Coq. However, most properties of this implementation cannot be formally proven in Coq. Indeed, from the point-of-view of the formal logic, any safe OCaml function of type 'a -> 'a cref is admitted as a sound implementation of make_cref, including the iconic implementation of Figure 6. This implementation typifies what any OCaml implementation of make_cref can do: store inputs of make_cref and set such that get outputs one of the previously stored input. For example, every execution using the implementation of Figure 5 can be emulated by an execution using the implementation of Figure 6 where each call to Random.int returns 0: in this way, get outputs the last received input.

Application to

Hence, all formal properties provable from the interface of Figure 4 should be satisfied by the oracle of Figure 6. Thus, they can only express that if all the inputs of a given reference satisfy some given invariant, then the value returned by get will also satisfy this invariant. Such a property can be partly expressed in Coq by instantiating the parameter A of cref in Figure 4 on a Σ-type that constrains this reference to preserve the given invariant. Whereas this technique seems a bit weak on this example, Sections 3.3 and 4 present interesting applications of this lightweight technique for constraining polymorphic mutable data-structures (like hash-tables). Finally, let us note that our embedding of ML references does not forbid aliases as soon as they are compatible with Coq typing: see details in Appendix C.

However, extending extracted code with an OCaml main could in theory break some properties proved on the Coq side (see also Appendix C). It is thus safer to define the main function of executables on the Coq side. This motivates to embed some I/O functions in Coq. Such an embedding is very easy. Currently, the Impure library provides a few wrapper of some functions of OCaml standard library, like the below two (where pstring is a Coq type to represent strings).

Axiom read_line : unit → ?? pstring . (* reads a line from stdin *) Axiom println : pstring → ?? unit .

(* prints a line on stdout *)

However, the Impure library does not provide any formal reasoning support on these I/O functions. Hence, in this approach, reasoning with I/O on Coq code remains informal -more or less like on OCaml code. The programmer is only much more protected against stupid mistakes when combining formally proved code and trusted (but informally verified) code, because the Coq type system is more accurate.

Coq "Theorems for Free" about Polymorphic ML Oracles

According to Definition 2.5, a polymorphic type like "∀ A , A→? ? A" is permissive. Together with Conjecture 2.4, this implies a "theorem for free" on safe OCaml values of the corresponding extracted type. For example, we now prove that any safe OCaml value pid of type 'a -> 'a satisfies when (pid x) returns normally some y then y = x. In the following, we say that a function pid satisfying the above property is a pseudo-identity (indeed, such a pid may not be the identity because it may not terminate normally or produce side-effects).

In order to prove that any safe "pid:'a -> 'a" is a pseudo-identity, we first declare pid as an external function in Coq. Then, we build a Coq function cpid, which is proved to be a pseudoidentity, and which is extracted to OCaml as "let cpid x = pid x |> (fun z -> z)". In the Coq source, for a type B and a value x : B, (cpid x) invokes pid on the type { y : B | y=x } , which constrains it to produce a value that is equal to x. Below, `z returns the first component of the dependent pair z of type { y : B | y=x } ; the Program environment allows for terms with "holes" (like here in the implicit coercion of x : B into a value of { y : B | y=x }) and generates static proof obligations to fill the holes.9 Let us point out that we cannot prove in Coq that pid -declared as the axiom given above -is a pseudo-identity. Indeed, we provide a model of this axiom where pid detects -through some dynamic typing operators -if its parameter x has a given type Integer and in this case returns a constant value, or otherwise returns x. Such a counter-example already appears in [START_REF] Vytiniotis | Free Theorems and Runtime Type Representations[END_REF]]. This function is now provided in Java syntax. The soundness of cpid extraction is thus related to a nice feature of ML: type-safe polymorphic functions cannot inspect the type to which they are applied. In other words, type erasure in ML semantics ensures that functions handle polymorphic values in a uniform way.

However, a similar counter-example can be built for OCaml by using an external C function that is sound with type 'a -> 'a (i.e. for all ML type T , it behaves like a function of type T → T). Such a function inspects the bit of its parameter that tags unboxed integers, and returns integer 0 when instantiated on type int, or behaves like an identity otherwise. This explains why such a counter-example must be rejected by Definition 2.3.

In summary, our Coq proof is not about pid, but about cpid which instantiates pid on a dependent type. Actually, cpid and pid coincide, but only in the extracted code. This proof can be viewed as a "theorem for free" in the sense of [START_REF] Wadler | Theorems for Free![END_REF]: it is a parametricity proof for a unary relation, i.e. a predicate that we call here an invariant. Bernardy andMoulin [2012, 2013] have previously demonstrated that parametricity reasoning can be constructively internalized in the logic from an erasure mechanism. Here, in our "Coq+OCaml" logic of programs, it derives from the fact that the invariant instantiating the polymorphic type variable in the Coq proof is syntactically removed by Coq extraction.

But, whereas parametricity of pure system F has been established a long time ago by [START_REF] Reynolds | Types, Abstraction and Parametric Polymorphism[END_REF], its adaptation to imperative languages with higher-order references a la ML is much more recent [START_REF] Birkedal | Stepindexed Kripke Models over Recursive Worlds[END_REF]. Indeed, because higher-order references allows to build recursive functions without explicit recursion (see Figure 9 page 12), it is even hard to define what is a predicate over such a higher-order reference. See [START_REF] Ahmed | A Stratified Semantics of General References Embeddable in Higher-Order Logic[END_REF][START_REF] Appel | A Very Modal Model of a Modern, Major, General Type System[END_REF][START_REF] Hobor | A Theory of Indirection via Approximation[END_REF]. This paper leaves Conjecture 2.4 for future works, and focuses on its poweful applications.

Axioms of the Trusted Equality of Pointers

We now extend the FFI described at Section 2.2, by embedding the physical equality (i.e. pointer equality) of OCaml into Coq. At the difference of all other oracles in this paper, we impose the phys_eq oracle to satisfy an axiom -called phys_eq_true -in addition to its declaration. Thus, the implementation of this oracle must be trusted. As illustrated on the example of Section 1.1, because "(==)" distinguishes pointers: it can distinguish values that the Coq logic cannot. It is thus necessary to declare phys_eq as a nondeterministic function. The phys_eq_true axiom is useful in order to replace some tests about structural equality by faster tests using physical equality instead. This axiom is similar to the one introduced by [START_REF] Breitner | Ready, Set, Verify! Applying Hs-to-coq to Real-world Haskell Code (Experience Report)[END_REF] to model the pointer equality of Haskell. Section 3.3 gives an example. It also been used to implement a verified hash-consing mechanism in the CompCert backend of [START_REF] Six | Certified Compiler Backends for VLIW Processors Highly Modular Postpass-Scheduling in the CompCert Certified Compiler[END_REF].

CERTIFYING "FOR FREE" POLYMORPHIC IMPERATIVE FUNCTIONS

This section applies our FFI in order to extend the Coq programming language with some polymorphic impure operators10 : exception-handling at Section 3.1, loops at Section 3.2 and fixpoints at Section 3.3. Our goal is to formally prove the usual rules of Hoare logic for these operators in partial correctness. This is achieved by applying the technique of "parametricity by invariants" (introduced at Section 2.3): we derive these correctness rules by instantiating the polymorphic type of wellchosen oracles on a well-chosen sigma-type. In other words, we illustrate that "parametricity by invariants" interprets ML polymorphic types as "higher-order invariants", i.e. invariant properties (of ML values) depending on type variables which names themselves some invariant. Hence, with this interpretation, ML typecheckers are powerful engine to infer higher-order invariants in partial correctness.

Exception-Handling Operators

First, we declare an external function fail which is (informally) expected to raise an error parametrized by a string. Actually, while our formal Coq reasonings will be valid for any of these implementations, our informal reasonings will only consider the first implementation.

For its formal correctness, fail does never return a value, or equivalently it returns only values satisfying any predicate. In order, to get this property "for free", we wrap fail into a function FAILWITH of the same type, but which internally call fail on the empty type False. For any value r:False returned by fail, we are thus able to build any value of any type (by destructing r).

Definition FAILWITH {A: Type } msg : ?? A DO r fail (A False) msg ;; RET (match r with end).

Lemma FAILWITH_correct A msg (P: A → Prop): WHEN FAILWITH msg r THEN P r.

Now, we use FAILWITH to define dynamic assert checking. Below, "assert_b" ensures that a (pure) Boolean expression is true or aborts the computation otherwise. This approach is extended to exception-handling with the following oracles, which are used in Figure 15. See Appendix D for details about formal reasoning on exception-handling.

Axiom exn : Type .

Extract Inlined Constant exn ⇒ " exn ". Axiom raise : ∀ {A}, exn → ?? A. Extract Constant raise ⇒ " raise ". Axiom try_with_any : ∀ {A}, (unit → ?? A) * (exn → ?? A) → ?? A. Notation " 'TRY ' k1 ' WITH_ANY ' e ' ⇒ ' k2 " (try_with_any (fun _ ⇒ k1 , fun e ⇒ k2)) . . .

Here try_with_any is implemented in OCaml by let try_with_any (k1 , k2) = try k1 () with e -> k2 e

Generic Loops in Coq

This section defines a verified WHILE-loop in partial correctness. Let us first introduce our untrusted oracle for generic loops. We use type A as the type of "(potential) reachable states" in the loop (i.e. A is the loop invariant). We also use type B as the type of "(potential) final states" (i.e. B is the post-condition of the loop). Our loop oracle is parametrized by an initial state of type A and by a function "step:A -> ??(A+B)" computing the next state from a non-final state (see the declaration of loop in Figure 7). Typically, the Coq type " (A+B) " being extracted on OCaml type " (' a , ' b) sum" defined in Figure 8, we implement this loop oracle by the tail-recursive function of Figure 8. Any safe OCaml implementation of a compatible type is also admitted, like the alternative implementation of Figure 9. In this alternative implementation, recursion is not explicit in the code, but is emulated by a reference fix containing a function accessing fix. Here, the OCaml typechecker is able to verify that this obfuscated piece of code has the expected type.

After defining the wli predicate (acronym for "while-loop-invariant"), Figure 7 defines our verified while function. It is parametrized by a pure test cond, by an impure state-transformer body, by a predicate I preserved by one iteration of the loop (wli condition) and by an initial state s0. Parameter A (resp. B) of loop is instantiated on the loop invariant (resp. the postcondition). On this code, the Program plugin generates 3 trivial proof obligations:

(1) "I s0 → I s0".

(2) " (I s0 → I s) → cond s = true → body s s ' →(I s0 →I s ') " (trivial from wli hypothesis). (3) " (I s0 → I s) → cond s = false → (I s0 → I s) ∧ cond s = false".

Let us remark that mk_annot is necessary to get the appropriate hypothesis on s ' in the second proof obligations. Figure 21 in Appendix E illustrates how to apply this while-loop operator to an iterative computation of Fibonacci's numbers.

This technique could be applied to other kind of generic loops. For example, Figure 17 on page 24 defines a generic loop dedicated to refutation of unreachability properties. This generic loop is applied in Figure 18 to check an UNSAT property, as detailed in Section 4.4.3.

Generic Fixpoints in Coq

This section now extends the previous approach to generic fixpoints of functions. The simplest version of such a fixpoint in OCaml is given by fixp function in Figure 10. The fixp function computes the fixpoint of step a function performing one unfolding step of a recursive computation. For example, it is instantiated for the naive recursive computation of Fibonacci's number as "fixp (fun fib p -> if p <= 2 then 1 else fib(p-1)+fib(p-2))".

Of course, with the implementation in Figure 10, this naive computation of Fibonacci's number performs an exponential number of additions. By using the memoized implementation on Figure 11, the number of additions remains linear. However, a bug in the implementation of fixp like in Figure 12 leads to incorrect results. Here, the implementation in Figure 12 represents an erroneous version of the memoized version of Figure 11 where all recursive results are crashed into a single memory cell (instead of associating each recursive result to its corresponding input into a dedicated memory cell). Hence, Figure 12 gives a safe implementation of type (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b that does not compute a correct fixpoint, even in partial correctness. This illustrates that the property "be a correct fixpoint" cannot be derived by pure parametric reasoning (on the contrary of the WHILE-loop of Section 3.2). However, we build a verified fixpoint operator from any fixpoint oracle of type (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b, by combining parametricity-by-invariants and (inexpensive) defensive checks. In the case of implementation in Figure 12, the incorrect fixpoint computations will abort (because of the defensive checks). Hence, we declare the following oracle in Coq. And, we build a formally correct fixpoint operator by wrapping this oracle.

Axiom fixp : ∀ { A B}, ((A → ?? B) → A → ?? B) → ?? (A → ?? B).

Usually, proving the correctness of a (non-tail)recursive functions requires to prove that a given relation between inputs and outputs is preserved by the unfolding step of recursion. Here, we need to encode this binary relation -called R below -into the unary invariant B. The trick is thus to store both the input (of type A) and the output (of type B) in this invariant. In the following, A B : Type and R : A → B → Type are implicit parameters of the formally proved fixpoint operator.

Record answ

{ input :A; output :B; correct :R input output }.

Then, we add a defensive check on each recursive result r -returned through the oracle -that (input r) "equals to" the actual input of the call. Thus, our fixpoint operator is also parametrized by an equality test beq : A → A → ? ? bool that is expected to satisfy the following formal property. For example, beq could be instantiated by the pointer equality phys_eq or a more structural equality test (as detailed later).

Then, we introduce a wrapper wapply of the application, such that each recursive call k returning a value of type answ is converted into a function (wapply k) returning a value of type B, but with a defensive check that the input field equals to the x parameter. The parameter "step : (A → ? ? B) → A → ? ? B", that unfolds one step of recursion, is expected to preserve relation R, as formalized by step_preserv predicate.

Definition step_preserv (step : (

A → ?? B) → A → ?? B) ∀ f x , WHEN step f x z THEN (∀ x ' , WHEN f x ' y THEN R x ' y) → R x z.
Our proved rec operator is thus defined by: Appendix E illustrates how to instantiate this rec operator on the naive recursive computation of Fibonacci's numbers. Actually, for performance issue, beq must be chosen at instantiation of operator rec according to fixp implementation. If beq is too much discriminating, then it may reject valid computations. On the contrary, if beq inspects too much the structure of its inputs, then it may slow down computations. For example, phys_eq is well-suited for the fixpoint implementation in Figure 10. But it is too much discriminating for the fixpoint implementation of Figure 11. Actually, for the latter, beq must correspond to the equality test involved in the hash-table implementation: here structural equality. Hence, our approach could be improved by passing beq as a parameter of the oracle, which then could use it as the equality test of the hash-table instead of structural equality.

CERTIFYING A CHECKER OF (BOOLEAN) SAT-SOLVER ANSWERS

This section presents a major contribution of our paper, by applying the Impure library to a realistic use-case: SatAnsCert, a verifier of SAT-solver answers, itself certified in Coq. Actually, for verifying UNSAT answers, we were inspired by a previous Coq development, called "lrat checker", documented in [Cruz-Filipe et al. 2017a] and available online11 . Our main contribution is to illustrate how our "theorems for free" technique helps to develop a code, which is much scalable than this previous one-for a very modest development effort. SatAnsCert reads a proposition f in Conjunctive Normal Form and outputs whether f is "SAT" or "UNSAT" (see Definition 4.1 below). This proposition f must be syntactically given in DIMACS file -a standard format 13 of SAT competitions. Internally, SatAnsCert invokes -according to options on its command line -some state-of-the-art SAT-solver like Glucose 14 , Riss 15 , CryptoMinisat 16 or CaDiCaL 17 . This SAT-solver expected to produce a witness of its answer (such a witness is mandatory for SAT competitions since 2016). SatAnsCert thus checks this witness before to output the answer or to fail on an error. The execution of SatAnsCert is depicted in Figure 13. 13 https://www.satcompetition.org/2009/format-benchmarks2009.html 14 http://www.labri.fr/perso/lsimon/glucose 15 http://tools.computational-logic.org/content/riss.php 16 https://github.com/msoos/cryptominisat 17 http://fmv.jku.at/cadical The external SAT-solver is run in a separate process and communicates with SatAnsCert through the file system. As later detailed, SatAnsCert also invokes some OCaml oracles through the FFI of the Impure library (presented in Section 2): these oracles are thus part of the SatAnsCert process. The external SAT-solver is actually invoked through one of this OCaml oracle.

Definition 4.1 (Conjunctive Normal Form). A Boolean variable x is a name and is encoded as a positive integer. A literal ℓ is either a variable x or its negation ¬x. A clause c is a finite disjunction of literals and is encoded as a set of literals. A CNF f is a finite conjunction of clauses and is encoded as a list of clauses. A model m of CNF f is a mapping that assigns each variable to a Boolean such that " f m" is true -where " f m" is the Boolean value obtained by replacing in f each variable x by its value "m x". A CNF is said "SAT", if it has a model, and "UNSAT" otherwise.

Our Coq definitions of CNF abstract syntax is given in Figure 14. These definitions involve external clause identifiers of type clause_id without formal semantics. These identifiers are intended to relate clauses to their name in the UNSAT witness during its parsing by an untrusted oracle (which is later introduced). Here, type clause_id is opaque for the Coq proof: it remains uninterpreted. In the following, we use the bracket notations . for both predicates "sat" and "sats".

We now describe the formal property proved on SatAnsCert in Coq+Impure+OCaml. First, like in CompCert, I/O (ie parsing and printing) are not formally proved and thus must be trusted. More precisely, the formal correctness of SatAnsCert only deals with the abstract syntax (defined in Figure 14) of the input CNF. And, it is directly expressed in the main function of SatAnsCert through statically proved "ASSERT" (see Figure 15). Here, "ASSERT P" (where P : Prop) is simply a macro for "RET (A P) _": it declares a proof of proposition P that must be (statically) provided as a proof obligation generated by "Program Definition". We consider that the ability to use imperative code in Coq with statically verified assertions improves the approach of CompCertwhere formally proved components and unproved (but trusted) components are linked together in OCaml only.

Hence, our code in Figure 15, thus combines static assertions ("ASSERT") and dynamic assertions, like "assert_b" defined on page 11. The static "ASSERT" proved at line 8 derives from the defensive check of line 7: satProver simply evaluates CNF f in the model mc found by the SAT-solver. Similarly, the static "ASSERT" proved at line 13 derives from a defensive check of line 12: unsatProver checks that the UNSAT witness (here implicit) provided by the SAT-solver is valid, or fails otherwise. The next sections sketch how this latter verification is achieved. Section 4.3 defines a first simple version with type:

unsatProver (f : cnf): ?? (∀ m , ¬ f m)
And, Section 4.4 defines a second refined version with the equivalent type:

unsatProver (f : cnf): ?? ¬(∃ m , f m)

Certifying UNSAT answers of SAT-solvers: a brief overview

Since the pioneering works of [START_REF] Evguenii | Verification of Proofs of Unsatisfiability for CNF Formulas[END_REF] and [START_REF] Zhang | Validating SAT Solvers Using an Independent Resolution-Based Checker: Practical Implementations and Other Applications[END_REF], the verification of UNSAT answers has been well studied. Several proof formats have been proposed, and currently, the DRAT format [START_REF] Marijn | The DRAT format and DRAT-trim checker[END_REF][START_REF] Wetzler | DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs[END_REF] is the standard format in SAT competitions. Actually, most SAT-solvers generate only DRUP proofs [START_REF] Van Gelder | Verifying RUP Proofs of Propositional Unsatisfiability[END_REF][START_REF] Heule | Trimming while checking clausal proofs[END_REF]] -a previous format that DRAT has later extended with RAT clauses [START_REF] Wetzler | Mechanical Verification of SAT Refutations with Extended Resolution[END_REF]. In theory, using RAT clauses may lead to exponentially shorter proofs than using only pure (D)RUP proofs. But, in practice, the SAT-solving community is still looking for efficient algorithms to find such RAT proofs [Heule et al. 2017].

4.2.1 Background on Resolution, RUP proofs and CDCL (Conflict-Driven Clause Learning). In a first step, this paper focuses only on (D)RUP proofs: they are simpler to understand. Actually, we even consider a strict subset of RUP proofs, introduced as "restricted RUP proofs" in [Cruz-Filipe et al. 2017b], that we rename (for clarity) into "backward resolution proofs". Indeed, we consider a variant of the resolution proof system where the resolution rule is specialized for backward reasoning through the rule BckRsl of Definition 4.2 below. Together with rule Triv, we recover the usual resolution rule: for any literal ℓ, any clauses c 1 and c 2 , there exists a list of clauses f included in the list of two clauses "{ℓ} ∪ c 1 , {¬ℓ} ∪ c 2 " such that "f ⊢ BRC c 1 ∪ c 2 ". Indeed, if ℓ c 1 ∪ c 2 , then we define f as the whole list, and "f Triv). Otherwise, we define f as the single clause "{ℓ} ∪ c 1 ", and we have f

⊢ BRC c 1 ∪ c 2 " because ({ℓ} ∪ c 1)\(c 1 ∪ c 2) = {ℓ} (BckRsl) and ({¬ℓ} ∪ c 2)\({¬ℓ} ∪ c 1 ∪ c 2) = ∅ (
\(c 1 ∪ c 2) = ∅ (Triv).
• forall i ∈ [1, n], there exists a list of clauses f i ⊆ f ∪ {c 1 , ..., c i-1 } such that f i ⊢ BRC c i • and, c n = ∅
Such a sequence c 1 , . . . , c n is called a RUP proof of the unsatisfiability of f . Now, we sketch how RUP proofs are naturally found by CDCL SAT-solvers, a refinement of DPLL algorithms, at the heart of modern SAT-solvers (see [START_REF] João | Conflict-Driven Clause Learning SAT Solvers[END_REF]] for details). The BckRsl rule corresponds to the fact that, under its side-condition, the proposition "c 1 ∧ ¬c 2 " implies the proposition "ℓ ∧ ¬c 2 ", the latter being equivalent to "¬(¬ℓ ∨ c 2)". Actually, this corresponds exactly in DPLL SAT-solving to a unit-propagation on clause c 1 where "¬c 2 " represents the assignment of literals before the propagation and "¬({¬ℓ} ∪ c 2)" represents the assignment after the propagation. Similarly, Triv corresponds to the fact that, under its side-condition, the proposition "c 1 ∧ ¬c 2 " is UNSAT. Hence, Triv corresponds exactly to a conflict on clause c 1 where "¬c 2 " represents the current assignment of literals. A CDCL SAT-solver learns lemma (under assumption of the input CNF) from conflicts: each of this lemma is actually a clause provable from a BRC involving the input clauses and previously learned clauses. The solver answers "UNSAT", when it has learned the empty clause: the sequence of its learned clauses is then exactly a RUP proof. 4.2.2 Checking DRUP proofs. Historically, some CDCL SAT-solvers have dumped full resolution proofs on UNSAT answers (see [START_REF] Zhang | Validating SAT Solvers Using an Independent Resolution-Based Checker: Practical Implementations and Other Applications[END_REF]). Certifying a resolution proof checker is not too difficult and, in Coq, a first checker has been certified by [START_REF] Armand | Extending Coq with Imperative Features and Its Application to SAT Verification[END_REF]]. However, instrumenting SAT-solvers to output full resolution proofs is very intrusive. Thus, RUP proofs have been proposed as a very lightweight alternative for the design of SAT-solvers [Gelder 2008]. In counterpart, checking RUP proofs requires to recover all BRCs, typically by replaying unitpropagations (RUP is the acronym of "Reverse Unit Propagation"). In practice, a RUP-checker does not need all the heuristics of a CDCL SAT-solver, but the data-structures necessary for unit-propagation (e.g. two-watched literals).

The DRUP proof format [START_REF] Heule | Trimming while checking clausal proofs[END_REF]] is an ASCII file format to describe a RUP proof as a list of clauses, one by line. There are also lines to delete clauses which are no more involved in remaining resolution chains. The standard checker of DRUP proofs in SAT competitions is currently DRATtrim18 of [START_REF] Wetzler | DRAT-trim: Efficient Checking and Trimming Using Expressive Clausal Proofs[END_REF]. Of course, it also checks DRAT proofs, a conservative extension of DRUP with RAT clauses (detailed at Section 4.4).

Actually, checking DRAT proofs is still a complex task (see [START_REF] Rebola | Complete and Efficient DRAT Proof Checking[END_REF]) and DRAT-trim is an untrusted program written in C. Hence, DRAT-trim has been designed to output the full BRC of learned clauses, in an other proof format called LRAT. As indicated by its name, DRAT-trim first prunes from the proof (by processing it backward) many learned clauses that are not necessary to derive the empty clause. This reduces a lot the size of LRAT proofs (and of DRAT-trim running times).

Then, [Cruz-Filipe et al. 2017a] have developed two certified checkers of LRAT proofs: one certified in Coq and extracted to OCaml; the other certified in ACL2 and extracted to C. As shown in Figure 16 -built from the benchmark table published by Peter Schneider-Kamp on his webpage 11 -their Coq/OCaml version is terribly slow compared to their ACL2/C version. Our work illustrates that, by using the Impure library, we can improve the efficiency of the Coq/OCaml implementation, while simplifying substantially the Coq proof.

Verification of (D)RUP proofs in SatAnsCert

This section describes how unsatProver introduced at page 17 is implemented by checking the LRAT file generated with DRAT-trim from a DRUP proof (itself generated by the SAT-solver, as represented in Figure 13).

A Shallow-Embedded RUP Checker in Coq.

First, we introduce our shallow embedding of RUP proofs in Coq. In our implementation, besides the type iclause of the abstract syntax, we have a more computational representation of clauses, called cclause, where a clause is represented as two finite sets of positive integers: one for the positive literals, and one for the negative literals. Such finite sets are efficiently defined in the standard library of Coq using radix trees. For the sake of simplicity, the Coq definitions of our paper omit this type cclause and use iclause instead.

Given f : cnf, we define the type "consc f " of clauses that are "logical consequences" of f . Actually, type consc is parametrized by a set of models s and constrains its field rep to satisfy all models of s (through rep_sat property). Then, we define emptiness test of the following type. Actually, assertEmpty c terminates iff (rep c) is the empty clause. Otherwise, it raises an exception.

assertEmpty { s }: consc s → ??(∀ m , ¬(s m)).

Checking a Backward Resolution Chain is defined by the following function, called learn (it builds a new consequence of the set of models). learn : ∀{ s } , list (consc s) → iclause → ??(consc s)

It is implemented (for "performance" only) such that if l ⊢ BRC c then (learn l c) returns c ' where (rep c ') = c. An exception is raised on an invalid BRC.

4.3.2

Embedding the verified RUP-Checker into an untrusted LRAT Parser. The unsatProver function needs to parse the LRAT file and to check that it corresponds to a valid RUP proof of the input CNF. It delegates the parsing of the LRAT file to an external untrusted OCaml oracle. Moreover, it exploits the cooperation mechanism of Coq and OCaml typechecker in order to make this untrusted oracle compute directly "certified learned clauses" through a certified API. This API is called a Logical Consequence Factory (LCF) and builds correct-by-construction proofs, without an explicit "proof object" -in the style of the old LCF prover [START_REF] Michael | A Metalanguage for Interactive Proof in LCF[END_REF].

The LRAT parser is declared in Coq by the rup_lratParse axiom (see below). This function is parametrized by:

• an abstract type of clause: this type -called C -is abstract for the untrusted parser but instantiated by "consc f " in the Coq proof; • a logical consequence factory of type " (rupLCF C) ": this factory allows the oracle to build logical consequences (ie new abstract clauses) with a BRC from existing ones thanks to rup_learn (instantiated by the previous learn in the Coq proof).19 • the input CNF f given as a list of "axioms", ie abstract clauses of type C. By using the get_id function, the parser first builds a map from clause identifiers in the DIMACS input to their corresponding abstract clause (ie axiom). Then, it maintains this map while parsing the LRAT file, ie when deleting clauses or adding new learned clauses. On a non-RUP clause or on unexpected issues in the LRAT file, it raises an exception. Otherwise, it eventually returns the abstract clause corresponding to the empty clause.

Record

Thus, unsatProver is simply defined by the code below. It first calls the mkInput function that builds the parameters expected by the parser (we omit the details here). Afterwards, unsatProver simply invokes the parser and checks that its result is the empty clause. Here, the polymorphism over "logical consequences" in the untrusted OCaml parser ensures that this latter cannot forge unsound clauses. The Polymorphic LCF style design of our RUP checker has the following benefits w.r.t. the design of the prover found in [Cruz-Filipe et al. 2017b] (a preliminary version of the Coq implementation of the LRAT prover of [Cruz-Filipe et al. 2017a]): BRCs are verified "on-the-fly" in the oracle, and this is much easier to debug; the dictionary mapping clause identifiers to clause values is only managed by the OCaml oracle (in a efficient hash-table); hence, the deletion of clauses from memory is also only managed by the oracle; the Coq code is thus very simple and very small.

Polymorphic LCF style is also strictly more powerful than standard LCF style, where type abstraction is provided by an abstract type. Indeed, standard LCF style requires to represent each "learned RUP clause" as a sequent of the form "f ⊢ c" which means that clause c is a logical consequence of CNF f . Handling such sequents enables to forbid derivations "c 1 , . . . , c n ⊢ BRC c" where some c i are consequences of two distinct CNFs: otherwise, when called several times during a run, an erroneous oracle could mix consequences of a CNF with consequences of a previous (and maybe contradictory) one. In Polymorphic LCF style, the antecedent f is represented by a type variable: mixing consequences of distinct CNFs is statically forbidden by typechecking. On the contrary, in standard LCF style, this is only prevented by a dynamic check: it is both less simple and less efficient.

Generalization to (D)RAT proofs

A RUP proof can be thought as a sequence of transformations on the input CNF: each learned clause is added to the CNF. These transformations preserves logical equivalence. The motivation of RAT clauses -introduced in [START_REF] Wetzler | Mechanical Verification of SAT Refutations with Extended Resolution[END_REF]] -is to allow transformations which may break logical equivalence but preserve satisfiability. This could dramatically reduce the size of the CNF, and thus the size of its potential UNSAT proof.

Example 4.4. Let us define two CNFs f 1 and f 2 over arbitrary literals (l i) i ∈[1,n] and (l ′ j) j ∈[1,p] and over a distinct variable x:

f 1 = n i=1 p j=1 (l i ∨ l ′ j) f 2 = (n i=1 (¬x ∨ l i)) ∧ p j=1 (x ∨ l ′ j)
Whereas f 1 has n • p clauses (of two literals), f 2 has only n + p clauses (of two literals). These two CNF are equisatisfiable, which is easy to check by rewriting each of them into an equivalent DNF:

f 1 ⇔ (n i=1 l i) ∨ (p j=1 l ′ j) f 2 ⇔ (x ∧ n i=1 l i) ∨ (¬x ∧ p j=1 l ′ j)
But, f 1 and f 2 are generally not equivalent, because f 2 constrains x whereas f 1 does not.

4.4.1 Introduction to RAT bunches. In this section, following [Lammich 2017a], we slightly generalize the definition of RAT clauses of [Cruz-Filipe et al. 2017a] by considering the learning at once of a "bunch" of several RAT clauses on the same pivot. We first need to reintroduce the notion of RUP clause originally defined by [START_REF] Van Gelder | Verifying RUP Proofs of Propositional Unsatisfiability[END_REF]].

Definition 4.5 (RUP clause). Given a CNF f and a clause c, we say that "c is RUP w.r.t f " -and we write f ⊢ RUP ciff one of the two following conditions is verified:

(1) there exists l such that {l, ¬l } ⊢ BRC c (ie c is a trivial tautology) (2) or, there exists f ′ with f ′ ⊆ f such that f ′ ⊢ BRC c.

It is obvious that "f ⊢ RUP c" implies "f ⇒ c".

learnRat either returns the CNF "(basis ∧ rem ∧ f 2)" or fails if it cannot prove that the bunch is a correct RAT bunch. Example 4.11 (Learning RAT bunches of Example 4.9). The running example can be turned into two successive formal invocations of learnRat:

Record

(1) On the first time, we learn CNF "f 1 ∧ n i=1 (¬x ∨ l i)" with the empty basis, with n i=1 (¬x ∨ l i) as the bunch, and with f 1 as remainder;

(2) On the second time, we learn CNF "f 2 " with n i=1 (¬x ∨ l i) as the basis, with p j=1 (x ∨ l ′ j) as the bunch, and with the empty remainder. In the second case, it is formally not necessary to give f 1 as the remainder: f 1 already appears in the rup_proofs field of the bunch. Hence, it is useless to put f 1 in the remainder if we aim to delete it from the current CNF just after. 4.4.3 Formalization of the RAT checker. In order to define and prove the main loop of unsatProver with RAT checking, it is convenient to introduce a generic loop, called loop_until_None, dedicated to refutation of unreachability properties. This loop -defined in Figure 17 -iterates a body of type S → ? ? (option S) until to reach a None value. This body is assumed to preserve an invariant and to never reach None under the assumption of this invariant. Hence, if None is finally reached, then the invariant was false in the initial state. The loop_until_None loop reuses the loop oracle of Figure 7 and is very similar to the generic WHILE-loop.

At last, we extend our untrusted LRAT parser of Section 4.3.2. As discussed on Example 4.10, "learning" a RAT clause replaces the whole CNF by a new one. Thus, our parser learns RUP clauses until it finds a bunch of RAT clauses. Then, it stops, requiring the CNF to be updated. Afterwards, if the RAT bunch is correct, the certified checker restarts the untrusted parser for the updated CNF. This loop runs until the parser finds an empty RUP clause w.r.t. the current CNF. The untrusted parser, called next_RAT in Figure 18, behaves as an iterator over RAT bunches. This iterator is expected to return either the empty clause (left case) or a new RAT bunch to learn (right case). The looping process in unsatProver is a simple instance of loop_until_None: see Figure 18.

Performances & Comparison with other works

Our evaluation of SatAnsCert is split according to SAT and UNSAT answers. Our SAT benchmark -illustrated in Figure 19 -has been established with the CaDiCaL SAT-solver over 120 instances of the SAT competition 2018. Considering the logarithmic scales, the running times of the SAT checker of SatAnsCert in Figure 19 are negligible w.r.t. those of the solver. And, as expected, the running times of our SAT checker are linear w.r.t the size of the input CNF (being given either in number of clauses or in number of literals).

The UNSAT benchmark has been established by using two different solvers: CaDiCaL (sc18) which generates only RUP clauses and CryptoMiniSat (v4.5.3) which produces both RUP and RAT clauses. It is based on more than 170 instances from the SAT competition 2015, 2016 and 2018. Figure 20 represents -for each tested instance -the contribution of each tool in the running time, by cumulating their runtimes on upward ordinates. Along the abscissia axis, the instances are ordered by running times of the SAT-solver. By comparing the overhead of the Coq checkers w.r.t DRAT-trim in Figure 16 and in Figure 20, we see that our LRAT checker is much faster than the Coq/OCaml checker of [Cruz-Filipe et al. 2017a] which has inspired it. We believe that our lightweight design, based on parametric reasoning has a significant impact on performances here (and it makes the formal proof much more simpler). As also shown in Figure 20, our LRAT checker is most often slower than the ACL2/C checker of [Cruz-Filipe et al. 2017a]. We could probably significantly improve the performance of SatAnsCert, by encoding literals with native integers instead of Coq positives (aka lists of bits), and by encoding clauses with native persistent arrays instead of radix-trees. These native data-structures were experimentally introduced in Coq by [START_REF] Armand | Extending Coq with Imperative Features and Its Application to SAT Verification[END_REF] and had a positive impact on their resolution checker. Currently, they have however still an experimental status in Coq.

The GRAT toolchain [Lammich 2017b] is an alternative for certified checking of DRAT files. As the DRAT-trim toolchain, it takes a CNF in DIMACS format and a DRAT file in input, generate some intermediate files through an untrusted C++ tool, and gives a certified answer from this intermediate files thanks to an Isabelle/MLton checker. According to [Lammich 2017a], the GRAT toolchain is faster than the DRAT-trim one. Because SatAnsCert is itself based on DRAT-trim, we did not find very significant to compare it experimentally to the GRAT toolchain.

In conclusion, SatAnsCert is not the most optimized DRAT checker. But the bottleneck of running times in our UNSAT checking is DRAT-trim (the standard checker in SAT competitions). Indeed, on average of the UNSAT benchmark depicted in Figure 20, the solver takes 30% of the running time, DRAT-trim takes 50%, and our certified LRAT checker takes the 20% remaining. This demonstrates that SatAnsCert reasonably scales up on state-of-the-art SAT-solvers. One of our most noticeable achievement is that SatAnsCert only results from a modest effort: we evaluate the whole development at 2 person.months for 1Kloc of Coq (including all proof scripts) and 1Kloc of OCaml files (including .mll files). These figures exclude the development of the Impure library itself.

CONCLUSION AND FUTURE WORKS

This paper proposes a new FFI to embed OCaml code into Coq verified code. It illustrates its application to formal but lightweight reasonings about imperative functions. This FFI is based on may-return monads, originally introduced for the first version of the VPL (Verified Polyhedra Library) [START_REF] Fouilhé | A Certifying Frontend for (Sub)Polyhedral Abstract Domains[END_REF]. In this first version, each oracle of the VPL generated some terms (in a given abstract syntax), which were interpreted by the Coq certified frontend as monotonic transformations over convex polyhedra. Then, it appeared that the deep embedding of these monotonic transformations could be advantageously replaced by a shallow embedding. Hence, the VPL has been reimplemented [START_REF] Maréchal | New Algorithmics for Polyhedral Calculus via Parametric Linear Programming[END_REF]] with Polymorphic LCF style oracles: the oracles perform directly monotonic transformations through a certified API using polymorphism for abstracting types. This style resulted in a significant reduction of both Coq and OCaml code size. Moreover, the oracles were much more easier to debug. Finally, it was understood that Polymorphic LCF style exploits a kind of "theorem for free" corresponding to parametric reasonings with invariants. With respect to these previous works, our contribution in this work is to have extracted the Impure library from the sources of the VPL and to have applied it to other contexts than convex polyhedra. This may contribute to convince other Coq users of the interest of this approach.

The theoretical foundations of this approach still remain to be investigated: our soundness conjecture needs to be formalized and proved, while permissivity checking needs to be formally defined and implemented. Moreover, as discussed in Appendix A, extending the approach to reasonings about program equivalences would also probably require to modify the extraction mechanism itself. non-trivial type-system and a non-trivial modification of the extraction, and is out of the scope of this paper.

However, we conjecture that this counter-intuitive equality cannot lead to wrong WLP-theorems, even for the extraction on the identity monad without restriction. In other words, we conjecture that while the results observed at runtime in the deferred monad or in the identity monad can differ, WLP-theorems can only state properties which are satisfied in both extractions.

B THE ISSUES OF CYCLIC VALUES

Consider the following Coq code. It defines a type empty which is provably empty: the proposition empty → False is provable by induction. Thus, any function of unit→? ? empty is proved to never return (normally).

Inductive empty : Type Absurd : empty → empty . Lemma never_return_empty (f: unit→?? empty): WHEN f () _ THEN False .

Thus, unit→? ? empty is not permissive in presence of OCaml cyclic values like the loop value defined below (with type empty).

let rec loop = Absurd loop let f : unit -> empty = fun () -> loop

Besides this pathological case, forbidding cyclic values on Coq extracted types is also necessary for the soundness of the physical equality inside Coq introduced at Section 2.4. Indeed, otherwise there is an unsoundness issue with axiom phys_eq_true.

For example, let us consider the phys_eq_pred lemma about type nat of Peano's natural number, defined in the standard library. This lemma derives from the fact that O is the only n : nat such that pred n = n. Let us now consider the following cyclic value -called fuel -because some Coq users define such an "infinite fuel" in order to circumvent the structural recursion imposed by Coq.

let rec fuel : nat = S fuel At runtime, the OCaml test "pred fuel == fuel" returns true, but "is_zero fuel" returns false. This contradicts the phys_eq_pred lemma. Hence, in order to formally reason about physical equality in Coq, it is necessary to forbid -in OCaml oracles -cyclic values on types extracted from Coq.

In conclusion, Definition 2.3 forbids oracles to define cyclic values on Coq extracted types. A way to check this property of oracles would consist in adding to the OCaml language an (optional) "inductive" tag on OCaml variant types that forbids cyclic values of these types. Then, Coq inductive types would be extracted on OCaml variant types tagged with "inductive".

Providing the following notation

Notation " 'TRY ' k1 ' CATCH ' e ' ⇒ ' k2 ' ENSURE ' P" (try_catch_ensure (fun _ ⇒ k1) (fun e ⇒ k2) (exist _ P _)) . . . This operator is illustrated in the following simple example which generates an (easy) proof obligation from the user to discharge the prove the is_try_post property.

Program Example tryex {A} (x y:A) (RET x) CATCH _ ⇒ (RET y) ENSURE (fun r ⇒ r = x ∨ r = y).

Then, we can easily proves consequences of this postcondition as illustrated below.

Program Example tryex {A} (x y:A): WHEN tryex x y r THEN `r <> x → `r = y.

Let us remark that on the above example, we cannot formalize the informal reasoning that (tryex x y) necessarily returns x. Indeed, our untrusted implementation of try_with_any could contain a bug while remaining sound w.r.t the formal declaration in Coq. In particular, for the following buggy implementation, (tryex x y) necessarily returns y. let try_with_any (k1 , k2) = try k2 (ImpureFail "") with _ -> k1 () More generally, except if we can prove that a given branch of a "TRY" cannot return normally like in "TRY (FAILWITH ". . . ") . . . ", we can never formally prove which branch has returned. In other words, "TRY" should be considered formally as a non-deterministic operator. If this weakness becomes an issue, it is still possible to use option types instead of exceptions. In counterpart, these "formally weak" exceptions provide a nice feature: the formal specifications of functions have never to declare which exceptions may be raised or not.

E INSTANTIATING GENERIC LOOPS AND FIXPOINTS OF SECTION 3

Figure 21 illustrates how to instantiate the while-loop operator of Figure 7 (page 12) to an iterative computation of Fibonacci's numbers. Figure 22 instantiates the fixpoint of Section 3.3 on a naive recursive computation of Fibonacci's numbers: given any correct beqZ: Z -> Z -> ?? bool, it derives a correct Fibonacci's implementation fib. The last paragraph of Section 3.3 explains how the definition of beqZ may impact the performance of fib according to the implementation of the fixp oracle.

Fig. 1 .

 1 Fig. 1. Power-set instance of may-return monads

Fig. 2 .

 2 Fig. 2. Identity instance of may-return monads

Fig. 3 .

 3 Fig. 3. State-transformer instance on a global state of type S

Fig. 4 .

 4 Fig. 4. A Coq FFI of mutable references

 Axiom pid : ∀ A , A→?? A. Program Definition cpid {B }(x:B):?? B DO z pid {y|y=x} x ;; RET `z. Lemma cpid_correct A (x y:A): WHEN (cpid x) y THEN y=x.

 static <A > A pid (A x) { if (x instanceof Integer) / / A== I n t e g e r , b e c a u s e I n t e g e r i s f i n a l return (A)(new Integer (0)); return x ; }

 Axiom phys_eq : ∀ {A}, A → A → ?? bool . Extract Constant phys_eq ⇒ "(==)". Axiom phys_eq_true : ∀ A (x y: A), phys_eq x y true →x=y.

 Axiom fail : ∀ { A}, pstring → ?? A. This axiom is safely implemented by the following OCaml function fail: pstring -> 'a. exception ImpureFail of pstring let fail msg = raise (ImpureFail msg) But, this axiom is also safely implemented by the following OCaml function fail: 'a -> 'b. let rec fail msg = fail msg

Program

 Definition assert_b (b: bool) (msg : pstring): ?? b= true match b with | true ⇒ RET _ | false ⇒ FAILWITH msg end . Lemma assert_correct msg b: WHEN assert_b b msg _ THEN b= true .

Axiom

 loop : ∀ { A B}, A * (A → ?? (A+B)) → ?? B. Definition wli { S} (cond :S→bool)(body :S→?? S)(I:S→Prop) ∀ s , I s → cond s = true → WHEN body s s ' THEN I s '. Program Definition while { S } cond body (I: S → Prop | wli cond body I) s0 : ?? { s | (I s0 → I s) ∧ cond s = false } loop (A { s | I s0 → I s }) (s0 , fun s ⇒ match (cond s) with | true ⇒ DO s ' mk_annot (body s) ;; RET (inl (A {s | I s0 → I s }) s ') | false ⇒ RET (inr (B {s | (I s0 → I s) ∧ cond s = false }) s) end).

Fig. 7 .

 7 Fig. 7. Implementation of a WHILE-loop in Coq

 Fig. 10. Standard fixpoint in OCaml

∀

 x y , WHEN beq x y b THEN b= true → x =y.

 Definition wapply (k: A → ?? answ) (x:A): ?

 12

 Fig. 13. Overview of SatAnsCert

Fig

 Fig. 14. Coq definitions of the abstract syntax of a CNF

Fig. 15 .

 15 Fig. 15. (simplified) Coq code of the main function of SatAnsCert

c

 Definition 4.2 (Backward Resolution Chain). Given these two clause derivation rules, 2 = ∅ for n ≥ 1, we write "c 1 , . . . , c n ⊢ BRC c" iff there is a bottom-up derivation -like on the right hand-side -that first iterates BckRsl from c on the list c 1 , . . . , c n-1 and then concludes by Triv on c n . When "f ⊢ BRC c", we say that f is a Backward Resolution Chain (BRC) of c.The correctness & completeness of the resolution proof system is rephrased by Theorem 4.3. Theorem 4.3 (Refutation correctness & completeness). A CNF f is UNSAT iff there exists a sequence c 1 , . . . , c n (with n ≥ 1) such that

Fig. 16 .

 16 Fig. 16. Benchmark of [Cruz-Filipe et al. 2017a] Our work illustrates that, by using the Impure library, we can improve the efficiency of the Coq/OCaml implementation, while simplifying substantially the Coq proof.

 Record consc (s : model→Prop): Type { rep : iclause ; rep_sat : ∀ m , s m → snd rep m }.

 rupLCF C { rup_learn :(list C) → iclause → ?? C; get_id : C → clause_id }. Axiom rup_lratParse : ∀ {C}, (rupLCF C)* list (C) → ?? C.

 Definition mkInput (f: cnf): rupLCF (consc f) * list (consc f) . . . Definition unsatProver f: ?? (∀ m , ¬ f m) DO c rup_lratParse (mkInput f);; assertEmpty c.

 RatInput C: Type { pivot : literal ; rem : list C; basis : list C; bunch : list (RatSingle C) }. Definition learnRat {s: model→Prop } (R: RatInput (consc s)):?? cnf . . . Lemma learnRat_correct (s: model → Prop) (R: RatInput (consc s)): WHEN learnRat R f THEN ∀ m , s m → ∃ m ', f m '.

Let

 luni { S } (body : S → ??(option S)) (I: S → Prop) ∀ s , I s → WHEN (body s) s ' THEN match s ' with Some s1 ⇒ I s1 | None ⇒ False end . Program Definition loop_until_None {S} body (I:S→Prop | luni body I) s0 : ?? ¬(I s0) loop (A { s | I s0 → I s }) (s0 , fun s ⇒ DO s ' mk_annot (body s) ;; match s ' with | Some s1 ⇒ RET (inl (A {s | I s0 → I s }) s1) | None ⇒ RET (inr (B ¬(I s0)) _) end).

Fig. 17

 17 Fig. 17. A Generic Loop to Refute Unreachability Properties

 Fig. 17. A Generic Loop to Refute Unreachability Properties

Fig. 20 .

 20 Fig. 20. Our UNSAT benchmarks

 Definition is_zero (n: nat): bool match n with | O ⇒ true | (S _) ⇒ false end . Lemma phys_eq_pred n: WHEN phys_eq (pred n) n b THEN b= true → (is_zero n)= true .

 wlp (k1 ()) P ∧ ∀ (e: exn), wlp (k2 e) P. Program Definition try_catch_ensure {A } k1 k2 (P : A→Prop | is_try_post P k1 k2): ?? { r | P r } TRY DO r mk_annot (k1 ());; RET (exist P r _) WITH_ANY e ⇒ DO r mk_annot (k2 e);; RET (exist P r _).

 . 14. Coq definitions of the abstract syntax of a CNF

	1 Program Definition main : ?? unit
	2	TRY	
	3	DO f	read_input ();; (* Command -line + CNF parsing *)
	4	DO a	sat_solver f ;; (* solver (+ drat -trim) wrapper *)
	5	match a with
	6	| SAT_Answer mc ⇒
	7	assert_b (satProver f mc) " wrong SAT model " ;;
	8	ASSERT (∃ m , f m);;
	9	println " SAT !"
	10	| UNSAT_Answer ⇒
	11	unsatProver f ;;
	12	ASSERT (∀ m , ¬ f m);;
	13	println " UNSAT !"
	14	WITH_ANY e ⇒
	15	DO s	exn2string e ;;
	16	println (" Certification failure : " +; s).

Full reasoning on imperative functions often requires to write (and prove) bureaucratic specifications of functions with respect to their effect on the global environment. For examples, see Frama-C[START_REF] Kirchner | Frama-C: A software analysis perspective[END_REF] or CFML[START_REF] Charguéraud | Characteristic formulae for the verification of imperative programs[END_REF]]. The drastic simplicity of our approach comes from the fact that it handles only two effects: "nothing" (for pure Coq functions) or "everything-compatible-with-typing" (for Coq functions embedding OCaml code).

However, such a replacement would require a significant amount of work, because the two monads differs.

http://github.com/boulme/Impure/blob/master/ImpMonads.v

See http://github.com/boulme/Impure/blob/master/ImpConfig.v

Appendix B details issues of cyclic values.

This small example also illustrates how our approach benefits from powerful features of Coq like Program.

The full Coq/OCaml code of these examples is online at https://github.com/boulme/ImpureDemo

https://imada.sdu.dk/~petersk/lrat/

The full Coq/OCaml code of these examples is online at https://github.com/boulme/satans-cert.

Available at https://www.cs.utexas.edu/~marijn/drat-trim

Note that, type rupLCF only appear in input of our oracle: it is thus not constrained by permissivity checking. Here, rup_learn is declared impure because it may raise exceptions: alternatively, we also could have use an option monad.However, this would probably produce a slightly less efficient extracted code.

* This work was partially supported by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 "STATOR

//github

Definition 4.6 (RAT bunch). Given two CNFs f 1 and f 2 and a literal l, we say that f 2 is a bunch of RAT clauses w.r.t. f 1 for pivot l -and we write f 1 ⊢ RAT l f 2iff for each clause c 2 ∈ f 2 the two following conditions are satisfied:

(1) l ∈ c 2 ;

(2) f 1 ⊢ RUP (c 1 \{¬l }) ∪ c 2 for each clause c 1 of f 1 .

Lemma 4.7 (SAT preservation of RAT). Let us assume f 1 ⊢ RAT l f 2 and f 1 m. Then, there exists m ′ such that f 1 ∧ f 2 m ′ .

Proof. If f 2 m then the property is trivially satisfied for m ′ = m. Otherwise, let m ′ be the model defined from m by assigning l to true. By condition (1), we have f 2 m ′ . Let c 2 ∈ f 2 such that ¬ c 2 m. For all c 1 ∈ f 1 , from f 1 m and condition (2) we deduce that (c 1 \{¬l }) ∪ c 2 m, and thus c 1 \{¬l } m, and thus c 1 m ′ . Hence, we have also f 1 m ′ . □

Let us remark that if c 1 = c 1 \{¬l } then condition (2) of Definition 4.6 is trivially satisfied. This leads to introduce the notion of "basis" by Definition 4.8 below. Indeed, it suffices to only check condition (2) on clauses c 1 that are in the basis of f 1 w.r.t. pivot l.

Definition 4.8 (Basis). Given a CNF f 1 and a literal l, the basis of f 1 w.r.t. pivot l is defined as the set of clauses in f 1 containing ¬l.

Example 4.9 (RAT bunches of Example 4.4). Clauses of f 2 are checked w.r.t f 1 in two RAT bunches:

(1)

also SAT, and finally that f 2 is SAT (deleting clauses also trivially preserves satisfiability).

Example 4.10 (Contradictory RAT bunches). Given x and y two distinct variables. We check the two following RAT bunches: x ⊢ RAT ¬y ¬y and x ⊢ RAT y y. This check is trivial because the basis is empty in both cases.

This last example shows that two contradictory RAT clauses can be learned from the same satisfiable CNF. Hence, "learning" a RAT clause is not like "learning" a new lemma: "learning" a RAT clause is like adding an axiom which preserves consistency. 4.4.2 Formalization of RAT bunches. In the syntax of LRAT files (see [Cruz-Filipe et al. 2017a] for details), each RAT clause comes with a list of BRC, one for each clause of the basis. Note that a valid BRC is at least of length 1. Here, by convention, a BRC of length 0 simply encodes the case (1) of Definition 4.5 (trivial tautology). Moreover, when these lists of BRC share a common prefix, this prefix can be given separately. We reflect these syntactic informations of LRAT files in the following Coq structure: field clause_to_learn is the clause to learn, propag is the common prefix of the BRC, and rup_proofs is the list of suffix of the BRC (one by clause of the basis).

Here type C represents the type of clauses that are logical consequences of the current CNF (like in Section 4.3.2).

Record RatSingle C: Type

{ clause_to_learn : iclause ; propag : list C; rup_proofs : list (list C) }.

Learning a RAT bunch is defined in Coq by the function learnRat below. In this function, parameter s is the set of models of the current CNF. The bunch is given in field bunch of parameter R where pivot is the pivot and basis (resp. rem -for remainder) is a list of clauses containing (resp. not containing) the negation of the pivot. If f 2 is the list of clause to learn in bunch, then

A THE ISSUE OF EQUALITY ON IMPURE COMPUTATIONS

When interpreting formal proofs based on the Impure library, the user must be aware that only WLP-theorems (defined in Section 2.1.2) have a meaning on the extracted code. In particular, the meaning of Coq equality on impure computations is currently very counter-intuitive as explained just now.

In the Coq logic, all reduction strategies are equivalent. In particular, for any term foo the Coq logic cannot distinguish between the two following β-convertible terms ((fun x (_ : unit) ⇒ x) foo) versus (fun (_ : unit) ⇒ foo) But in OCaml, the two following expressions are very different

versus (fun (_:unit) -> print_string "hello") The first expression prints "hello" whereas the second one is silent. This corresponds to the call-byvalue semantics of OCaml.

Let us use this idea to build a counter-intuitive Coq theorem. Consider the following code, that defines the repeat operator, a higher-order iterator repeating n times a computation k. It is applied in print3 to print a string three times. A careless user could instead provide the wrong implementation below, where wprint3 prints the string only once. Actually, the careful user will have in mind that the parameter k : ? ? unit of wrepeat is extracted to k:unit in OCaml. Thus, at extraction, k is () -the single value of type Unfortunately, for the Coq logic, print3 and wprint3 are the same as attested by the following lemma.

Lemma wrong_IO_reasoning s: (print3 s)=(wprint3 s).

In order to avoid this counter-intuitive meaning of equality, we could use an alternative extraction, based on the deferred monad below, instead of the identity monad:

The extraction on the deferred monad is consistent with Coq equality, but it slows down the computations at runtime (and makes the type of OCaml oracles more heavyweight).

A better solution consists in keeping the extraction on the identity monad as much as possible, by building a type-system to detect Coq terms that are wrongly extracted in the identity monad (like wrepeat above) and extract them with the deferred monad instead. This feature requires a

C MIXING COQ INVARIANTS AND ALIASES

This section illustrates interactions between aliases and Coq typing with examples using type cref defined in Figure 4 page 8 (for the implementation of the oracle given in Figure 5). First, we introduce the following Coq code: Let us remark that mydata_preserved property could be broken by extending the extracted code with arbitrary OCaml code (even for safe OCaml code). Indeed, in the extracted code, type mydata is extracted to nat (because mydata is a record type with a single field that is not a proposition). And, given any "x : cref nat", (may_alias x x) returns 0 (while changing the contents of x for this value). Actually, Conjecture 2.4 states that such an alias cannot break WLP-theorems proven in Coq if we consider only on the extracted code (linked to the oracle for make_cref). Informally, this is because the typing discipline of Coq itself forbids any alias that breaks Coq typing: in the Coq code, aliasing references of (cref mydata) with references of (cref nat) is forbidden. However, this does not forbid the presence of all aliases in the Coq code itself. For example, the code below defines a reference r2 containing a reference r1, and run (may_alias r2 r1) which thus changes the contents of the contents of r2.

Program Definition alias_example (r1 : cref nat) : ?? { r | r= r1 } DO r2 make_cref (exist (fun r ⇒ r = r1) r1 _);; may_alias r2 r1 .

Here, through Coq typing, we also formally prove that the result of (may_alias r2 r1) is reference r1. But, the fact that r1 contains 0 at the end cannot be formally proven (it depends on make_cref implementation).

The preceding example illustrates that extending extracted code with an OCaml main function could in theory break some properties proved on the Coq side. It seems thus important to define the main function of executables on the Coq side. Moreover, the cref example illustrates that permissitivity checking is a bit more complex than the sketch of Section 2.2.1. In particular, the parameter A of type cref is both used in input (on set) and on output (on get). Thus, type (cref nat)→? ? nat and nat → ? ? (cref nat) are permissive, because type nat of Coq coincides with its OCaml extraction (in particular, because of the restriction on cyclic-values, see Appendix B). But (cref mydata)→? ? nat and nat → ? ? (cref mydata) are not permissive, because type mydata of Coq does not coincide with its extraction.

D FORMAL REASONING ABOUT EXCEPTION HANDLERS IN IMPURE

This section presents how to derive a WLP property about the "try_with_any" operator of Section 3.1. Below, we define the following wrapper that requires from the user an additional post-condition P satisfied by both branches of the exception handler.