N
N

N

HAL

open science

Embedding Untrusted Imperative ML Oracles into Coq
Verified Code

Sylvain Boulmé, Thomas Vandendorpe

» To cite this version:

Sylvain Boulmé, Thomas Vandendorpe. Embedding Untrusted Imperative ML Oracles into Coq Ver-

ified Code. 2019. hal-02062288v1

HAL Id: hal-02062288
https://hal.science/hal-02062288v1

Preprint submitted on 8 Mar 2019 (v1), last revised 16 Jul 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02062288v1
https://hal.archives-ouvertes.fr

Embedding Untrusted Imperative ML Oracles
into Coq Verified Code*

SYLVAIN BOULME and THOMAS VANDENDORPE,
Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, France,

This paper investigates a lightweight approach — combining CoQ and OCAML typecheckers — in order
to formally verify higher-order imperative programs in partial correctness. In this approach, the
user does never formally reason about effects of imperative functions, but only about their results.
Formal guarantees are obtained by combining parametric reasoning over polymorphic functions
(i.e. “theorems for free” a la Wadler) with verified defensive programming. This paper illustrates
the approach on several examples. Among them: first, the certification of a polymorphic memoized
fixpoint operator using untrusted hash-tables; second, a certified Boolean SAT-solver, invoking
internally any untrusted but state-of-the-art SAT-solver (itself generally programmed in C/C++).

Additional Key Words and Phrases: The CoQ Proof Assistant, Monads, Polymorphism, Parametricity

1 INTRODUCTION

The CoMPCERT certified compiler [Leroy 2009a,b] is the first C compiler with a formal
proof of correctness that is used in industry [Bedin Franga et al. 2012; Késtner et al. 2018].
It is a major success story of software verification, because COMPCERT does not have the
bugs which are usually found in optimizing compilers [Yang et al. 2011]. Its success partly
comes from its smart design, focusing the formal proof in CoQ on the partial correctness of
compilation passes, while reasonings on their performance (including thus their termination)
remain informal. In particular, COMPCERT invokes untrusted oracles from the certified code.
For example, register allocation in compilers — being related to a graph coloring problem —
is a NP-complete problem: finding a valid allocation is difficult, while checking the validity
of an allocation is easy. In CoOMPCERT, finding the allocation is done by an oracle, i.e. an
untrusted OCAML function; and, only the checker of the allocation is programmed and
certified correct in CoQ [Rideau and Leroy 2010]. Generally speaking, introducing such an
oracle has the following benefits: first, this avoids to program and prove a difficult algorithm
in CoQ; second, this offers the opportunity to use (or even reuse) an efficient imperative
implementation as the oracle; at last, this makes the software more modular. Indeed, the
checker is actually certified for a family of oracles: the oracle can still be improved or tuned
for some specific cases, without requiring to reprove the checker.

In some certified software like the certified UNSAT prover of [Cruz-Filipe et al. 2017a],
oracles are invoked before certified code which only checks their outputs. This is not the
case in COMPCERT: oracles are directly invoked in the middle of certified transformations
of the input. Hence, COMPCERT uses a standard FFI (Foreign Function Interface) of the
CoQ programming language, in order to invoke external OCAML code from certified code.

*This work was partially supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR”

Authors’ address: Sylvain Boulmé; Thomas Vandendorpe,
Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France,
sylvain.boulme@univ-grenoble-alpes.fr, thomas.vandendorpe@etu.univ-grenoble-alpes.fr.

2019. Manuscript submitted to ACM


http://erc.europa.eu/
http://stator.imag.fr

2 Sylvain Boulmé and Thomas Vandendorpe

However, there is no formal justification that using this FFI is sound. Section 1.1 details
the main pitfall of this FFI. Section 1.2 sketches a proposal to fix this issue. Section 1.3
summarizes the contributions of the paper.

1.1 Unsoundness of the Standard FFl w.r.t OCaml
The register allocation of COMPCERT is declared in CoqQ by

Parameter regalloc: RTL.function — res LTL.function.

)

Here, “Parameter” is synonymous of “Axiom” and “res” is quite similar to the “option”
type transformer. Some CoQ directive in COMPCERT instructs CoQ extraction [Letouzey
2008] to replace this “regalloc” axiom by a function of the same name from the Regalloc.ml
OCAML module. While very common, this approach is potentially unsound.

Let us consider the CoqQ example on the |pofinition one: nat := (s 0).

right hand-side. It first defines a constant | pxiom test: nat — bool.

one as the Peano’s natural number repre- | Extract Constant test = "oracle".
senting 1. Then, it declares an axiom test
replaced at extraction by a function oracle.|Lemma cong: test one = test (S 0).
At last, a lemma cong is proved, using the auto.

fact that test is a function. Qed.

But, implementing oracle by “let oracle x = (x == one)” in OCAML makes the lemma
cong false at runtime. Indeed, (oracle one) returns true whereas (oracle (S 0)) returns
false, because “==" tests the equality between pointers. Hence, the COQ axiom is unsound
w.r.t this implementation. A similar unsoundness is obtained with another implementation
of oracle, that returns the value of a global reference, containing true at the first call, and
false at the second call.? This unsoundness comes fundamentally from the fact that a CoQ
function f satisfies V, (f ) = (f z). But, an OCAML function may not satisfy this property.
Actually, CoMPCERT is probably free from such a bug, because its CoQ proof does probably
not depend on this property of regalloc: the remaining of the compiler does not depend
on whether regalloc is pure or not.’

1.2 Foreign Functions as Non-Deterministic Functions

[Fouilhé and Boulmé 2014] have proposed to avoid this unsoundness by axiomatizing external
OCAML functions using a notion of non-deterministic computations. For example, if the result
of test is declared to be non-deterministic, then the property cong is no more provable. For
a given type A, type 77A represents the type of non-deterministic computations returning
values of type A: it can be interpreted as P(A), the type A — Prop of predicates over A.
Formally, the type transformer “ 77 .” is axiomatized as a monad that provides a may-return
relation ~ 4: 7?7A — A — Prop. Intuitively, when “ 77A” is seen as “P(A)”, then “~»” simply
corresponds to identity. At extraction, 77A is extracted like A, and its binding operator is
efficiently extracted as an OCAML let-in. See details in Section 2.

For example, replacing the test axiom by “Axiom test: nat — ??bool” avoids the
above unsoundness w.r.t the OCAML oracle. The cong property can still be expressed as
below, but it is no longer provable — because it is not satisfied when interpreting 77A as

1See https://github.com/AbsInt/CompCert/blob/master/backend /Allocation.v

2For example defined with “let oracle = let h=ref false in (fun x -> h:=not 'h; 'h)”

3The current implementation of regalloc uses imperative hash-tables: it is not obvious if it is observa-
tionally pure or not — in the CoQ sense.


https://github.com/AbsInt/CompCert/blob/master/backend/Allocation.v

Embedding Imperative ML Oracles into CoQ 3

P(A) and interpreting test as the function returning the trivially true predicate (in this
interpretation, the goal below reduces to the false property that all Booleans are equals).

cong: V b b', (test one)~b — (test (S 0))~b' —b=b'.

Of course, this approach does not suffice to avoid all pitfalls of axiomatizing oracle types
in CoQ. Some other pitfalls are detailed in the paper, with proposal of remedies.

1.3 Contributions of the Paper

The may-return monad of [Fouilhé and Boulmé 2014] aims to ensure that a CoQ proof like
the one of COMPCERT does not rely on the purity of the external oracles. Based on a variant
of the may-return monad, this paper proposes a library called IMPURE which is conjectured
to provide a safe FFI for almost any well-type OCAML function (see details in Section 2).
Hence, it allows to embed many impure OCAML features into CoQ certified code. This is
illustrated along the paper on I/O operations, exception-handling, mutable data-structures
and physical equality. Whereas this approach inherits of the full programming power of
OCAML, its reasoning power is rather limited as detailed just below.

For example, on I/O operations, IMPURE does not provide any reasoning support unlike
the coq.io library of Guillaume Claret. Actually, embedding I/O in C0Q code is already very
convenient, even without any formal proof about those I/O. In particular, this allows us to
write the main of our executables in COQ: when such a main is sufficiently small, it can be
considered itself as a part of the formal specification (see Figure 15 at page 16).

On exception-handling and on polymorphic mutable data-structures, IMPURE supports
“theorems for free” a la Wadler [Wadler 1989] that are derived by embedding invariants into
the polymorphic types of OCAML oracles. Even if its reasoning power is very incomplete
(for example, it cannot even prove that “x:=1; !x” returns “1”), this technique suffices to
formally prove many interesting properties “for free”.

Actually, in counter-part of this limited reasoning power, there is only a very small
bureaucratic overhead with respect to reasoning about pure code.” The only overhead comes
from the fact that every impure computation is encapsulated in a monad. But, in realistic
developments like COMPCERT, even pure computations are often handled through an error
monad. So, we believe that replacing the error monad of COMPCERT by the may-return
monad would not make the proofs heavier.”

In other words, the may-return monad provides a framework to combine CoQ and OCAML
typecheckers. Surprisingly, in a defensive style (i.e. with dynamic checks of oracle results),
this simple framework is very effective. This is illustrated on two main examples: first,
the certification of a polymorphic memoized fixpoint operator using untrusted hash-tables;
second, a certified Boolean SAT-solver, invoking internally any untrusted but state-of-the-art
SAT-solver.

1.4 Overview of the Paper

Section 2 presents our proposal of FFI (through the IMPURE library) and conjectures
its soundness. Section 3 applies it to extend the COQ programming language with some

4Full reasoning on imperative functions often requires to write (and prove) bureaucratic specifications of
functions with respect to their effect on the global environment. For examples, see FRAMA-C [Kirchner et al.
2015] or CFML [Charguéraud 2011]. The drastic simplicity of our approach comes from the fact that it
handles only two effects: “nothing” (for pure CoQ functions) or “everything-compatible-with-typing” (for
CoqQ functions embedding OCAML code).

5But, such a replacement would require a significant amount of work, because the two monads differs.



http://coq.io

4 Sylvain Boulmé and Thomas Vandendorpe

polymorphic impure operators: exception-handling and fixpoints. At last, Section 4 applies
it to certified SAT-solving. An appendix details some technical points of the paper.

2 TOWARD A SOUND FFI W.R.T OCAML THROUGH MAY-RETURN MONADS

As sketched in introduction, this section will define a type A — 77B to represent the type of
impure functions from type A into type B. Informally, we interpret the type ??B as P(B)
the type of predicates characterizing the possible results. This interpretation represents thus
each impure function as a function of A — P(B), or equivalently, as a relation of P(A x B),
because of the bijection between this two types. Section 2.1 defines type ??B using axioms
in order to provide an efficient extraction into OCAML, where “ 7?7 are simply removed.
Based on this notion of impure computations, Section 2.2 presents our FFI and conjectures
its soundness. Section 2.3 explains how this conjecture is related to a parametricity property
of the underlying “CoQ+OCAML” type system. At last, Section 2.4 extends the FFI with
pointer equality.

2.1 Definition of the May-Return Monad in the Impure library

This section introduces in an informal syntax the theory of the may-return monads and
presents the informal interpretation of these axioms. See the sources online® for the full
CoQ syntax with the proofs. The definition of may-return monads in this paper — given
below — is inspired by the original definition of [Fouilhé and Boulmé 2014], itself inspired
by the structure of monads in functional programming languages [Wadler 1995]. There are
however two differences between the definition below and the original one. First, in this
paper, the congruence “=” over computations has been omitted. Indeed, in the VPL, the
Verified Polyhedra Library of [Fouilhé and Boulmé 2014], this congruence is only needed in
order to prove a property on a higher-order operator that is absent of the case studies of
this paper. Moreover, as discussed in Appendix A, the meaning of such an equality with
respect to the extracted code is counter-intuitive: an issue that we keep out of the scope
of this paper. Second, this paper introduces the “mk_ annot 4” operator, that is invoked in
order to prove properties on higher-order operators by parametricity (see Section 3).

Definition 2.1 (May-return monad). For any type A, type ?7A represents impure compu-
tations returning values of type A, and provides a may-return relation

~4:77A — A — Prop
where “k ~» a” means that “k may return a”. It also provides the three following operators

e Operator >=4 p:77A — (A —7?7B) — 778 encodes an impure OCAML sequence
“let © = ky in ko” into “ky >= Ax, k7. This operator must satisfy

ki >=ko~b = da,ki~aANksa~b
e Operator ret 4 : A — 77 A lifts a pure value as an impure computation. It must satisfy
reta;~>as = aj=as

e Operator mk_annot 4 : V(k : 77A), 7?{ a |k ~ a} annotates the result of a computation
k with an assertion expressing that it has been returned by k.

In the CoQ code, “k1 >= Az, ko” is written with a “DO” notation reminiscent of HASKELL
“DO0 x <~ ki1;; k2”7 (or “k1;; k2” if x does not appear in k2). And ret is also written
with cases “RET” to increase readability of impure code.

6http://github.com/boulme/Impure/blob/master /ITmpMonads.v


http://github.com/boulme/Impure/blob/master/ImpMonads.v

Embedding Imperative ML Oracles into CoQ 5

2.1.1 Interpretations of May-Return Monads. Here is the informal interpretation of “77A”
as the type of predicates “P(A)”: ~» 4 is identity on P(A); ret 4 is the identity relation of
A — P(A); =4, p returns the image of a predicate on A by a binary relation of A — P(B);
mk_annot returns the trivially true predicate. Theses definitions are formalized in Figure 1.
They satisfy axioms of may-return monads.

Actually, it is worth noticing that usual monads are naturally embedded as a may-return
monad. For example, Figure 2 corresponds to the embedding of the identity monad. And,
Figure 3 corresponds to the embedding of the state-monad on a given global state of type .S.

7744 A — Prop k~a £ (ka) reta & \z,a=x
k1 >=Fky £ \z,3a, (k1 a) A (kzax) mk_annotk £ Az, True

Fig. 1. Power-set instance of may-return monads

A2 A k~a £ k=a reta £ a ki >>=ky £ (ko k1)

mk annot k £ exist, k eq_refl,
where e exist., is the constructor of the dependent pair {a |k ~> a}
e eq refl, is a proof of k = k
Fig. 2. ldentity instance of may-return monads

AL S 5 Ax S k~>a £ 3s,fst(ks) = a reta £ \s, (a, s)
k1 >>=ko = As,let (a,8") := (k1 s) in (k2 as’)

mk_annotk £ \s,let (a,s’) := (ks) in (exist-, a Dk,s s')

where py, s is a proof of Isg, fst(k so) = fst(k s)
Fig. 3. State-transformer instance on a global state of type S

In order to handle impure computations in COQ, the IMPURE library declares an abstract
may-return monad (i.e. its implementation remains hidden). It is extracted as like as
the identity may-return monad of Figure 2 except that, in order to enforce the expected
evaluation order, operator = is extracted to operator (|>) of OCAML.”

2.1.2 Reasoning on Impure Computations with Weakest-Liberal-Preconditions. Having intro-
duced axioms for impure computations in Definition 2.1, we automate COQ reasonings
about such computations, by reusing a weakest-precondition calculus introduced by [Fouilhé
and Boulmé 2014] and programmed as a very simple LTAC tactic. They define in CoQ an
operator “wlp 4 : ??A — (A — Prop) — Prop” such that “wlp k P £ Va,k~a = (Pa)"

7See http://github.com/boulme/Impure/blob/master/ImpConfig.v


http://github.com/boulme/Impure/blob/master/ImpConfig.v

6 Sylvain Boulmé and Thomas Vandendorpe

In other words, (wlp k P) expresses the weakest (liberal) precondition ensuring that any
result returned by computation k satisfies postcondition P. This leads us to the notion of
WLP-theorems.

Definition 2.2 (WLP-theorems). A WLP-theorem is a COQ theorem with a conclusion of
the form “(wlp k P)”. Such a theorem means that (under the hypotheses of the theorem),

For all r, if the extraction of k returns the extraction of r, then r satisfies P.

In particular, when the extraction of k does not terminate or raises an uncaught exception,
WLP-theorems do not give any useful information (as usual in partial correctness). In our
CoQ code, we write (wlp f Ar, P) with the notation “WHEN f ~> r THEN P”. For example,
let us consider the following CoqQ code:

Variable f: nat — 77 nat.
Definition g (x:nat): 7?7 nat := DO r <~ f x;; RET (r+1).
Lemma triv: V x, WHEN g x ~> r THEN r > 0.

The LTAC tactic simplifies this goal into the trivial property “Vn : N,n+1>0" (See [Fouilhé
and Boulmé 2014] for details).

2.2 Conjecture of a Sound Foreign-Function-Interface for Coq w.r.t OCaml

As shown in introduction, declaring external OCAML oracles in COQ may be unsound,
by authorizing CoQ theorems that can be false at runtime. The may-return monad has
been introduced in order to avoid the pitfall of embedding impure computations as pure
functions. But this is not sufficient to ensure soundness. To this end, we need to define a
class “permissive” of COQ types and a class “safe” of OCAML values satisfying Definition 2.3
below, with “being permissive” and “being safe” automatically checkable, and as expressive
as possible.

Definition 2.3 (Correctness of Permissivity). A CoqQ type T is “permissive” iff

any “safe” OCAML value compatible with the extraction of T is “soundly” ax-
iomatized in CoQ with type T' — in the sense that WLP-theorems deduced from
this axiom cannot be falsified when running the extracted code, in which the
axiom has been replaced by the OCAML value.

Having defined “permissive” and “safe” as above would help to extend CoQ with a
“Import Constant” construct. On the example below, such a construct would act like
“Axiom ident: permissive_type”, but with additional checks during CoqQ and OCAaML
typechecking in order to ensure soundness of extraction.

Import Constant ident: permissive_type := "safe_ocaml_value".

In this paper, Definition 2.3 refers to the following definition of “safe” OCAML value.

Definition 2.4 (safe OCaml value). An OCAML value is “safe” iff it is well-typed
and without calls to external values like Obj.magic, and without using cyclic values like
“let rec v = S v’ on CoQ extracted types.® NB: The last restriction does not forbid
recursive functions nor cyclic mutable data-structures in safe OCAML values.

8 Appendix B details issues of cyclic values.




Embedding Imperative ML Oracles into CoQ 7

However, Definition 2.4 seems too restrictive in practice: it does not support the FFI of
OCAML w.r.t C (which is intensively used in the VPL of [Fouilhé and Boulmé 2014]). We keep
this issue out of the scope of this paper. Actually, formally defining the pair “permissive/safe”
is still a work in progress. This paper only gives counter-examples (characterizing what
this pair cannot be) and proposes an informal conjecture on permissive types — detailed in
Section 2.2.1. Typically, Section 1.1 illustrates that nat —bool is not permissive. On the
contrary, type nat — ??bool is conjectured to be permissive.

2.2.1 Informal Permissivity Conjecture. Under Definitions 2.4 and 2.3, we conjecture that
nat — ??nat is permissive. But, type nat > ??{n:nat | n < 10} — extracted to nat->nat
— is not. Indeed, such a CoQ type corresponds to assume a postcondition on the ora-
cle that the OCAML typechecker cannot ensure. A similar phenomenon happens with
nat — ??(nat —nat) and nat — (nat — ??nat ) which are both extracted to nat->(nat->nat).

On the contrary, types nat— ?7(nat—??nat) and (nat— ??nat)—7?nat are con-
jectured to be permissive. And also {n | n < 10} —??nat. On this last example, the
CoQ axiom requires a precondition that OCAML typechecker can safely ignore. A similar
phenomenon happens with (nat-—nat)—??nat.

More generally, permissivity checking requires an analysis to distinguish “inputs” (neg-
ative occurrences) from “outputs” (positive occurrences) in arrow types. Roughly speak-
ing, each input type must be included in its extraction (e.g. we consider here that CoQ
{n:nat | n < 10} is included in OCAML nat), while each output type must include its
extraction. In particular, arrows in outputs must be followed by a “??”. Moreover, permis-
sivity checking must also inspect inductive types of outputs in order to ensure that the
arguments of their constructors have also a permissive type. Typically, given type foo below,
we conjecture that type nat — ??foo is permissive. But this would not be the case if the
type of constructor Bar has no “??” in its arguments.

Inductive foo := Bar: (nmat — ?7?nat) — foo

At last, we conjecture that ML polymorphism — i.e. prenex universal polymorphism —
preserves permissivity. For example, the type of make_cref on Figure 4 is conjectured to
be permissive. Section 2.3 illustrates that this implies a powerful parametricity property.

Record cref {A} := { set: A — 7?77 unit; get: unit — 77 A }.
Axiom make_cref: V {A}, A — 7?77 cref A.

Fig. 4. A CoQ FFI of mutable references

let make_cref x =
let r = ref x in { set = (fun y -> r:=y); get = (fun () -> !r) }

Fig. 5. Standard OCAML implementation of make_cref

let make_cref x =

let h = ref [x] in {
set = (fun y -> h:=y::!h);
get = (fun () -> List.nth 'h (Random.int (List.length 'h))) }

Fig. 6. Iconic variant of make_cref



8 Sylvain Boulmé and Thomas Vandendorpe

2.2.2 Application to Imperative Programming in Coq. Let us start exploring basic imperative
programming in CoQ, by using mutable data-structures and I/O. Let us first consider the
embedding of mutable references with the CoqQ code of Figure 4: it defines the record type cref
that represents references in a kind of object-oriented style (as the pair of a mutator set and
a selector set), and declares an oracle make_cref building values of this type. On the OCAML
side, type cref is extracted to “type 'a cref = { set: 'a -> unit; get: unit -> 'a }”
Then, we define make_cref: 'a -> 'a cref such that it allocates a fresh reference r and
returns the pair of set/get function to update/access the content of r (see the code on
Figure 5). The permissivity conjecture of Section 2.2.1 states that “v A,A — ?? cref A”
is permissive. Thus, it is sound to implement make_cref by any safe OCAML function of
type 'a -> 'a cref like in Figure 5. Having implemented make_cref according to Figure 5,
the user can thus program with mutable references in CoQ. However, most properties of
this implementation cannot be formally proven in CoQ.

Indeed, from the point-of-view of the formal logic, any safe OCAML function of type
'a -> 'a cref is admitted as a sound implementation of make_cref, including the iconic
implementation of Figure 6. This implementation typifies what any OCAML implementation
of make_cref can do: store inputs of make_cref and set such that get outputs one of the
previously stored input. For example, every execution using the implementation of Figure 5
can be emulated by an execution using the implementation of Figure 6 where each call to
Random. int returns 0: in this way, get outputs the last received input.

Hence, all formal properties provable from the interface of Figure 4 should be satisfied
by the oracle of Figure 6. Thus, they can only express that if all the inputs of a given
reference satisfy some given invariant, then the value returned by get will also satisfy this
invariant. Such a property can be partly expressed in COQ by instantiating the parameter
A of cref in Figure 4 on a X-type that constrains this reference to preserve the given
invariant. Whereas this technique seems a bit weak on this example, Sections 3.3 and 4
present interesting applications of this lightweight technique for constraining polymorphic
mutable data-structures (like hash-tables). At last, let us note that our embedding of ML
references does not forbid aliases as soon as they are compatible with CoQ typing: see details
in Appendix C.

However, extending extracted code with an OCAML main could in theory break some
properties proved on the CoQ side (see also Appendix C). It is thus safer to define the main
code of executables on the CoqQ side. This motivates to embed some I/O functions in CoqQ.
Such an embedding is very easy. Currently, the IMPURE library provides a few wrapper of
some functions of OCAML standard library, like the two below (where pstring is a CoQ
type to represent strings).

Axiom read_line: unit — 77 pstring. (¥ reads a line from stdin *)
Axiom println: pstring — 77 unit. (¥ prints a line on stdout *)

However, the IMPURE library does not provide any formal reasoning support on these
I/0O functions. Hence, in this approach, reasoning with I/O on CoQ code remains informal —
more or less like on OCAML code. The programmer is only much more protected against
stupid mistakes when combining formally proved code and trusted (but informally verified)
code, because the CoQ type system is more accurate.

2.3 Coq “Theorems for Free” about Polymorphic ML Oracles

The conjecture of Section 2.2.1 implies that a polymorphic type like “V A, A—?7A” is
permissive. Actually, the permissivity of such a polymorphic type implies a “theorem for




Embedding Imperative ML Oracles into CoQ 9

free” on safe OCAML values of the corresponding extracted type. For example, we prove
that any safe OCAML value pid of type 'a -> 'a” satisfies

when (pid x) returns normally some y then y = x.

In the following, we say that a function pid satisfying the above property is a pseudo-identity
(indeed, such a pid may not be the identity because it may not terminate normally or
produce side-effects).

In order to prove that any safe “pid:'a -> 'a” is a pseudo-identity, we first declare pid
as an external function in CoQ. Then, we build a CoQ function cpid which eztraction
is like “let cpid x = (let z = pid x in z)”, and which is proved to be a pseudo-identity.
In the CoqQ source, for a type B and a value x:B, (cpid x) invokes pid on the type
{y:B|y=x}, which constrains it to produce a value that is equal to x. Below, *z returns
the first component of the dependent pair z of type {y:B|y=x}. The Program environment
allows terms with “holes” (like here in the implicit coercion of x: B as a value of {y:B|y=x})
and generates static proof obligations to fill the holes.

Axiom pid: V A, A—77A.
Program Definition cpid{B}(x:B):??B := DO z <~ pid {yly=x} x;; RET “z.
Lemma cpid_correct A (x y:A): WHEN (cpid x) ~> y THEN y=x.

At extraction, we get “let cpid x = pid x |> (fun z -> z)”.

Let us point out that we cannot prove in CoQ that pid — declared as the axiom given
above — is a pseudo-identity. Indeed, we provide a model of this axiom where pid detects —
through some dynamic typing operators — if its parameter x has a given type Integer and
in this case returns a constant value, or otherwise returns x. Such a counter-example already
appears in [Vytiniotis and Weirich 2007]. This function is now provided in Java syntax.

static <A> A pid(A x) {
if (x instanceof Integer) // A==Integer, because Integer is final
return (A) (new Integer (0));
return x;

}

The soundness of cpid extraction is thus related to a nice feature of ML: type-safe poly-
morphic functions cannot inspect the type to which they are applied. In other words, type
erasure in ML semantics ensures that functions handle polymorphic values in a uniform way.

However, a similar counter-example can be built for OCAML by using an external C
function that is sound with type 'a -> 'a (i.e. for all ML type T, it behaves like a function
of type T — T'). Such a function inspects the bit of its parameter that tags unboxed integers,
and returns integer 0 when instantiated on type int, or behaves like an identity otherwise.
This explains why such a counter-example must be rejected by Definition 2.4.

In summary, our CoQ proof is not about pid, but about cpid which instantiates pid on a
dependent type. Actually, cpid and pid coincide, but only in the extracted code. This proof
can be viewed as a “theorem for free” in the sense of Wadler [1989]: it is a parametricity proof
for a unary relation, i.e. a predicate that we call here an invariant. Bernardy and Moulin
[2012, 2013] have previously demonstrated that parametricity reasoning can be constructively
internalized in the logic from an erasure mechanism. Here, in our “CoQ+OCAML” logic of
programs, it derives from the fact that the invariant instantiating the polymorphic type
variable in the COQ proof is syntactically removed by CoOQ extraction.

But, whereas parametricity of pure SYSTEM F has been established a long time ago by
Reynolds [1983], its adaptation to imperative languages with higher-order references a la ML




10 Sylvain Boulmé and Thomas Vandendorpe

is much more recent [Birkedal et al. 2011]. Indeed, because higher-order references allows to
build recursive functions without explicit recursion (see Figure 9 page 12), it is even hard to
define what is a predicate over such a higher-order reference. See [Ahmed et al. 2002; Appel
et al. 2007; Hobor et al. 2010]. In conclusion, the conjecture of Section 2.2.1 is probably
difficult to formalize and prove. Actually, this paper only aims to illustrate its potential
applications.

2.4 Axioms of the Trusted Equality of Pointers

We now extend the FFI described at Section 2.2, by embedding the physical equality (i.e.
pointer equality) of OCAML into CoQ. At the difference of all other oracles in this paper,
we impose the phys_eq oracle to satisfy an axiom — called phys_eq_true — in addition to
its declaration. Thus, the implementation of this oracle must be trusted.

Axiom phys_eq: V {A}, A — A — 7?7 bool.
Extract Constant phys_eq = "GE9".
Axiom phys_eq_true: V A (x y: A), phys_eq x y ~ true — x=y.

As illustrated on the example of Section 1.1, because “(==)" distinguishes pointers: it can
distinguish values that the CoQ logic cannot. It is thus necessary to declare phys_eq as
a non-deterministic function. The phys_eq_true axiom is useful in order to replace some
tests about structural equality by faster tests using physical equality instead. Section 3.3
gives an example. We have also applied it in order to implement a weak form of hash-consing:
but, this is out of the scope of this paper.

3 CERTIFYING “FOR FREE” POLYMORPHIC IMPERATIVE FUNCTIONS

This section applies our FFT in order to extend the CoQ programming language with some
polymorphic impure operators’: exception-handling at Section 3.1, loops at Section 3.2
and fixpoints at Section 3.3. Our goal is to formally prove the usual rules of Hoare logic
for these operators in partial correctness. This is achieved by applying the technique of
“parametricity by invariants” (introduced at Section 2.3): we derive these correctness rules
by instantiating the polymorphic type of well-chosen oracles on a well-chosen sigma-type. In
other words, we illustrate that “parametricity by invariants” interprets ML polymorphic
types as “higher-order invariants”, i.e. invariant properties (of ML values) depending on
type variables which names themselves some invariant. Hence, with this interpretation, ML
typecheckers are powerful engine to infer higher-order invariants in partial correctness.

3.1 Exception-Handling Operators

First, we declare an external function fail which is (informally) expected to raise an error
parametrized by a string.

Axiom fail: V {A}, pstring — 77 A.

This axiom is safely implemented by the following OCAML function fail: pstring -> 'a.

exception ImpureFail of pstring
let fail msg = raise (ImpureFail msg)

But, this axiom is also safely implemented by the following OCAML function fail: 'a -> 'b.

let rec fail msg = fail msg

9The full CoQ/OCAML code of these examples is online at https://github.com/boulme/ImpureDemo



https://github.com/boulme/ImpureDemo

Embedding Imperative ML Oracles into CoQ 11

Actually, while our formal COQ reasonings will be valid for any of these implementations,
our informal reasonings will only consider the first implementation.

For its formal correctness, fail does never return a value, or equivalently it returns only
values satisfying any predicate. In order, to get this property “for free”, we wrap fail into
a function FAILWITH of the same type, but which internally call fail on the empty type
False. For any value r:False returned by fail, we are thus able to build any value of any
type (by destructing r).

Definition FAILWITH {A:Typel} msg: 7?7 A :=
DO r <~ fail (A:=False) msg;; RET (match r with end).

Lemma FAILWITH_correct A msg (P: A — Prop):
WHEN FAILWITH msg ~> r THEN P r.

Now, we use FAILWITH to define dynamic assert checking. Below, “assert_b” ensures
that a (pure) Boolean expression is true or aborts the computation otherwise.

Program Definition assert_b (b: bool) (msg: pstring): ?7 b=true :=
match b with
| true = RET _

| false = FAILWITH msg end.
Lemma assert_correct msg b: WHEN assert_b b msg ~> _ THEN b=true.

This approach is extended to exception-handling with the following oracles, which are
used in Figure 15. See Appendix D for details about formal reasoning on exception-handling.

Axiom exn: Type. Extract Inlined Constant exn = "exn".
Axiom raise: V {A}, exn — ?? A. Extract Constant raise = "raise".
Axiom try_with_any: V {A}, (unit — 7?7 A) * (exn — ?77A) — 77A.
Notation "'TRY' k1 'WITH_ANY' e '=' k2" :=

(try_with_any (fun = k1, fun e = k2)) ...

Here try_with_any is implemented in OCAML by

let try_with_any (k1, k2) = try ki1() with e -> k2 e

3.2 Generic Loops in Coq

This section defines a verified WHILE-loop in partial correctness. Let us first introduce
our untrusted oracle for generic loops. We use type A as the type of “(potential) reachable
states” in the loop (i.e. A is the loop invariant). We also use type B as the type of “(potential)
final states” (i.e. B is the post-condition of the loop). Our loop oracle is parametrized by an
initial state of type A and by a function “step:A -> ?7(A+B)” computing the next state from
a non-final state (see the declaration of loop in Figure 7). Typically, the CoqQ type “(A+B)”
being extracted on OCAML type “('a, 'b) sum” defined in Figure 8, we implement this
loop oracle by the tail-recursive function of Figure 8. Any safe OCAML implementation
of a compatible type is also admitted, like the alternative implementation of Figure 9. In
this alternative implementation, recursion is not explicit in the code, but is emulated by a
reference fix containing a function accessing fix. Here, the OCAML typechecker is able to
verify that this obfuscated piece of code has the expected type.

After defining the w1li predicate (acronym for “while-loop-invariant”), Figure 7 defines
our verified while function. It is parametrized by a pure test cond, by an impure state-
transformer body, by a predicate I preserved by one iteration of the loop (w1i condition) and




12 Sylvain Boulmé and Thomas Vandendorpe

Axiom loop: V {A B}, A * (A — 7?7 (A+B)) — 77 B.
Definition wli{S} (cond:S—bool)(body:S—7?7?S)(I:S—Prop) :=
Vs, I s - cond s = true — WHEN body s ~> s' THEN I s'.
Program Definition
while {S} cond body (I: S — Prop | wli cond body I) sO
7?7 {s | (I sO — I s) A cond s = falsel}
:= loop (A:={s | I sO — I s})

(s0,
fun s =
match (cond s) with
| true =
D0 s' <~ mk_annot (body s) ;;
RET (inl (A:={s | I sO0 — I s }) s')
| false =
RET (inr (B:={s | (I sO0 — I s) A cond s = falsel}) s)
end) .

Fig. 7. Implementation of a WHILE-loop in CoQ

type ('a, 'b) sum = Coq_inl of 'a | Coq_inr of 'b
let rec loop (a, step) =

match step a with

| Coq_inl a' -> loop (a', step)

| Coq_inr b -> b

Fig. 8. Standard OCAML implementation of oracle loop by a tail-recursive loop

let loop (a0, step) =
let fix = ref (fun _ -> failwith "init") in
(fix := fun a -> match step a with
| Cog_inl a' -> (!fix) a'
| Coq_inr b -> b);
(tfix) a0

Fig. 9. Emulating recursion in OCAML with a cyclic higher-order reference

by an initial state s0. Parameter A (resp. B) of 1oop is instantiated on the loop invariant (resp.
the postcondition). On this code, the Program plugin generates 3 trivial proof obligations:

(1) 1 s0 — I s0”

(2) “(1 s0 - I s) — cond s = true — body s~s' — (I s0 — I s')” (trivial
from wli hypothesis).

(3) “(1 s0 - I s) — cond s = false — (I s0O — I s) A cond s = false”.

Let us remark that mk_annot is necessary to get the appropriate hypothesis on s' in the
second proof obligations. Figure 21 in Appendix E illustrates how to apply this while-loop
operator to an iterative computation of Fibonacci’s numbers.

This technique could be applied to other kind of generic loops. For example, Figure 17
on page 24 defines a generic loop dedicated to refutation of unreachability properties. This
generic loop is applied in Figure 18 to check an UNSAT property, as detailed in Section 4.4.3.




Embedding Imperative ML Oracles into CoQ 13

3.3 Generic Fixpoints in Coq

This section now extends the previous approach to generic fixpoints of functions. The
simplest version of such a fixpoint in OCAML is given by fixp function on Figure 10. The
fixp function computes the fixpoint of step a function performing one unfolding step of a
recursive computation. For example, it is instantiated for the naive recursive computation of
Fibonacci’s number as “fixp (fun fib p -> if p <= 2 then 1 else fib(p-1)+fib(p-2))”.

Of course, with the implementation on Figure 10, this naive computation of Fibonacci’s
number performs an exponential number of additions. By using the memoized implementation
on Figure 11, the number of additions remains linear. However, a bug in the implementation
of fixp like on Figure 12 leads to incorrect results. Here, the implementation on Figure 12
represents an erroneous version of the memoized version of Figure 11 where all recursive
results are crashed into a single memory cell (instead of associating each recursive result to
its corresponding input into a dedicated memory cell).

let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
let rec f x = step f x in f

Fig. 10. Standard fixpoint in OCAML

let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
let memo = Hashtbl.create 10 in
let rec f x =
try Hashtbl.find memo x
with Not_found -> let r = step f x in (Hashtbl.replace memo x r); r
in f

Fig. 11. Memoized fixpoint in OCAML

let fixp (step: ('a -> 'b ) -> 'a -> 'b): 'a -> 'b =
let memo = ref None in
let rec f x =
match !memo with
| Some y ->y
| None -> let r = step f x in (memo:=Some r); r
in f

Fig. 12. An erroneous memoized fixpoint in OCAML

In other words, the implementation on Figure 12 is a well-typed implementation of
type (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b that does not compute a correct fixpoint, even
in partial correctness. This illustrates that the property “be a correct fixpoint” cannot
be derived by pure parametric reasoning (on the contrary of the WHILE-loop of Sec-
tion 3.2). However, we build a verified fixpoint operator from any fixpoint oracle of type
(('a => 'b) => 'a -> 'b) -> 'a -> 'b, by combining parametricity-by-invariants and (inex-
pensive) defensive checks. In the case of implementation on Figure 12, the incorrect fixpoint
computations will abort (because of the defensive checks). Hence, we declare the following
oracle in CoQ. And, we build a formally correct fixpoint operator by wrapping this oracle.

1



14 Sylvain Boulmé and Thomas Vandendorpe

Axiom fixp: V {A B}, ((A — 7?7 B) - A — 7?7 B) — 77 (A — 77 B).

Usually, proving the correctness of a (non-tail)recursive functions requires to prove that a
given relation between inputs and outputs is preserved by the unfolding step of recursion.
Here, we need to encode this binary relation — called R below — into the unary invariant B.
The trick is thus to store both the input (of type A) and the output (of type 0) in this
invariant. In the following, A 0: Type and R: A — 0 — Type are implicit parameters
of the formally proved fixpoint operator.

Record answ := { input:A; output:0; correct:R input output }.

Then, we add a defensive check on each recursive result r — returned through the oracle —
that (input r) “equals to” the actual input of the call.

Formally, our fixpoint operator is thus also parametrized by an equality test, called
beq: A — A — 77 bool, that is expected to satisfy the following formal property. Typi-
cally it could be instantiated by the pointer equality phys_eq or a more structural equality
test (as detailed later).

V x y, WHEN beq x y ~> b THEN b=true — x=y.

Then, we introduce a wrapper wapply of the application, such that each recursive call k
returning a value of type answ is converted into a function (wapply k) returning a value
of type 0, but with a defensive check that the input field equals to the x parameter.

Definition wapply (k: A — 7?7 answ) (x:A): 7?7 0 :=
DO a <~ k x;;
DO b <~ beq x (input a);;
assert_b b msg;;
RET (output a).
Lemma wapply_correct k x: WHEN wapply k x ~> y THEN R x y.

The parameter “step:(A — ?? 0) — A — ?7 07, that unfolds one step of recursion,
is expected to preserve relation R, as formalized by step_preserv predicate.

Definition step_preserv (step: (A — 7?7 B) — A — 7?7 B) :=V f x,
WHEN step f x ~> z THEN (V x', WHEN f x' ~> y THEN R x' y) — R x z.

Our proved rec operator is thus defined by:

Program Definition rec step (H:step_preserv step R): 7?7 (A — 7?7 B) :=
DO f <~ fixp (B:=answ R)
(fun k x =
DO y <~ mk_annot (step (wapply k) x);;
RET {| input := x; output := “y |}
)5
RET (wapply £f).
Lemma rec_correct step (H:step_preserv step R):
WHEN rec step H ~> f THEN V x, WHEN f x ~> y THEN R x y.

Appendix E illustrates how to instantiate this rec operator on the naive recursive com-
putation of Fibonacci’s numbers. Actually, for performance issue, beq must be chosen at
instantiation of operator rec according to fixp implementation. If beq is too much discrimi-
nating, then it may reject valid computations. On the contrary, if beq inspects too much
the structure of its inputs, then it may slow down computations. For example, phys_eq is




Embedding Imperative ML Oracles into CoQ 15

well-suited for the fixpoint implementation of Figure 10. But it is too much discriminating
for the fixpoint implementation of Figure 11. Actually, for the latter, beq must correspond
to the equality test involved in the hash-table implementation: here the structural equality.
Hence, our approach could be improved by passing beq as a parameter of the oracle, which
then could use it as the equality test of the hash-table instead of the structural equality.

4 CERTIFYING A CHECKER OF (BOOLEAN) SAT-SOLVER ANSWERS

This section applies the IMPURE library to a realistic use-case: SATANSCERT, a verifier of
SAT-solver answers, itself certified in CoQ. Actually, our CoQ development is inspired from
a previous CoQ development, called “Irat checker”, documented in [Cruz-Filipe et al. 2017a]
and available online'’. The contribution of our development w.r.t to this previous one is to
illustrate how the IMPURE library helps to get a code, which is both simpler and faster.'"

4.1 Overview of SatAnsCert and its formal correctness

SAT Answer UNSAT Answer
DIMACS INPUT DIMACS INPUT

F (abstract syntax)™___..c-00900 .

{ Prover entry A';

Solver Wrapper

Solution m’ JUS— .

72N
Solver Wrapper

ensures [F]m + PSS ensures
- LRAT file Ym,=[F]m

/

CNF Evalu.ation:';
“ Rup

e D < jcaring*
UNSAT”
)
External C/C++ Ocaml Certified in Coq

External C/C++ Ocaml Certified in Coq

Fig. 13. Overview of SATANSCERT

SATANSCERT reads a proposition f in Conjunctive Normal Form and outputs whether f
is “SAT” or “UNSAT” (see Definition 4.1 below). This proposition f must be syntactically
given in DIMACS file - a standard format'? of SAT competitions. Internally, SATANSCERT
invokes — according to options on its command line — some state-of-the-art SAT-solver like

O0https://imada.sdu.dk /~petersk/Irat/
M The full Coq/OCAML code of these examples is online at https://github.com/boulme/satans-cert.
2https://www.satcompetition.org/2009/format-benchmarks2009.html


https://imada.sdu.dk/~petersk/lrat/
https://github.com/boulme/satans-cert
https://www.satcompetition.org/2009/format-benchmarks2009.html

© 0~ O T W

— =
= o

12
13
14
15
16

16 Sylvain Boulmé and Thomas Vandendorpe

Definition var := positive.

Record literal := { is_pos: bool ; ident: var .
Definition model := var — bool. (* boolean mapping *)
Definition clause := list literal. (* syntactic clause *)

Fixpoint sat (c: clause) (m: model): Prop :=
match ¢ with
| nil = False
| 1::c' = m(ident 1)=(is_pos 1) V sat c' m

end.
Definition iclause := clause_id * clause. (* clause with an id *)
Definition cnf := list iclause. (¥ syntactic cnf *)

Fixpoint sats (f: cnf) (m: model): Prop :=
match f with
| nil = True
| c::f' = sat (snd c) m A sats f' m
end.

Fig. 14. CoQ definitions of the abstract syntax of a CNF

Program Definition main: 77 unit :=

TRY
DO f <~ read_input();; (¥ Command-line + CNF parsing %)
DO a <~ sat_solver f;; (* solwver (+drat-trim) wrapper *)

match a with

| SAT_Answer mc =
assert_b (satProver f mc) "wrong SAT model";;
ASSERT (3 m, [f]m);;
println "SAT !"

| UNSAT_Answer =
unsatProver f;;
ASSERT (V m, —[fJm);;
println "UNSAT !'"

WITH_ANY e =
DO s <~ exn2string e;;
println ("Certification failure: " +; s).

Fig. 15. (simplified) CoQ code of the “main” of SATANSCERT

GLUcOSE'?, Riss', CRYPTOMINISAT'? or CADICAL'®. This SAT-solver is expected to
produce a witness of its answer (such a witness is mandatory for SAT competitions since
2016). SATANSCERT thus checks this witness before to output the answer or to fail on an
error. The execution of SATANSCERT is depicted on Figure 13. The external SAT-solver
is run in a separate process and communicates with SATANSCERT through the file system.
As later detailed, SATANSCERT also invokes some OCAML oracles through the FFT of the

L3http://www.labri.fr/perso/lsimon/glucose
Mhttp://tools.computational-logic.org/content /riss.php
L5https://github.com/msoos/cryptominisat
16http://fmv.jku.at/cadical



http://www.labri.fr/perso/lsimon/glucose
http://tools.computational-logic.org/content/riss.php
https://github.com/msoos/cryptominisat
http://fmv.jku.at/cadical

Embedding Imperative ML Oracles into CoQ 17

IMPURE library (presented in Section 2): these oracles are thus part of the SATANSCERT
process. The external SAT-solver is actually invoked through one of this OCAML oracle.

Definition 4.1 (Conjunctive Normal Form). A Boolean variable x is a name and is encoded
as a positive integer. A literal ¢ is either a variable x or its negation —x. A clause ¢ is a finite
disjunction of literals and is encoded as a set of literals. A CNF f is a finite conjunction of
clauses and is encoded as a list of clauses. A model m of CNF f is a mapping that assigns
each variable to a Boolean such that “[f] m” is true — where “[f] m” is the Boolean value
obtained by replacing in f each variable x by its value “mx”. A CNF is said “SAT”, if it
has a model, and “UNSAT” otherwise.

Our CoqQ definitions of CNF abstract syntax is given in Figure 14. These definitions involve
external clause identifiers of type clause_id without formal semantics. These identifiers
are intended to relate clauses to their name in the UNSAT witness during its parsing by an
untrusted oracle (which is later introduced). Here, type clause_id is opaque for the CoQ
proof: it remains uninterpreted. In the following, we use the bracket notations [.] for both
predicates “sat” and “sats”.

We now describe the formal property proved on SATANSCERT in COQ-+IMPURE+OCAML.
First, like in COMPCERT, I/O (ie parsing and printing) are not formally proved and thus
must be trusted. More precisely, the formal correctness of SATANSCERT only deals with
the abstract syntax (defined on Figure 14) of the input CNF. And, it is directly expressed
in the main code of SATANSCERT through statically proved “ASSERT” (see Figure 15).
Here, “ASSERT P” (where P:Prop) is simply a macro for “RET (A:=P) _”: it declares a
proof of proposition P that must be (statically) provided as a proof obligation generated by
“Program Definition” We consider that the ability to use imperative code in CoQ with
statically verified assertions improves the approach of COMPCERT— where formally proved
components and unproved (but trusted) components are linked together in OCAML only.

Hence, our code on Figure 15, thus combines static assertions (“ASSERT”) and dynamic
assertions, like “assert_b” defined on page 11. The static “ASSERT” proved at line 8 derives
from the defensive check of line 7: satProver simply evaluates CNF £ in the model mc
found by the SAT-solver. Similarly, the static “ASSERT” proved at line 13 derives from a
defensive check of line 12: unsatProver checks that the UNSAT witness (here implicit)
provided by the SAT-solver is valid, or fails otherwise. The next sections sketch how this
latter verification is achieved. Section 4.3 defines a first simple version with type:

unsatProver (f: cnf): ?? (V m, —[f]m)

And, Section 4.4 defines a second refined version with the equivalent type:

unsatProver (f: cnf): ?? —(3 m, [f]m)

4.2 Certifying UNSAT answers of SAT-solvers: a brief overview

Since the pioneering works of [Goldberg and Novikov 2003] and [Zhang and Malik 2003],
the verification of UNSAT answers has been well studied. Several proof formats have been
proposed, and currently, the DRAT format [Heule 2016; Wetzler et al. 2014] is the standard
format in SAT competitions. Actually, most SAT-solvers generate only DRUP proofs [Gelder
2008; Heule et al. 2013] — a previous format that DRAT has later extended with RAT clauses
[Wetzler et al. 2013]. In theory, using RAT clauses may lead to exponentially shorter proofs
than using only pure (D)RUP proofs. But, in practice, the SAT-solving community is still
looking for efficient algorithms to find such RAT proofs [Heule et al. 2017].




18 Sylvain Boulmé and Thomas Vandendorpe

4.2.1 Background on Resolution, RUP proofs and CDCL (Conflict-Driven Clause Learning). In a
first step, this paper focuses only on (D)RUP proofs: they are simpler to understand. Actually,
we even consider a strict subset of RUP proofs, introduced as “restricted RUP proofs” in
[Cruz-Filipe et al. 2017b], that we rename (for clarity) into “backward resolution proofs”.
Indeed, we consider a variant of the resolution proof system where the resolution rule is
specialized for backward reasoning through the rule BCKRSL of Definition 4.2 below. Together
with rule TRIV, we recover the usual resolution rule: for any literal ¢, any clauses ¢; and ca,
there exists a list of clauses f included in the list of two clauses “{¢} Ucy, {—¢} Uca” such that
“f FBRC ¢ Uey” Indeed, if £ ¢ ¢ Ucy, then we define f as the whole list, and “f FBRC ¢; Uey”
because ({£} Uc1)\(c1 Uce) = {€} (BCKRsSL) and ({4} U c2)\({—=€} Uy Ucz) =0 (TRIV).
Otherwise, we define f as the single clause “{¢} U c1”, and we have f\(c1 Ucz) =0 (TRIV).

Definition 4.2 (Backward Resolution Chain). Given these two clause derivation rules,

Cc1 {—\E} [GXe) Cc1
BeKRSL ———————— c¢i1\c2 = {¢} TRV — c1\c2 =0
C2 Cc2

for n > 1, we write “c1,...,¢, FBRC ¢” iff Cn
there is a bottom-up derivation — like on the right Cn1 e
hand-side — that first iterates BCKRSL from ¢ BekRSL
on the list ¢1,...,cp—1 and then concludes by I €1
TRIV on c¢,. c

When “f FBRC ¢ we say that f is a Backward Resolution Chain (BRC) of c.
The correctness & completeness of the resolution proof system is rephrased by Theorem 4.3.

THEOREM 4.3 (REFUTATION CORRECTNESS & COMPLETENESS). A CNF f is UNSAT
iff there exists a sequence c1, ..., ¢, (withn > 1) such that
e foralli € [1,n], there exists a list of clauses fi € fU{c1,...,ci_1} such that f; FBRC ¢;
e and, c, =0
Such a sequence ¢y, ..., ¢, is called a RUP proof of the unsatisfiability of f.

Now, we sketch how RUP proofs are naturally found by CDCL SAT-solvers, a refinement
of DPLL algorithms, at the heart of modern SAT-solvers (see [Silva et al. 2009] for details).
The BCKRSL rule corresponds to the fact that, under its side-condition, the proposition
“c1 A\ —cg” implies the proposition “¢ A —ce”, the latter being equivalent to “—(=£V c2)”.
Actually, this corresponds exactly in DPLL SAT-solving to a unit-propagation on clause ¢y
where “—cy” represents the assignment of literals before the propagation and “—({—¢} U ¢2)”
represents the assignment after the propagation. Similarly, TRIV corresponds to the fact that,
under its side-condition, the proposition “c; A —ce” is UNSAT. Hence, TRIV corresponds
exactly to a conflict on clause ¢; where “—cy” represents the current assignment of literals.
A CDCL SAT-solver learns lemma (under assumption of the input CNF) from conflicts:
each of this lemma is actually a clause provable from a BRC involving the input clauses and
previously learned clauses. The solver answers “UNSAT”, when it has learned the empty
clause: the sequence of its learned clauses is then exactly a RUP proof.

4.2.2 Checking DRUP proofs. Historically, some CDCL SAT-solvers have dumped full
resolution proofs on UNSAT answers (see [Zhang and Malik 2003]). Certifying a resolution
proof checker is not too difficult and, in CoQ, a first checker has been certified by [Armand
et al. 2010]. However, instrumenting SAT-solvers to output full resolution proofs is very
intrusive. Thus, RUP proofs have been proposed as a very lightweight alternative for the



Embedding Imperative ML Oracles into CoQ 19

design of SAT-solvers [Gelder 2008]. In counterpart, checking RUP proofs requires to recover
all BRCs, typically by replaying unit-propagations (RUP is the acronym of “Reverse Unit
Propagation”). In practice, a RUP-checker does not need all the heuristics of a CDCL SAT-
solver, but the data-structures necessary for unit-propagation (e.g. two-watched literals).

The DRUP proof format [Heule et al. 2013] is an ASCII file format to describe a RUP
proof as a list of clauses, one by line. There are also lines to delete clauses which are no
more involved in remaining resolution chains. The standard checker of DRUP proofs in SAT
competitions is currently DRAT-TRIM'" of [Wetzler et al. 2014]. Of course, it also checks
DRAT proofs, a conservative extension of DRUP with RAT clauses (detailed at Section 4.4).

Actually, checking DRAT proofs is still a complex task (see [Rebola-Pardo and Cruz-Filipe
2018]) and DRAT-TRIM is an untrusted program written in C. Hence, DRAT-TRIM has
been designed to output the full BRC of learned clauses, in an other proof format called
LRAT. As indicated by its name, DRAT-TRIM first prunes from the proof (by processing
it backward) many learned clauses that are not necessary to derive the empty clause. This
reduces a lot the size of LRAT proofs (and of DRAT-TRIM running times).

CryptoMiniSat (v4.5.3)
Then, [Cruz-Filipe et al. 2017a] have de-

veloped two certified checkers of LRAT
proofs: one certified in CoQ and extracted
to OCAML; the other certified in ACL2 and
extracted to C. As shown by Figure 16 — built
from the benchmark table published by Pe-
ter Schneider-Kamp on his webpage'” — their
CoQ/OCAML version is terribly slow com- 0 50 100 150 200
pared to their ACL2/C version. Instances

- CryptoMiniSat+DratTrim+Coq
= CryptoMiniSat+DratTrim+ACL2

CryptoMiniSat+DratTrim
- = = CryptoMinisat

40000 80000 120000

Running Time (second)

0

Fig. 16. Benchmark of [Cruz-Filipe et al. 2017a]

Our work illustrates that, by using the IMPURE library, we can improve the efficiency of
the CoQ/OCAML implementation, while simplifying substantially the CoQ proof.

4.3 \Verification of (D)RUP proofs in SatAnsCert

This section describes how unsatProver introduced at page 17 is implemented by checking
the LRAT file generated with DRAT-TRIM from a DRUP proof (itself generated by the
SAT-solver, as represented on Figure 13).

4.3.1 A Shallow-Embedded RUP Checker in Coq. First, we introduce our shallow embedding
of RUP proofs in C0oQ. In our implementation, besides the type iclause of the abstract
syntax, we have a more computational representation of clauses, called cclause, where a
clause is represented as two finite sets of positive integers: one for the positive literals, and
one for the negative literals. Such finite sets are efficiently defined in the standard library of
CoQ using radix trees. For the sake of simplicity, the COQ definitions of our paper omit this
type cclause and use iclause instead.

Given f:cnf, we define the type “consc[f]” of clauses that are “logical consequences” of
f. Actually, type consc is parametrized by a set of models s and constrains its field rep to
satisfy all models of s (through rep_sat property).

‘Record consc (s:model —Prop): Type :=

17 Available at https://www.cs.utexas.edu/~marijn/drat-trim


https://www.cs.utexas.edu/~marijn/drat-trim

20 Sylvain Boulmé and Thomas Vandendorpe

‘ { rep: iclause; rep_sat: V m, s m — [snd rep]m }.

Then, we define emptiness test of the following type. Actually, assertEmpty c terminates
iff (rep c) is the empty clause. Otherwise, it raises an exception.

assertEmpty {s}: consc s — ?7(V m, —(s m)).

Checking a Backward Resolution Chain is defined by the following function, called learn
(it builds a new consequence of the set of models).

‘learn: V{s}, list(consc s) — iclause — 7?7?(consc s)

It is implemented (for “performance” only) such that if 1 FBRC ¢ then (learn 1 c) returns
c' where (rep c')=c. An exception is raised on an invalid BRC.

4.3.2 Embedding the verified RUP-Checker into an untrusted LRAT Parser. The unsatProver
function needs to parse the LRAT file and to check that it corresponds to a valid RUP
proof of the input CNF. It delegates the parsing of the LRAT file to an external untrusted
OCAML oracle. Moreover, it exploits the cooperation mechanism of CoQ and OCAML
typechecker in order to make this untrusted oracle compute directly “certified learned clauses”
through a certified API. This API is called a Logical Consequence Factory (LCF) and builds
correct-by-construction proofs, without an explicit “proof object” — in the style of the old
LCF prover [Gordon et al. 1978].

The LRAT parser is declared in CoQ by the rup_lratParse axiom (see below). This
function is parametrized by:

e an abstract type of clause: this type — called ¢ — is abstract for the untrusted parser
but instantiated by “consc[f]” in the CoQ proof;

e a logical consequence factory of type “(rupLCF C)”: this factory allows the oracle to
build logical consequences (ie new abstract clauses) with a BRC from existing ones
thanks to rup_learn (instantiated by the previous learn in the CoQ proof).

e the input CNF f given as a list of “azioms”, ie abstract clauses of type C.

Record rupLCF C :=
{ rup_learn:(list C) — iclause — 7?7 C; get_id: C — clause_id }.
Axiom rup_lratParse: V {C}, (rupLCF C)*1list(C) — 77 C.

By using the get_id function, the parser first builds a map from clause identifiers in the
DIMACS input to their corresponding abstract clause (ie axiom). Then, it maintains this
map while parsing the LRAT file, ie when deleting clauses or adding new learned clauses.
On a non-RUP clause or on unexpected issues in the LRAT file, it raises an exception.
Otherwise, it eventually returns the abstract clause corresponding to the empty clause.

Thus, unsatProver is simply defined by the code below. It first calls the mkInput function
that builds the parameters expected by the parser (we omit the details here). Afterwards,
unsatProver simply invokes the parser and checks that its result is the empty clause. Here,
the polymorphism over “logical consequences” in the untrusted OCAML parser ensures that
this latter cannot forge unsound clauses.

Definition mkInput (f: cnf): rupLCF(consc[f]) * list(consc[f]) :=...
Definition unsatProver f: ?? (V m, —[f]m) :=
DO ¢ <~ rup_lratParse (mkInput f);; assertEmpty c.




Embedding Imperative ML Oracles into CoQ 21

The Polymorphic LCF style design of our RUP checker has the following benefits w.r.t.
the design of the prover found in [Cruz-Filipe et al. 2017b] (a preliminary version of the
Coq implementation of the LRAT prover of [Cruz-Filipe et al. 2017a]): BRCs are verified
“on-the-fly” in the oracle, and this is much easier to debug; the dictionary mapping clause
identifiers to clause values is only managed by the OCAML oracle (in a efficient hash-table);
hence, the deletion of clauses from memory is also only managed by the oracle; the CoQ
code is thus very simple and very small.

Polymorphic LCF style is also strictly more powerful than standard LCF style, where type
abstraction is provided by an abstract type. Indeed, standard LCF style requires to represent
each “learned RUP clause” as a sequent of the form “f  ¢” which means that clause ¢
is a logical consequence of CNF f. Handling such sequents enables to forbid derivations
“cq,...,cn FBRC ¢” where some ¢; are consequences of two distinct CNFs: otherwise, when
called several times during a run, an erroneous oracle could mix consequences of a CNF
with consequences of a previous (and maybe contradictory) one. In Polymorphic LCF style,
the antecedent f is represented by a type variable: mixing consequences of distinct CNFs is
statically forbidden by typechecking. On the contrary, in standard LCF style, this is only
prevented by a dynamic check: it is both less simple and less efficient.

4.4 Generalization to (D)RAT proofs

A RUP proof can be thought as a sequence of transformations on the input CNF: each
learned clause is added to the CNF. These transformations preserves logical equivalence. The
motivation of RAT clauses — introduced in [Wetzler et al. 2013] — is to allow transformations

which may break logical equivalence but preserve satisfiability. This could dramatically
reduce the size of the CNF, and thus the size of its potential UNSAT proof.

Example 4.4. Let us define two CNFs f; and f2 over arbitrary literals (I;);c[1,,) and
(I");cr1 1 and over a distinct variable x:
j/3€(1,p]

= /\?:1 ?:1(li \ l;) fo = (/\?:1(_‘1' V1)) A /\?:1(1' \ l;)

Whereas f1 has n.p clauses (of two literals), fo has only n + p clauses (of two literals).
These two CNF are equisatisfiable, which is easy to check by rewriting each of them into an
equivalent DNF"

fi e NGWDVALLL  f s @ANS )V (aANL )

But, f1 and f2 are generally not equivalent, because fo constrains x whereas f; does not.

4.4.1 Introduction to RAT bunches. In this section, following [Lammich 2017a], we slightly
generalize the definition of RAT clauses of [Cruz-Filipe et al. 2017a] by considering the
learning at once of a “bunch” of several RAT clauses on the same pivot. We first need to
reintroduce the notion of RUP clause originally defined by [Gelder 2008].

Definition 4.5 (RUP clause). Given a CNF f and a clause ¢, we say that “c is RUP w.r.t
7 — and we write f FRUP ¢ — iff one of the two following conditions is verified:

(1) there exists [ such that {I,—l} FBRC ¢ (ie ¢ is a trivial tautology)
(2) or, there exists f/ with f/ C f such that f’ FBRC ¢

It is obvious that “f FRUP ¢ implies “f = ¢”.

Definition 4.6 (RAT bunch). Given two CNFs f1 and f5 and a literal [, we say that fo
is a bunch of RAT clauses w.r.t. fi for pivot | — and we write fi I—ZRAT fo — iff for each



22 Sylvain Boulmé and Thomas Vandendorpe

clause co € f5 the two following conditions are satisfied:
(1)1l €cy; (2) f1 FRUP (¢;\{=l}) Ucy for each clause ¢ of fi.

LEMMA 4.7 (SAT PRESERVATION OF RAT). Let us assume fi FRAT fo and [f1]m.
Then, there exists m’ such that [f1 A fa]m/.

PROOF. If [fo]m then the property is trivially satisfied for m’ = m. Otherwise, let m’
be the model defined from m by assigning [ to true. By condition (1), we have [fa]m'. Let
¢2 € fo2 such that —[ca]m. For all ¢; € fi, from [f1]m and condition (2) we deduce that
[(c1\{=1}) U co]m, and thus [c1\{~I}]m, and thus [c1]m'. Hence, we have also [f1]m’'. O

Let us remark that if ¢; = ¢;1\{—{} then condition (2) of Definition 4.6 is trivially satisfied.
This leads to introduce the notion of “basis” by Definition 4.8 below. Indeed, it suffices to
only check condition (2) on clauses ¢; that are in the basis of f; w.r.t. pivot I.

Definition 4.8 (Basis). Given a CNF f; and a literal [, the basis of f1 w.r.t. pivot [ is
defined as the set of clauses in f; containing —l.

Example 4.9 (RAT bunches of Example /./). Clauses of fs are checked w.r.t fi in two
RAT bunches:

(1) f FRAT w1 (=2 V 1;): checking this RAT bunch is trivial because the basis is empty.
(2) fi AL (22 V) FRAT /\?zl(:z V1%): here the basis is A, (=2 V [;). We simply check
that for all (i, ) € [1,n] x [1,p], we have (I; V I}) FBRC (I; v & v I}) with (I; V1)) € fi.
From Theorem 4.7, we deduce that if fi is SAT then fi A f2 is also SAT, and finally that fo
is SAT (deleting clauses also trivially preserves satisfiability).

Ezample 4.10 (Contradictory RAT bunches). Given z and y two distinct variables. We
check the two following RAT bunches: x I—Eﬁ‘T -y and x I—EAT y. This check is trivial
because the basis is empty in both cases.

This last example shows that two contradictory RAT clauses can be learned from the
same satisfiable CNF. Hence, “learning” a RAT clause is not like “learning” a new lemma:
“learning” a RAT clause is like adding an axiom which preserves consistency.

4.4.2 Formalization of RAT bunches. In the syntax of LRAT files (see [Cruz-Filipe et al.
2017a] for details), each RAT clause comes with a list of BRC, one for each clause of the
basis. Note that a valid BRC is at least of length 1. Here, by convention, a BRC of length 0
simply encodes the case (1) of Definition 4.5 (trivial tautology). Moreover, when these lists
of BRC share a common prefix, this prefix can be given separately. We reflect these syntactic
informations of LRAT files in the following C0OQ structure: field clause_to_learn is the
clause to learn, propag is the common prefix of the BRC, and rup_proofs is the list of
suffix of the BRC (one by clause of the basis). Here type C represents the type of clauses
that are logical consequences of the current CNF (like in Section 4.3.2).

Record RatSingle C: Type :=
{ clause_to_learn:iclause; propag:list C; rup_proofs:list(list C) }.

Learning a RAT bunch is defined in COQ by the function 1earnRat below. In this function,
parameter s is the set of models of the current CNF. The bunch is given in field bunch of
parameter R where pivot is the pivot and basis (resp. rem — for remainder) is a list of
clauses containing (resp. not containing) the negation of the pivot. If fo is the list of clause
to learn in bunch, then learnRat either returns the CNF “(basis A rem A f3)” or fails if it
cannot prove that the bunch is a correct RAT bunch.




Embedding Imperative ML Oracles into CoQ 23

Record RatInput C: Type :=

{ pivot:literal; rem:1list C; basis:list C; bunch:list(RatSingle C) }.

Definition learnRat {s:model —Prop} (R:RatInput(consc s)):?7cnf :=...

Lemma learnRat_correct (s: model — Prop) (R: RatInput (consc s)):
WHEN learnRat R ~> f THEN Vm, s m — I m', [f] m'.

Example 4.11 (Learning RAT bunches of Example 4.9). The running example can be
turned into two successive formal invocations of learnRat:

(1) On the first time, we learn CNF “f; A AL, (—z V [;)” with the empty basis, with
Aizi(—x V ;) as the bunch, and with f; as remainder;

(2) On the second time, we learn CNF “ fo” with Ai; (-2'V1;) as the basis, with AT_; (zV1})
as the bunch, and with the empty remainder.

In the second case, it is formally not necessary to give f; as the remainder: f; already
appears in the rup_proofs field of the bunch. Hence, it is useless to put f; in the remainder
if we aim to delete it from the current CNF just after.

4.4.3 Formalization of the RAT checker. In order to define and prove the main loop of
unsatProver with RAT checking, it is convenient to introduce a generic loop, called
loop_until_None, dedicated to refutation of unreachability properties. This loop — defined
on Figure 17 — iterates a body of type S — ?7?(option S) until to reach a None value.
This body is assumed to preserve an invariant and to never reach None under the assumption
of this invariant. Hence, if None is finally reached, then the invariant was false in the initial
state. The loop_until_None loop reuses the loop oracle of Figure 7 and is very similar to
the generic WHILE-loop.

At last, we extend our untrusted LRAT parser of Section 4.3.2. As discussed on Exam-
ple 4.10, “learning” a RAT clause replaces the whole CNF by a new one. Thus, our parser
learns RUP clauses until it finds a bunch of RAT clauses. Then, it stops, requiring the CNF
to be updated. Afterwards, if the RAT bunch is correct, the certified checker restarts the
untrusted parser for the updated CNF. This loop runs until the parser finds an empty RUP
clause w.r.t. the current CNF. The untrusted parser, called next _RAT in Figure 18, behaves
as an iterator over RAT bunches. This iterator is expected to return either the empty clause
(left case) or a new RAT bunch to learn (right case). The looping process in unsatProver
is a simple instance of loop_until_None: see Figure 18.

4.5 Performances & Comparison with other works

Our evaluation of SATANSCERT is split according to SAT and UNSAT answers. Our SAT
benchmark — illustrated on Figure 19 — has been established with the CADICAL SAT-solver
over 120 instances of the SAT competition 2018. Considering the logarithmic scales, the
running times of the SAT checker of SATANSCERT in Figure 19 are negligible w.r.t. those
of the solver. And, as expected, the running times of our SAT checker are linear w.r.t the
size of the input CNF (being given either in number of clauses or in number of literals).
The UNSAT benchmark has been established by using two different solvers: CADICAL
(sc18) which generates only RUP clauses and CRYPTOMINISAT (v4.5.3) which produces both
RUP and RAT clauses. It is based on more than 170 instances from the SAT competition
2015, 2016 and 2018. Figure 20 represents — for each tested instance — the contribution of
each tool in the running time, by cumulating their runtimes on upward ordinates. Along the
abscissia axis, the instances are ordered by running times of the SAT-solver. By comparing




24 Sylvain Boulmé and Thomas Vandendorpe

Let luni {S} (body: S — ??(option S)) (I: S — Prop) :=
Vs, I s — WHEN (body s) ~> s'
THEN match s' with Some s1 = I s1 | None = False end.
Program Definition loop_until_None{S} body (I:S—Proplluni body I) sO
??7 —(I s0)
:= loop (A:={s | I sO — I s})
(s0, fun s =
DO s' <~ mk_annot (body s) ;;
match s' with
| Some s1 = RET (inl (A:={s | I sO — I s }) si1)
| None = RET (inr (B:=-(I s0)) _)
end) .

Fig. 17. A Generic Loop to Refute Unreachability Properties

Axiom next_RAT: V {C}, (rupLCF C) * (list C) — ?7(C + RatInput C).
Program Definition unsatProver: V (f:cnf), ?? —(3 m, [fm) :=
loop_until_None
(fun £ = (* loop body *)
DO step <~ next_RAT (mkInput f) ;;
match step with
| inl ¢ =
assertEmpty (rep c);;
RET None
| inr ri = (* build a new CNF from the RAT bunch *)
DO f' <~ learnRat ri;;
RET (Some f')
end)
(fun £ = I m, [flm). (* loop invariant *)

Fig. 18. The RAT prover of SATANSCERT

the overhead of the CoqQ checkers w.r.t DRAT-TRIM in Figure 16 and in Figure 20, we see
that our LRAT checker is much faster than the CoqQ/OCAML checker of [Cruz-Filipe et al.
2017a] which has inspired it. We believe that our lightweight design, based on parametric
reasoning has a significant impact on performances here (and it makes the formal proof
much more simpler). As also shown by Figure 20, our LRAT checker is most often slower
than the ACL2/C checker of [Cruz-Filipe et al. 2017a]. We could probably significantly
improve the performance of SATANSCERT, by encoding literals with native integers instead
of CoQ positives (aka lists of bits), and by encoding clauses with native persistent arrays
instead of radix-trees. These native data-structures were experimentally introduced in CoQ
by [Armand et al. 2010] and had a positive impact on their resolution checker. Currently,
they have however still an experimental status in CoQ.

The GRAT toolchain [Lammich 2017b] is an alternative for certified checking of DRAT
files. As the DRAT-TRIM toolchain, it takes a CNF in DIMACS format and a DRAT file in
input, generate some intermediate files through an untrusted C++ tool, and gives a certified
answer from this intermediate files thanks to an ISABELLE/MLTON checker. According
to [Lammich 2017a], the GRAT toolchain is faster than the DRAT-TRIM one. Because




Embedding Imperative ML Oracles into CoQ 25

4  CaDiCaL 4  CaDiCaL
SatAnsCert L - . SatAnsCert L - . -
. . e No . 3 ¢ o3
= o2.s - * S LR d
g " EIA) N & 3 .
E (YRR N 2 s . 0,
s L . . B s L PN +3
E > E . o %
= * * @ = - * *
o [ o [ ‘
£ ‘» £ * *
= =
€ €
5 S L
o o
T T T T T T
o o o © ~ Q o o o o © ~
=) =) =] =) =)
8 8 8 2 2 2 S 8 8 8 S 2
— S S A A A — S 3 A A
= =
Number of clauses (log) Number of literals (log)

Fig. 19. Our SAT benchmark based on the CADICAL (sc18) SAT-solver

CaDiCaL (sc18) CryptoMiniSat (v4.5.3)
o
(=]
- CaDiCal +DratTrim+SatAnsCert o Ci Drat ert

S o e CaDiCal +DratTrim+ACL2 g S s CryptoMiniSat+DratTim+ACL2

c 8 - CaDiCaL+DratTrim c CryptoMiniSat+DratTrim

8 @ = = = CaDiCalL 8 = = = = CryptoMiniSat

) )

~ ~ o

(=3 o

@ (=} Q -

£ g £ @

= F

g2 3 g

£ 8 s o

c & = =3

S =1 A

& & &

° ° T — T T T
0 20 40 60 80 100 120
Instances Instances

Fig. 20. Our UNSAT benchmarks

SATANSCERT is itself based on DRAT-TRIM, we did not find very significant to compare it
experimentally to the GRAT toolchain.

In conclusion, SATANSCERT is not the most optimized DRAT checker. But the bottleneck
of running times in our UNSAT checking is DRAT-TRIM (the standard checker in SAT
competitions). Indeed, on average of the UNSAT benchmark depicted at Figure 20, the solver
takes 30% of the running time, DRAT-TRIM takes 50%, and our certified LRAT checker
takes the 20% remaining. This demonstrates that SATANSCERT reasonably scales up on
state-of-the-art SAT-solvers. One of our most noticeable achievement is that SATANSCERT
only results from a modest effort: we evaluate the whole development at 2 person.months
for 1Kloc of CoQ (including all proof scripts) and 1Kloc of OCAML files (including .m11
files). These figures exclude the development of the IMPURE library itself.

5 CONCLUSION AND FUTURE WORKS

This paper proposes a new FFI to embed OCAML code into CoQ verified code. It illustrates
its application to formal but lightweight reasonings about imperative functions. This FFI is
based on may-return monads, originally introduced for the first version of the VPL (Verified
Polyhedra Library) [Fouilhé and Boulmé 2014]. In this first version, each oracle of the VPL
generated some terms (in a given abstract syntax), which were interpreted by the CoQ
certified frontend as monotonic transformations over convex polyhedra. Then, it appeared
that the deep embedding of these monotonic transformations could be advantageously replaced
by a shallow embedding. Hence, the VPL has been reimplemented [Maréchal 2017] with
Polymorphic LCF style oracles: the oracles perform directly monotonic transformations



26 Sylvain Boulmé and Thomas Vandendorpe

through a certified API using polymorphism for abstracting types. This style resulted in a
significant reduction of both CoQ and OCAML code size. Moreover, the oracles were much
more easier to debug. At last, it was understood that Polymorphic LCF style exploits a kind
of “theorem for free” corresponding to parametric reasonings with invariants. With respect
to these previous works, our contribution in this work is to have extracted the IMPURE
library from the sources of the VPL and to have applied it to other contexts than convex
polyhedra. This may contribute to convince other COQ users of the interest of this approach.

The theoretical foundations of this approach still remain to be investigated: our soundness
conjecture needs to be formalized and proved, while permissivity checking needs to be
formally defined and implemented. Moreover, as discussed in Appendix A, extending the
approach to reasonings about program equivalences would also probably require to modify
the extraction mechanism itself.

REFERENCES

Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. 2002. A Stratified Semantics of General References
Embeddable in Higher-Order Logic. In Symposium on Logic in Computer Science (LICS). IEEE, 75.
Andrew W. Appel, Paul-André Mellies, Christopher D. Richards, and Jéréme Vouillon. 2007. A Very Modal
Model of a Modern, Major, General Type System. In Principles of Programming Languages (POPL).

ACM Press, 109-122.

Michaél Armand, Benjamin Grégoire, Arnaud Spiwack, and Laurent Théry. 2010. Extending Coq with
Imperative Features and Its Application to SAT Verification. In Interactive Theorem Proving (ITP)
(LNCS), Vol. 6172. Springer, 83-98.

Ricardo Bedin Franga, Sandrine Blazy, Denis Favre-Felix, Xavier Leroy, Marc Pantel, and Jean Souyris. 2012.
Formally verified optimizing compilation in ACG-based flight control software. In ERTS2. arXiv:hal-
00653367

Jean-Philippe Bernardy and Guilhem Moulin. 2012. A Computational Interpretation of Parametricity. In
Symposium on Logic in Computer Science (LICS). IEEE Computer Society.

Jean-Philippe Bernardy and Guilhem Moulin. 2013. Type-theory in color. In International Conference on
Functional programming (ICFP). ACM Press.

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Stgvring, Jacob Thamsborg, and Hongseok
Yang. 2011. Step-indexed Kripke Models over Recursive Worlds. In Principles of Programming Languages
(POPL). ACM Press, 119-132.

Arthur Charguéraud. 2011. Characteristic formulae for the verification of imperative programs. In Proceeding
of the 16th ACM SIGPLAN international conference on Functional Programming, ICFP 2011, Tokyo,
Japan, September 19-21, 2011. ACM, 418-430. https://doi.org/10.1145/2034773.2034828

Luis Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt, Matt Kaufmann, and Peter Schneider-Kamp. 2017a.
Efficient Certified RAT Verification. In CADE (LNCS), Vol. 10395. Springer, 220-236.

Luis Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp. 2017b. Efficient Certified Resolution Proof
Checking. In Tools and Algorihitms for the Construction and Analysis of Systems (TACAS) (LNCS),
Vol. 10205. Springer, 118-135.

Alexis Fouilhé and Sylvain Boulmé. 2014. A Certifying Frontend for (Sub)Polyhedral Abstract Domains. In
Verified Software: Theories, Tools, Experiments (VSTTE) (LNCS), Vol. 8471. Springer, 200-215.

Allen Van Gelder. 2008. Verifying RUP Proofs of Propositional Unsatisfiability. In International Symposium
on Artificial Intelligence and Mathematics.

Evguenii I. Goldberg and Yakov Novikov. 2003. Verification of Proofs of Unsatisfiability for CNF Formulas. In
2003 Design, Automation and Test in Europe Conference and Exposition (DATE 2003), 3-7 March 2003,
Munich, Germany. IEEE Computer Society, 10886-10891. https://doi.org/10.1109/DATE.2003.10008

Michael J. C. Gordon, Robin Milner, L. Morris, Malcolm C. Newey, and Christopher P. Wadsworth. 1978. A
Metalanguage for Interactive Proof in LCF. In Principles of Programming Languages (POPL). ACM
Press, 119-130.

Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. 2013. Trimming while checking clausal proofs. In
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013.
IEEE, 181-188. http://ieeexplore.ieee.org/document/6679408/


https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1109/DATE.2003.10008
http://ieeexplore.ieee.org/document/6679408/

Embedding Imperative ML Oracles into CoQ 27

Marijn J. H. Heule. 2016. The DRAT format and DRAT-trim checker. CoRR abs/1610.06229 (2016).
arXiv:1610.06229 http://arxiv.org/abs/1610.06229

Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. 2017. Short Proofs Without New Variables. In
Automated Deduction - CADE 26 - 26th International Conference on Automated Deduction, Gothenburg,
Sweden, August 6-11, 2017, Proceedings (Lecture Notes in Computer Science), Vol. 10395. Springer,
130-147. https://doi.org/10.1007/978-3-319-63046-5_9

Aquinas Hobor, Robert Dockins, and Andrew W. Appel. 2010. A Theory of Indirection via Approximation.
In Principles of Programming Languages (POPL). ACM Press, 171-184.

Daniel Kéastner, Jorg Barrho, Ulrich Wiinsche, Marc Schlickling, Bernhard Schommer, Michael Schmidt,
Christian Ferdinand, Xavier Leroy, and Sandrine Blazy. 2018. CompCert: Practical Experience on
Integrating and Qualifying a Formally Verified Optimizing Compiler. In ERTS2 2018 - 9th European
Congress Embedded Real-Time Software and Systems. 3AF, SEE, SIE, Toulouse, France, 1-9. https:
//hal.inria.fr/hal-01643290

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2015. Frama-C:
A software analysis perspective. Formal Asp. Comput. 27, 3 (2015), 573-609. https://doi.org/10.1007/
s00165-014-0326-7

Peter Lammich. 2017a. Efficient Verified (UN)SAT Certificate Checking. In Automated Deduction - CADE
26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017,
Proceedings (Lecture Notes in Computer Science), Vol. 10395. Springer, 237-254. https://doi.org/10.
1007/978-3-319-63046-5__15

Peter Lammich. 2017b. The GRAT Tool Chain - Efficient (UN)SAT Certificate Checking with Formal Cor-
rectness Guarantees. In Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International
Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings (Lecture Notes in
Computer Science), Vol. 10491. Springer, 457-463. https://doi.org/10.1007/978-3-319-66263-3__ 29

Xavier Leroy. 2009a. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009). arXiv:inria-
00415861

Xavier Leroy. 2009b. A formally verified compiler back-end. Journal of Automated Reasoning 43, 4 (2009),
363-446. http://xavierleroy.org/publi/compcert-backend.pdf

Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Computability in Europe (CiE) (LNCS), Vol. 5028.
Springer, 359-369.

Alexandre Maréchal. 2017. New Algorithmics for Polyhedral Calculus via Parametric Linear Programming.
Ph.D. Dissertation. Université Grenoble Alpes. https://hal.archives-ouvertes.fr/tel-01695086

Adrian Rebola-Pardo and Luis Cruz-Filipe. 2018. Complete and Efficient DRAT Proof Checking. In 2018
Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2,
2018. IEEE, 1-9. https://doi.org/10.23919/FMCAD.2018.8602993

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In IFIP Congress. 513-523.

Silvain Rideau and Xavier Leroy. 2010. Validating register allocation and spilling. In Compiler Construction
(CC 2010) (LNCS), Vol. 6011. Springer, 224-243.

Jodo P. Marques Silva, Inés Lynce, and Sharad Malik. 2009. Conflict-Driven Clause Learning SAT Solvers.
In Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, Vol. 185. IOS Press,
131-153.

Dimitrios Vytiniotis and Stephanie Weirich. 2007. Free Theorems and Runtime Type Representations.
Electronic Notes in Theoretical Computer Science 173 (2007), 357-373.

Philip Wadler. 1989. Theorems for Free!. In Functional Programming Languages and Computer Architecture
(FPCA). ACM Press, 347-359.

Philip Wadler. 1995. Monads for Functional Programming. In Advanced Functional Programming (LNCS),
Vol. 925. Springer.

Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. 2013. Mechanical Verification of SAT Refutations
with Extended Resolution. In Interactive Theorem Proving (ITP) (LNCS), Vol. 7998. Springer, 229-244.

Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. 2014. DRAT-trim: Efficient Checking and Trimming
Using Expressive Clausal Proofs. In Theory and Applications of Satisfiability Testing (SAT) (LNCS),
Vol. 8561. Springer, 422-429.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers.
In Programming Language Design and Implementation (PLDI)). ACM Press, 283-294.

Lintao Zhang and Sharad Malik. 2003. Validating SAT Solvers Using an Independent Resolution-Based
Checker: Practical Implementations and Other Applications. In 2003 Design, Automation and Test in
Europe Conference and Ezxposition (DATE 2003), 8-7 March 2003, Munich, Germany. IEEE Computer


http://arxiv.org/abs/1610.06229
http://arxiv.org/abs/1610.06229
https://doi.org/10.1007/978-3-319-63046-5_9
https://hal.inria.fr/hal-01643290
https://hal.inria.fr/hal-01643290
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-319-66263-3_29
http://xavierleroy.org/publi/compcert-backend.pdf
https://hal.archives-ouvertes.fr/tel-01695086
https://doi.org/10.23919/FMCAD.2018.8602993

28 Sylvain Boulmé and Thomas Vandendorpe

Society, 10880-10885. https://doi.org/10.1109/DATE.2003.10014


https://doi.org/10.1109/DATE.2003.10014

Embedding Imperative ML Oracles into CoQ 29

A THE ISSUE OF EQUALITY ON IMPURE COMPUTATIONS

When interpreting formal proofs based on the IMPURE library, the user must be aware
that only WLP-theorems (defined in Section 2.1.2) have a meaning on the extracted code.
In particular, the meaning of C0OQ equality on impure computations is currently very
counter-intuitive as explained just now.
In the CoQ logic, all reduction strategies are equivalent. In particular, for any term foo
the CoQ logic cannot distinguish between the two following S-convertible terms
((fun x (_:unit) = x) foo) versus (fun (_:unit) = foo)
But in OCAML, the two following expressions are very different
((fun x (_:unit) -> x) (print_string "hello"))
versus (fun (_:unit) -> print_string "hello")
The first expression prints “hello” whereas the second one is silent. This corresponds to the
call-by-value semantics of OCAML.
Let us use this idea to build a counter-intuitive CoQ theorem. Consider the following code,
that defines the repeat operator, a higher-order iterator repeating n times a computation
k. It is applied in print3 to print a string three times.

Fixpoint repeat (n:nat) (k: unit — 7?7 unit): 77 unit :=
match n with

| 0 = RETO
| 8 p = k(0;; repeat p k
end.
Definition print3 (s:pstring):?7? unit:= repeat 3 (fun _ = println s).

A careless user could instead provide the wrong implementation below, where wprint3
prints the string only once. Actually, the careful user will have in mind that the parameter
k:?7?unit of wrepeat is extracted to k:unit in OCAML. Thus, at extraction, k is () — the
single value of type unit.

Fixpoint wrepeat (n:mnat) (k: ?7 unit): 7?7 unit :=
match n with

| 0 = RETQO
| S p = k;; wrepeat p k
end .
Definition wprint3 (s:pstring): 7?7 unit := wrepeat 3 (println s).

Unfortunately, for the CoQ logic, print3 and wprint3 are the same as attested by the
following lemma.

Lemma wrong_IO_reasoning s: (print3 s)=(wprint3 s).

In order to avoid this counter-intuitive meaning of equality, we could use an alternative
extraction, based on the deferred monad below, instead of the identity monad:

A2 it > A k~a 2 k)=a  teta 2 A),a ki S=ks 2 X0, k2 (k10) ()

The extraction on the deferred monad is consistent with CoQ equality, but it slows down
the computations at runtime (and makes the type of OCAML oracles more heavyweight).

A better solution consists in keeping the extraction on the identity monad as much as
possible, by building a type-system to detect COQ terms that are wrongly extracted in the
identity monad (like wrepeat above) and extract them with the deferred monad instead. This
feature requires a non-trivial type-system and a non-trivial modification of the extraction,
and is out of the scope of this paper.




30 Sylvain Boulmé and Thomas Vandendorpe

However, we conjecture that this counter-intuitive equality cannot lead to wrong WLP-
theorems, even for the extraction on the identity monad without restriction. In other words,
we conjecture that while the results observed at runtime in the deferred monad or in the
identity monad can differ, WLP-theorems can only state properties which are satisfied in
both extractions.

B THE ISSUES OF CYCLIC VALUES

Consider the following CoQ code. It defines a type empty which is provably empty: the propo-
sition empty — False is provable by induction. Thus, any function of unit — ??empty is
proved to never return (normally).

Inductive empty: Type:= Absurd: empty — empty.
Lemma never_return_empty (f:unit—7?7empty): WHEN f£() ~> _ THEN False.

Thus, unit — ??empty is not permissive in presence of OCAML cyclic values like the loop
value defined below (with type empty).

let rec loop = Absurd 1loop
let f: unit -> empty = fun () -> loop

Besides this pathological case, forbidding cyclic values on CoQ extracted types is also
necessary for the soundness of the physical equality inside COQ introduced at Section 2.4.
Indeed, otherwise there is an unsoundness issue with axiom phys_eq_true.

For example, let us consider the phys_eq_pred lemma about type nat of Peano’s natural
number, defined in the standard library. This lemma derives from the fact that 0 is the only
n:nat such that pred n = n.

Definition is_zero (n:nat): bool :=
match n with

| 0 = true
| (8 _) = false
end.

Lemma phys_eq_pred n:
WHEN phys_eq (pred n) n ~> b THEN b=true — (is_zero n)=true.

Let us now consider the following cyclic value — called fuel — because some COQ users define
such an “infinite fuel” in order to circumvent the structural recursion imposed by CoQ.

let rec fuel: nat = S fuel

At runtime, the OCAML test “pred fuel == fuel” returns true, but “is_zero fuel” returns
false. This contradicts the phys_eq_pred lemma. Hence, in order to formally reason about
physical equality in CoQ, it is necessary to forbid — in OCAML oracles — cyclic values on
types extracted from CoOQ.

In conclusion, Definition 2.4 forbids oracles to define cyclic values on CoOQ extracted types.
A way to check this property of oracles would consist in adding to the OCAML language
an (optional) “inductive” tag on OCAML variant types that forbids cyclic values of these
types. Then, CoQ inductive types would be extracted on OCAML variant types tagged with
“inductive”.




Embedding Imperative ML Oracles into CoQ 31

C MIXING COQ INVARIANTS AND ALIASES

This section illustrates interactions between aliases and CoQ typing with examples using
type cref defined at Figure 4 page 7 (for the implementation of the oracle given on Figure 5).
First, we introduce the following COQ code:

Definition may_alias{A} (x:cref A) (y:cref nat):77 A:=
y.(set) 0;; x.(get) Q.

Now, let us consider x: cref mydata where mydata is constrained by invariant bounded.
We are able to prove that (may_alias x y) returns a value satisfying this invariant as
expressed by mydata_preserved lemma below:

Record mydata := { value: nat; bounded: value > 10 }.
Lemma mydata_preserved (x: cref mydata) (y: cref nat):
WHEN may_alias x y ~> v THEN v.(value) > 10.

Let us remark that mydata_preserved property could be broken by extending the extracted
code with arbitrary OCAML code (even for safe OCAML code). Indeed, in the extracted
code, type mydata is extracted to nat (because mydata is a record type with a single field
that is not a proposition). And, given any “x:cref nat”, (may_alias x x) returns 0
(while changing the contents of x for this value). Actually, the permissivity conjecture of
Section 2.2.1 states that such an alias cannot break WLP-theorems proven in Coq if we
consider only on the extracted code (linked to the oracle for make_cref). Informally, this
is because the typing discipline of CoQ itself forbids any alias that breaks CoQ typing:
in the CoQ code, aliasing references of (cref mydata) with references of (cref nat) is
forbidden.

However, this does not forbid the presence of all aliases in the C0OQ code itself. For example,
the code below defines a reference r2 containing a reference r1, and run (may_alias r2 rl)
which thus changes the contents of the contents of r2.

Program Definition alias_example (rl: cref nat) : 7?7 { r | r=r1 } :=
DO r2 <~ make_cref (exist (fun r = r = rl1) rl _);; may_alias r2 ril.

Here, through Coq typing, we also formally prove that the result of (may_alias r2 r1)
is reference r1. But, the fact that r1 contains 0 at the end cannot be formally proven (it
depends on make_cref implementation).

The preceding example illustrates that extending extracted code with an OCAML main
could in theory break some properties proved on the CoQ side. It seems thus important to
define the main code of executables on the CoqQ side.

Moreover, the cref example illustrates that permissitivity checking is a bit more complex
than the sketch of Section 2.2.1. In particular, the parameter A of type cref is both
used in input (on set) and on output (on get). Thus, type (cref nat)—??nat and
nat — ?7(cref nat) are permissive, because type nat of COQ coincides with its OCAML
extraction (in particular, because of the restriction on cyclic-values, see Appendix B). But
(cref mydata)—7?7?nat and nat — ?7?(cref mydata) are not permissive, because type
mydata of COQ does not coincide with its extraction.

D FORMAL REASONING ABOUT EXCEPTION HANDLERS IN IMPURE

This section presents how to derive a WLP property about the “try_with_any” operator of
Section 3.1. Below, we define the following wrapper that requires from the user an additional
post-condition P satisfied by both branches of the exception handler.




32 Sylvain Boulmé and Thomas Vandendorpe

Definition is_try_post {A} (P: A — Prop) k1 k2: Prop :=
wlp (k1 () P AV (e:exn), wlp (k2 e) P.

Program Definition try_catch_ensure
{A} k1 k2 (P:A—Proplis_try_post P k1 k2): ?? { r | P r } :=
TRY DO r <~ mk_annot (k1 ());; RET (exist P r _)

WITH_ANY e = DO r <~ mk_annot (k2 e);; RET (exist P r _).

Providing the following notation

Notation "'TRY' k1 'CATCH' e '=' k2 'ENSURE' P" :=
(try_catch_ensure (fun _ = k1) (fun e = k2) (exist _ P _)) ...

This operator is illustrated in the following simple example which generates an (easy) proof
obligation from the user to discharge the prove the is_try_post property.

Program Example tryex {A} (x y:A) :=
TRY (RET x) CATCH _ = (RET y) ENSURE (fun r = r = x V r = y).

Then, we can easily proves consequences of this postcondition as illustrated below.

Program Example tryex {A} (x y:A):
WHEN tryex x y ~> r THEN "'r <> x — "r = y.

Let us remark that on the above example, we cannot formalize the informal reasoning that
(tryex x y) necessarily returns x. Indeed, our untrusted implementation of try_with_any
could contain a bug while remaining sound w.r.t the formal declaration in CoQ. In particular,
for the following buggy implementation, (tryex x y) necessarily returns y.

let try_with_any (k1, k2) = try k2 (ImpureFail "") with _ -> k1()

More generally, except if we can prove that a given branch of a “TRY” cannot return
normally like in “TRY (FAILWITH ".") ..”, we can never formally prove which branch
has returned. In other words, “TRY” should be considered formally as a non-deterministic
operator. If this weakness becomes an issue, it is still possible to use option types instead
of exceptions. In counterpart, these “formally weak” exceptions provide a nice feature: the
formal specifications of functions have never to declare which exceptions may be raised
or not.

E INSTANTIATING GENERIC LOOPS AND FIXPOINTS OF SECTION 3

Figure 21 illustrates how to instantiate the while-loop operator of Figure 7 (page 12) to
an iterative computation of Fibonacci’s numbers. Figure 22 instantiates the fixpoint of
Section 3.3 on a naive recursive computation of Fibonacci’s numbers: given any correct
beqZ: Z -> Z -> 77 bool, it derives a correct Fibonacci’s implementation fib. The last
paragraph of Section 3.3 explains how the definition of beqZ may impact the performance of
fib according to the implementation of the fixp oracle.




Embedding Imperative ML Oracles into CoQ

33

(¥ Specification of Fibonacci's numbers by a relation *)
Inductive isfib: Z — Z — Prop :=
| isfib_base p: p < 2 — isfib p 1
| isfib_rec p nl n2:
isfib p nl1 — isfib (p+1) n2 — isfib (p+2) (nl1+n2).

(¥ Internal state of the tterative computation *)
Record iterfib_state := { index: Z; current: Z; old: Z }.

Program Definition iterfib (p:Z): ?7 Z :=

if p <7 2
then RET 1
else
DO s <~
while (fun s = s.(index) <7 p)
(fun s = RET {| index := s.(index)+1;
current := s.(old) + s.(current)

old:= s.(current) |})

(fun s = s.(index) < p

A isfib s.(index) s.(current)

A isfib (s.(index)-1) s.(o0ld))
{| index := 3; current := 2; old := 1 |};;

RET (s.(current)).

(¥ Correctness of the iterative computation *)
Lemma iterfib_correct p: WHEN iterfib p ~> r THEN isfib p r.

)

Fig. 21. Iterative computation of Fibonacci's numbers with the WHILE-loop

Parameter beqZ: Z — Z — 77 bool.
Parameter beqZ_correct: V x y, WHEN beq x y ~> b THEN b=true

Program Definition fib (z: Z): 7?7 Z :=
DO f <~ rec beqZ isfib (fun (fib: Z — 7?7 Z) p =
if p <7 2
then RET 1
else
let prev := p-1 in
DO r1 <~ fib prev ;;
DO r2 <~ fib (prev-1) ;;
RET (r2+rl)) _;;
(f z).

Lemma fib_correct (x: Z): WHEN fib x ~> y THEN isfib x y.

— X=y.

Fig. 22. Computation of Fibonacci's numbers with the generic fixpoint




	Abstract
	1 Introduction
	1.1 Unsoundness of the Standard FFI w.r.t OCaml
	1.2 Foreign Functions as Non-Deterministic Functions
	1.3 Contributions of the Paper
	1.4 Overview of the Paper

	2 Toward a Sound FFI w.r.t OCaml through May-Return Monads
	2.1 Definition of the May-Return Monad in the Impure library
	2.1.1 Interpretations of May-Return Monads
	2.1.2 Reasoning on Impure Computations with Weakest-Liberal-Preconditions

	2.2 Conjecture of a Sound Foreign-Function-Interface for Coq w.r.t OCaml
	2.2.1 Informal Permissivity Conjecture
	2.2.2 Application to Imperative Programming in Coq

	2.3 Coq ``Theorems for Free'' about Polymorphic ML Oracles
	2.4 Axioms of the Trusted Equality of Pointers

	3 Certifying ``for free'' Polymorphic Imperative Functions
	3.1 Exception-Handling Operators
	3.2 Generic Loops in Coq
	3.3 Generic Fixpoints in Coq

	4 Certifying a Checker of (Boolean) SAT-Solver Answers
	4.1 Overview of SatAnsCert and its formal correctness
	4.2 Certifying UNSAT answers of SAT-solvers: a brief overview
	4.2.1 Background on Resolution, RUP proofs and CDCL (Conflict-Driven Clause Learning)
	4.2.2 Checking DRUP proofs

	4.3 Verification of (D)RUP proofs in SatAnsCert
	4.3.1 A Shallow-Embedded RUP Checker in Coq
	4.3.2 Embedding the verified RUP-Checker into an untrusted LRAT Parser

	4.4 Generalization to (D)RAT proofs
	4.4.1 Introduction to RAT bunches
	4.4.2 Formalization of RAT bunches
	4.4.3 Formalization of the RAT checker

	4.5 Performances & Comparison with other works

	5 Conclusion and Future Works
	References
	A The Issue of Equality on Impure Computations
	B The Issues of Cyclic Values
	C Mixing Coq Invariants and Aliases
	D Formal Reasoning about Exception Handlers in Impure
	E Instantiating Generic Loops and Fixpoints of Section 3

