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One- versus two-degree-of-freedom vortex-induced
vibrations of a circular cylinder at Re = 3900
Simon Gsell a, Rémi Bourguet b,∗, Marianna Braza b

a Aix Marseille Université, CNRS, Centrale Marseille, M2P2, Marseille, France
b Institut de Mécanique des Fluides de Toulouse, CNRS, Université de Toulouse, Toulouse, France

The one- versus two-degree-of-freedom vortex-induced vibrations of a circular cylinder
are investigated on the basis of direct numerical simulation results. The Reynolds number,
based on the oncoming flow velocity and cylinder diameter, is set to 3900. Three cases are
examined: the elastically mounted body is free to oscillate either in the direction aligned
with the current (in-line direction; IL case), in the direction normal to the current (cross-
flow direction; CF case), or in both directions (IL+CF case). In each case, the behavior of the
flow–structure system is studied over a range of values of the reduced velocity (inverse
of the oscillator natural frequency). The in-line and cross-flow responses observed in the
IL+CF case substantially differ from their one-degree-of-freedom counterparts, especially
in the intermediate reduced velocity region. In this region, no vibrations develop in the
IL case and in-line oscillations only occur if cross-flow motion is allowed. These in-line
oscillations are accompanied by a major increase of the cross-flow responses, compared
to the CF case. The two-degree-of-freedom vibrations are associated with the emergence
of large-amplitude higher harmonics in the fluid force spectra. These aspects and more
specifically the impact of the existence of a degree-of-freedom and oscillations in a given
direction, on the fluid force and structural response in the perpendicular direction, do not
seem to be systematically connected to changes in wake topology. Here, they are discussed
in light of the orientation and magnitude of the instantaneous flow velocity seen by the
moving body.

1. Introduction

Vortex shedding downstream of a bluff body immersed in a cross-flow is accompanied by unsteady fluid forces exerted
on the body. If the body is flexible or flexibly mounted, these forces may lead to structural vibrations, called vortex-induced
vibrations (VIV). VIV occurwhen the body oscillation and the unsteadywake synchronize, amechanism referred to as lock-in.
Many natural and industrial systems are subjected to VIV. Their physical analysis and prediction have motivated a number
of research works, as reviewed by Bearman (1984), Sarpkaya (2004), Williamson and Govardhan (2004) and Païdoussis et al.
(2010).

Even though most of real systems subjected to VIV involve slender flexible bodies (e.g. chimneys, marine risers), this
phenomenon has been extensively studied through the canonical problem of a rigid circular cylinder mounted on an elastic
support allowing oscillations in the cross-flow direction (i.e. perpendicular to the oncoming flow), the direction along
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which large oscillation amplitudes are generally expected (e.g. Huera-Huarte and Bearman, 2009). Through this simplified
configuration, VIV can be analyzed with a limited number of structural parameters and a single structural mode (e.g. Feng,
1968; Hover et al., 1998; Khalak and Williamson, 1999; Govardhan and Williamson, 2000; Blackburn et al., 2001; Shiels
et al., 2001; Leontini et al., 2006). Significant body oscillations are known to occur over a well-defined range of values of
the reduced velocity, defined as the inverse of the oscillator natural frequency non-dimensionalized by the inflow velocity
and body diameter. In this range called the lock-in range, the oscillation frequency coincides with wake frequency. The body
response amplitude exhibits a bell-shaped evolution as a function of the reduced velocity. Peak amplitudes of the order of
one body diameter can be observed, depending on the structural properties (Khalak and Williamson, 1997) and Reynolds
number (Re), based on the oncoming flow velocity and body diameter (Govardhan and Williamson, 2000).

The response of an elastically mounted cylinder restricted to move in the in-line direction (i.e. parallel to the oncoming
flow) has also been addressed in prior studies (Aguirre, 1977; Naudascher, 1987; Okajima et al., 2004; Cagney and Balabani,
2013). In-line oscillations are known to occur over a range of lower reduced velocities, compared to the typical lock-in range
associatedwith cross-flowVIV. The evolution of the response amplitude as a function of the reduced velocity is characterized
by two bell-shaped branches, separated by a region of low-amplitude oscillations. The peak amplitudes are comparable in
both branches; they are typically of the order of 0.1 body diameters.

Recently, more attention has been paid to the case where the body is allowed to oscillate in both the in-line and cross-
flow directions. Cagney and Balabani (2014) studied the two-degree-of-freedomVIV of a cylinder in the low reduced velocity
region, where in-line oscillations occur for a single-degree-of-freedom system. No cross-flow oscillations appear in the first
branch of in-line oscillations. In the second branch, cross-flow oscillations develop with amplitudes similar to those noted
in the in-line direction. In both branches, the in-line response is almost unaltered compared to that observed for a single-
degree-of-freedom system. The effect of adding a degree of freedom in the in-line direction on the systembehavior for higher
reduced velocities, i.e. where cross-flow oscillations are expected to occur, has been examined by Jauvtis and Williamson
(2004).When the structuralmass and damping are small, large-amplitude in-line oscillations are superimposed to the cross-
flow responses, and the body typically exhibits figure-eight-shaped trajectories, as also confirmed by several studies (Dahl
et al., 2010; Navrose and Mittal, 2013; Gsell et al., 2016). The in-line oscillations are accompanied by an increase of the
cross-flow oscillation amplitudes, compared to the one-degree-of-freedom case.

The behaviors of the one- and two-degree-of-freedom systems have been widely studied but most of prior works have
considered each system separately. The present study aims at a joint analysis of these system responses, over a range of
reduced velocities. Among other aspects, the alteration of the in-line vibrations in the intermediate reduced velocity range,
and the evolutions of fluid force statistics and frequency content, when adding/removing a degree of freedom to the system,
still need to be investigated. More generally, several connections between the in-line and cross-flow responses remain to be
clarified.

In the present work, the behaviors of three distinct systems where the cylinder is free to oscillate either in the in-line
direction, in the cross-flow direction, or in both directions, are examined over an interval of reduced velocities encompassing
the region of cross-flow VIV. The Reynolds number is set to 3900 as a typical case of the early turbulent regime. The
comparison between the structural responses, fluid forces and wake patterns observed for the one- and two-degree-of-
freedom systems is based on direct numerical simulation results. Particular attention is paid to the relative impact of the
in-line and cross-flow oscillations on fluid forces and simple mechanisms are proposed to shed some light on the responses
of the two-degree-of-freedom system.

The paper is organized as follows. The methodology employed in this study is presented in Section 2. The behaviors of
the three systems are described Section 3. Some elements concerning in-line/cross-flow motion interaction and forcing are
discussed in Section 4. The principal findings of this work are summarized in Section 5.

2. Method

The physical systems are described in Section 2.1. The numerical method and data processing approach are presented in
Section 2.2. The tools employed to analyze fluid forces are introduced in Section 2.3.

2.1. Physical systems

A sketch of the physical configuration is presented in Fig. 1(a). An elastically mounted, rigid circular cylinder of diameter
D and mass per unit length ρc is immersed in a cross-flow. The cylinder axis is parallel to the z axis. The flow, parallel to
the x axis, is characterized by its velocity U , density ρf and dynamic viscosity µ. The Reynolds number based on U and
D, Re = ρfUD/µ, is set to 3900. The flow dynamics is governed by the three-dimensional incompressible Navier–Stokes
equations. The cylinder is elastically mounted and free to oscillate either in the in-line direction (x axis), in the cross-flow
direction (y axis), or in both directions, as schematized in Fig. 1(b); the three distinct cases are referred to as IL, CF and IL+CF,
respectively. The structural stiffness and damping ratio in the i (x or y) direction are designated by ki and γi. All the physical
quantities are made non-dimensional by D, U and ρf . The non-dimensional cylinder displacement, velocity and acceleration
in the i direction are denoted by ζi, ζ̇i and ζ̈i. The force coefficient in the i direction is defined as Ci = 2Fi/ρfDU2, where Fi



Fig. 1. Sketch of the physical configuration: (a) general two-degree-of-freedom system, and (b) three cases addressed in this paper, where the cylinder is
allowed to oscillate in the in-line direction (IL), in the cross-flow direction (CF ), or in both directions (IL+CF ).

denotes the span-averaged force in the i direction. The non-dimensional mass is defined as m = ρc/ρfD2; it is set to 2. The
body dynamics in the i direction is governed by a forced second-order oscillator equation:
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Ci

2m
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The reduced velocity in the i direction is defined as U∗

i = 1/fnat,i, where fnat,i is the natural frequency in vacuum, fnat,i =

D/2πU
√
ki/ρc . In the one-degree-of-freedom cases (IL and CF ), the reduced velocity U∗

i is denoted by U∗, and the natural
frequency fnat,i by fnat . In the two-degree-of-freedom case (IL+CF ), the structural stiffnesses are the same in both directions;
the reduced velocity and natural frequency of the oscillator are referred to as U∗

= U∗
x = U∗

y and fnat = fnat,x = fnat,y. The
damping ratio is set equal to zero in both directions to allow maximum amplitude oscillations (γi = 0).

2.2. Numerical method and data processing

The behavior of the coupled flow–structure system is predicted by direct numerical simulation of the three-dimensional
Navier–Stokes equations. The numerical procedure is identical to that employed in Gsell et al. (2016). The computations are
performed using the finite-volume code Numeca Fine/Open (www.numeca.com), which is based on second-order spatial
schemes and a second-order dual-time-stepping time integration. TheNavier–Stokes equations are expressed in the cylinder
frame which avoids any grid deformation. The frame motion is taken into account by adding inertial terms in the Navier–
Stokes equations. At each physical time step, the body motion equations (1) are solved implicitly through a dual-time-
stepping scheme. Flow and body solutions are therefore updated simultaneously.

A detailed convergence study has been performed in order to set the numerical parameters, as reported in Gsell et al.
(2016). The flow is discretized on a non-structured grid in a rectangular computational domain. The streamwise (x), cross-
flow (y) and spanwise (z) lengths of the domain, non-dimensionalized by D, are 120, 60 and 3. Periodic boundary conditions
are used in the spanwise and cross-flow directions. The grid size in the wall-normal direction at the cylinder surface is
∆n = 1.5 × 10−3 . In the spanwise direction, 80 cells are considered. The total number of cells is equal to 11.5 × 106.

All the computations are initialized with a static body. The reliability of the simulation approach was assessed in Gsell
et al. (2016), where the two-degree-of-freedom system responses and associated fluid forces were found to be close to the
experimental results of Jauvtis and Williamson (2004). Additional elements of validation can be found in Section 3.1 for the
CF case: the present simulation results match the experimental data reported by Hover et al. (1998) for a similar physical
system.

The physical quantities are analyzed over time series of more than 20 oscillation cycles, collected after convergence of
the structural response. The maximum amplitude of a time-dependent signal s, denoted by sm, is defined as the average of
the highest 10% of its amplitudes. The time-averaged value of s is denoted by s, and s̃ = s − s designates the fluctuating
part of s. The root-mean-square (RMS) value of s̃ is denoted by s′. The dominant frequency of the body response in the i
direction, based on the Fourier transform of ζi time series, is denoted by fi. The frequency ratio is defined as f ∗

i = fi/fnat . As
in Gsell et al. (2016), the signals were high-pass filtered in order to avoid low-frequency fluctuationswhich are not occurring
through lock-in. A span and phase averaging procedure of the flow quantities is employed to determine the wake patterns
in Section 3.3. The phase averaging is performed over 4 oscillation cycles. For each cycle, a series of 5 snapshots close to the
targeted phase are selected. The phase-averaged fields are thus computed with 20 snapshots.





Neglecting higher harmonic terms, the square of the instantaneous flow velocity magnitude can be expressed as follows:

Ψ ≈ Ψ + Ψ2 sin(4π f1t + φΨ2 ), (7)

where Ψ2 and φΨ2 denote the amplitude and phase of the second harmonic of Ψ . Combining expressions (4), (6) and (7), the
fluid force coefficients in the η and ξ directions can be modeled as follows:
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(9)

The connections between fluid forces and the two kinematic quantities α and Ψ will be explored in Section 4.

3. Results

The results issued from the numerical simulations for the one- and two-degree-of-freedom systems are reported in this
section. The body responses are quantified in Section 3.1, the fluid forces are examined in Section 3.2 and some elements
regarding wake topology are presented in Section 3.3.

3.1. Structural responses

The structural responses obtained in the three studied cases (IL, CF and IL+CF ) are depicted in Fig. 3. In the CF case,
the oscillation amplitudes match the experimental data of Hover et al. (1998) for U∗ < 9 (Fig. 3(a)). The peak amplitude,
observed for U∗

= 5, is approximately equal to 0.8 diameters. For U∗ > 9, the oscillation amplitudes reported by Hover et al.
(1998) decrease down to 0.2 diameters, while relatively large vibrations are still observed in the present numerical results.
As shown in Gsell et al. (2016), the body response is particularly sensitive to structural damping in the high reduced velocity
region: a small structural damping can substantially decrease the response amplitude in this region. In the experiments
of Hover et al. (1998), the structural damping is small but still not negligible; this may explain the differences observed
with the present results. The cross-flow oscillation amplitudes obtained in the IL+CF case are also reported in Fig. 3(a). The
cross-flow response is globally amplified when the in-line degree of freedom is added to the system, as previously noted
by Jauvtis andWilliamson (2004). The peak oscillation amplitude is lower than the maximum amplitude reported by Jauvtis
andWilliamson (2004). Thismay relate to the value of the Reynolds number, which is higher in the experiments as discussed
in Gsell et al. (2016). Otherwise, the cross-flow amplitudes remain globally close to the experimental data. The differences
noted in the high reduced velocity region can be explained by the above mentioned effect of the structural damping.

The in-line oscillation amplitudes obtained in the IL and IL+CF cases are plotted in Fig. 3(b). In the IL+CF case, the
amplitudes match those reported by Jauvtis and Williamson (2004). Small oscillations occur in the low reduced velocity
region (U∗

= 3). This region has been thoroughly analyzed by Cagney and Balabani (2014) for a slightly different system
(pivoted cylinder). They found that the in-line vibrations are not impacted by the addition of the cross-flow degree of
freedom. This observation is confirmed by the present results. In contrast, at higher reduced velocities, the IL and IL+CF cases
exhibit distinct behaviors: negligible vibrations are noted in the IL case, while significant oscillations appear in the IL+CF
case, especially around U∗

= 6. In this region, which coincides with the region of peak cross-flow oscillation amplitudes,
in-line response amplitudes up to 0.3 diameters are encountered. The in-line vibration amplitude rapidly decreases beyond
this regionwhere only residual oscillations persist. The present results suggest that in the IL+CF case, the in-line oscillations
occurring in the intermediate reduced velocity range are closely connected to the presence of cross-flowmotion. This aspect
is discussed in Section 4.

Body responses are generally close to harmonic. Their frequencies are quantified in Fig. 3(c) which represents the
evolutions of the frequency ratios in both directions, as functions of the reduced velocity. In the IL case, the oscillations
appearing forU∗

= 3 occur close to the oscillator natural frequency. The frequency of the oscillations of negligible amplitude
noted at higher U∗ matches the frequency of the in-line fluid force in the fixed body case, equal to twice the Strouhal
frequency (i.e. vortex shedding frequency in the fixed body case, denoted by fst in the plot). In the CF case, the oscillation
frequency remains close to the Strouhal frequency for U∗

∈ [3, 6]. At higher reduced velocities, f ∗
y reaches a plateau,

and the oscillation frequency significantly departs from the Strouhal frequency. In the IL+CF case, the in-line response
frequency is equal to twice the cross-flow response frequency over the range of U∗ under study. For U∗

= 3, the in-line





Fig. 4. Fluid force statistics as functions of the reduced velocity, in the three studied cases: (a) time-averaged in-line force coefficient and RMS values of
the fluctuating (b) in-line and (c) cross-flow force coefficients.

The RMS value of the fluctuating in-line force coefficient is plotted in Fig. 4(b). The CF case results indicate a major
amplification of C̃x when the body oscillates in the cross-flow direction, compared to the fixed body case. Such amplification
of the in-line force fluctuation is expected to impact the in-line responses when the body is allowed to oscillate in both
directions. An increase of C ′

x, even though less pronounced than in the CF case, is also noted in the IL case (for U∗
= 3). C ′

x is
generally larger in the two-degree-of-freedom case in the intermediate reduced velocity region. In particular, the peak of C ′

x
in this region is approximately twice larger in the IL+CF case than in the CF case.

The evolution of C ′
y versus U∗ is depicted in Fig. 4(c). As shown by the results obtained in the one-degree-of-freedom

cases, both in-line and cross-flow oscillations are accompanied by an amplification of C̃y. It appears that small-amplitude
in-line oscillations can induce a substantial increase of C ′

y (U∗
= 3 in the IL case). The cross-flow force fluctuation is often

amplified in the IL+CF case compared to one-degree-of-freedom cases.
Typical time evolutions of the fluid force coefficients are presented in Fig. 5. Selected time series of the force coefficients

and their spectral amplitudes based on Fourier transform are plotted forU∗
= 3 in the IL case andU∗

= 6 in the CF and IL+CF
cases, i.e. in the regions of peak oscillation amplitudes. The spectra show that the fluctuating in-line and cross-flow forces are
dominated by frequencies equal to 2f1 and f1, respectively; this is generally the case over the parameter space investigated.
It is recalled that f1 denotes the dominant frequency of the wake unsteadiness, synchronized with body oscillations under
the lock-in condition. The frequency ratio between the in-line and cross-flow forces is expected due to the symmetry of the
system. Higher harmonic components may also emerge. In particular, a third harmonic (3f1) appears in Cy spectrum and
a fourth harmonic (4f1) is sometimes noted in Cx spectrum. The contributions of the force higher harmonic components





The amplitudes of the principal spectral components of the in-line (Cx,2 and Cx,4) and cross-flow (Cy,1 and Cy,3) forces
are plotted in Fig. 6, as functions of the reduced velocity, in the three studied cases. In each direction, the evolution of the
dominant spectral component amplitude (Cx,2 and Cy,1) is comparable to the evolution of the RMS value of the entire signal
(C ′

x and C ′
y, Fig. 4(b,c)). In the in-line direction (Fig. 6(a)), the magnitude of the fourth harmonic component remains small

compared to Cx,2. An increase of Cx,4 can however be noted for U∗
= 5 and U∗

= 6 in the IL+CF case. In the cross-flow
direction (Fig. 6(b)), a large-amplitude third harmonic component occurs in the IL+CF case, in the intermediate reduced
velocity region: for U∗

= 6, the third harmonic amplitude reaches 40% of the first harmonic amplitude. The IL case results
forU∗

= 3 also indicate a significant amplification of the third harmonic when the body oscillates in the in-line direction. On
the other hand, Cy,3 remains negligible in the CF case. These observations suggest that the large-amplitude third harmonic
noted in the IL+CF case may be essentially related to the in-line oscillations of the cylinder; this phenomenon is examined
in Section 4.

3.3. Wake patterns

Visualizations ofwake patterns encountered in the three studied cases are presented in Fig. 7. They consist of iso-contours
of the span- and phase-averaged, spanwise vorticity, for U∗

= 6, i.e. in the region where body responses and fluid forces
significantly differ from one case to the other (Figs. 3, 4 and 6). Two phases are considered for each case. In each plot, the
phase-averaged trajectory of the body is indicated as well as its actual position. In the IL case (Fig. 7(a, b)), the body is
almost stationary and the flow exhibits a typical vortex street pattern, similar to that observed when the body is fixed,
where single counter-rotating vortices are alternatively shed. Following the nomenclature introduced by Williamson and
Roshko (1988), this flow topology can be referred to as a 2S pattern.Wake structure is alteredwhen the body oscillates in the
cross-flow direction (Fig. 7(c, d)). A 2P pattern can be identified in this case: two pairs of counter-rotating vortices form per
oscillation cycle. This is consistentwith prior experimental results reported by Brika and Laneville (1993) andGovardhan and
Williamson (2000), in the region of peak oscillation amplitudes. In contrast, a 2S pattern, globally comparable to that noted
in the IL case, develops in the IL+CF case, which corroborates the observations of Navrose and Mittal (2013), but departs
from the visualizations of Jauvtis and Williamson (2004), due to the different Reynolds numbers, as discussed in Gsell et al.
(2016).

The topology of the flow may thus vary from one case to the other. However, cases with distinct behaviors, as those
observed in the intermediate reduced velocity region, may also exhibit comparable wake patterns: for example large higher
harmonic components appear for U∗

= 6 in the IL+CF case but not in the IL case, while both cases exhibit a 2S wake
pattern. The differences noted between the IL+CF case and its one-degree-of-freedom counterparts, and more generally
the interactions between in-line and cross-flow forces/responses, do not seem to be systematically connected to wake
topology. Some possible mechanisms driving the contrasted behaviors of the one- and two-degree-of-freedom systems are
investigated in the next section.

4. Discussion

The results reported in Section 3 show that the fluid force and body response in a given direction (x or y) may be
substantially impacted by the existence of a degree-of-freedom and oscillations in the perpendicular direction (y or x).
Three striking features observed in the intermediate reduced velocity region are particularly addressed in this section: (i)
in this range of U∗, in-line oscillations only occur if cross-flow motion is allowed (Fig. 3(b)); (ii) cross-flow oscillations are
also influenced by the in-line degree of freedom in this region, since an increase of the oscillation peak amplitude is noted
between cases CF and IL+CF (Fig. 3(a)); (iii) concerning fluid forces, large higher harmonic contributions are observed in the
cross-flow direction when the body is subjected to both in-line and cross-flow oscillations, while in the CF case they remain
negligible (Fig. 6(b)).

In the following, these features are discussed in light of the evolutions of the two kinematic quantities introduced in
Section 2.3, α and Ψ , which relate to body motion. The angle α is the angle between the x axis and the instantaneous
oncoming flow velocity (expression (2)). The evolution of the maximum angle α (αm) as a function of the reduced velocity is
plotted in Fig. 8(a), in the three studied cases. As expected,α vanishes in the IL case. Large values ofαm are encounteredwhen
cross-flow oscillations occur. In both the CF and IL+CF cases, the region of peak αm matches the region of peak oscillation
amplitudes (Fig. 3). The values of αm are generally larger in the IL+CF case, where angles up to 0.9 radians (≈ 50◦) can be
noted.

The second kinematic quantity, Ψ , relates to the magnitude of the instantaneous oncoming flow velocity (Ψ = |V in|
2).

When the cylinder is fixed then Ψ is equal to 1 and it may substantially depart from this value when the body oscillates. A
spectral analysis shows that the fluctuatingpart ofΨ is dominatedby its secondharmonic component (2f1) so that expression
(7) provides a reasonable approximation. The values of Ψ and Ψ2 are plotted in Fig. 8(b) as functions of U∗. In the IL case,
Ψ is almost unaltered when the body oscillates (U∗

= 3). In contrast, it significantly increases in the CF and IL+CF cases,
especially in the intermediate reduced velocity region. In the IL+CF case, a maximum increase of 50% is noted compared
the fixed cylinder case. Ψ2 is also altered when the body oscillates. Both in-line and cross-flow oscillations are associated
with an increase of Ψ2, as shown by the results obtained in the IL and CF cases. The largest values of Ψ2 are observed in the
two-degree-of-freedom case; in the region of peak oscillation amplitudes (U∗

≈ 6), Ψ2 is close to the value of Ψ in the fixed
body case (Ψ2 ≈ 1).

The role of α and Ψ in the alteration of fluid forcing is examined hereafter.





or y) can be written as follows:

Ci = Di + Li, (10)

where Di denotes the drag-like contribution to Ci (Dx = Cη cos(α) and Dy = Cη sin(α)), in reference to its alignment with the
instantaneous flow velocity, and Li denotes the lift-like contribution (Lx = −Cξ sin(α) and Ly = Cξ cos(α)), i.e. perpendicular
to the instantaneous flow velocity. In the fixed body case and IL case, α vanishes, therefore Cx = Dx and Cy = Ly. Assuming
that Ci, Di and Li are periodic functions of time, they can be expressed as Fourier series,

Ci =

∞∑
n=0

Ci,n sin(2πnf1t + φCi,n ), (11a)

Di =

∞∑
n=0

Di,n sin(2πnf1t + φDi,n ), (11b)

Li =

∞∑
n=0

Li,n sin(2πnf1t + φLi,n ), (11c)

where Ci,n, Di,n and Li,n are the spectral amplitudes of the nth harmonics, and φCi,n , φDi,n and φLi,n the corresponding phases.
The amplitude of the nth harmonic of Ci relates to the nth harmonics of Di and Li as follows:

Ci,n = Di,n cos(φDi,n − φCi,n ) + Li,n cos(φLi,n − φCi,n ). (12)

The results reported in Fig. 4(b) reveal a major amplification of the fluctuating in-line force when the body oscillates in
the cross-flow direction. According to (10), this amplification may relate to two effects: an amplification of Dx related to
body motion, and the appearance of a lift-like contribution (Lx) induced by the angle α. A spectral analysis of Cx shows that
its fluctuating part is dominated by the second harmonic component. According to (12), the magnitude of this harmonic can
be expressed as follows:

Cx,2 = Dx,2 cos(φDx,2 − φCx,2 ) + Lx,2 cos(φLx,2 − φCx,2 ). (13)

The relative weights of the different terms in (13), issued from the present simulation results, are plotted in Fig. 9, in the
CF and IL+CF cases. In the CF case (Fig. 9(a)), the lift-like contribution is clearly dominant, especially in the region of peak
amplitudes of Cx,2. For U∗

= 4 and U∗
= 5, the drag-like contribution is even negative: it tends to decrease the amplitude of

the in-line force fluctuation. At higher reduced velocities, both contributions are positive but the relative contribution of Lx to
Cx,2 remains larger than 70%. This result suggests that the large amplitude of the fluctuating in-line force noted in Fig. 4(b) in
the CF case, is mainly related to the emergence of a lift-like contribution associated with the angle α. A comparable behavior
is observed in the IL+CF case (Fig. 9(b)). A simple mechanism of interaction between the in-line and cross-flow motions
can be proposed: as the body moves in the cross-flow direction, a fluctuating lift-like component emerges and considerably
alters the amplitude of C̃x, and the resulting in-line vibration, if the body is allowed tomove in this direction. Thismay explain
why, in the intermediate range of U∗, in-line oscillations appear when cross-flow oscillations occur.

Similarly, the cross-flow force coefficient Cy can be altered by the emergence of a drag-like contribution related to the
angle α. According to expression (12), the amplitude of the first harmonic of Cy (which dominates its spectrum) writes

Cy,1 = Dy,1 cos(φDy,1 − φCy,1 ) + Ly,1 cos(φLy,1 − φCy,1 ). (14)

An analysis of the relative weights of each term in (14) shows that the drag-like contribution to Cy,1 is negligible.

4.2. Influence of Ψ

A simple model has been introduced in Section 2.3 to shed some light on the modulations of the fluid forces expressed
in the moving frame, due to the variation of the instantaneous flow velocity magnitude. Following this model, the time-
averaged value of the force coefficient aligned with the instantaneous flow velocity can be expressed as

Cη ≈ (1 − κη)C
f
x + κηC

f
x Ψ +

1
2
κηC

f
x,2 cos(φΨ2 − φC f

x,2
)Ψ2. (15)

In (15), Cη depends on the time-averaged and fluctuating parts ofΨ (Ψ andΨ2). However, as C f
x,2 is generally small compared

to C f
x , the contribution of the term related to Ψ is expected to dominate, especially when Ψ ≫ Ψ2. In this case, the model

suggests a linear trend of Cη versus Ψ :

Cη ≈ C f
x + κηC

f
x (Ψ − 1). (16)

The evolution of Cη as a function of Ψ − 1, issued from the simulations, is plotted in Fig. 10(a). In this plot, the color of the
symbols indicates the relative weights of Ψ and Ψ2: high/low values of the ratio Ψ /Ψ2 are colored in dark blue/white. The
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Fig. 9. Drag- and lift-like contributions to the fluctuating in-line force as functions of the reduced velocity: evolutions of the three terms in (13) in the (a)
CF and (b) IL+CF cases.

linear relation suggested by (16) is generally observed when Ψ ≫ Ψ2 (dark-blue symbols). As shown in Fig. 10(b), Cx is
closely connected to Cη . The increase of Cx observed when the body oscillates in one or both directions (Fig. 4(a)) can thus
be related to the modulation of Cη by Ψ .

The phenomenologicalmodel also suggests a trend for the fluid force normal to the instantaneous oncoming flowvelocity,
Cξ . According to (9), the magnitude of the first harmonic can be expressed as follows:

Cξ,1 ≈(1 − κξ )C
f
y,1 cos(φC f

y,1
− φCξ,1 )

+κξC
f
y,1Ψ cos(φC f

y,1
− φCξ,1 )

+
1
2
κξC

f
y,1Ψ2 sin(φCξ,1 − φΨ2 + φC f

y,1
),

(17)

where φCξ,1 denotes the phase of the first harmonic of Cξ . The third term of (17) becomes negligible when Ψ ≫ Ψ2. In this
case, Cξ,1 is expected to follow a linear evolution as a function of Ψ ,

Cξ,1 ≈ C f
y,1 cos(φC f

y,1
− φCξ,1 ) + κξC

f
y,1 cos(φC f

y,1
− φCξ,1 )(Ψ − 1). (18)

The results reported in Fig. 11(a), which are issued from the present simulations, globally confirm this trend for Ψ ≫ Ψ2
(dark-blue symbols).

As shown in Fig. 11(b), the amplification of Cξ,1 is generally accompanied by an increase of Cy,1. Therefore, themodulation
of Cξ,1 by Ψ may play a role in the alteration of the cross-flow response when in-line oscillations occur. The structural
responses are often close to harmonic. For harmonic oscillations defined as

ζx =ζx,2 sin(4π f1t + φζx,2 ), (19a)

ζy =ζy,1 sin(2π f1t + φζy,1 ), (19b)

where ζi,n are the spectral amplitudes and φζi,n the corresponding phases, the time-averaged value of Ψ is equal to

Ψ = 1 + 2π2f 21
(
4ζ 2

x,2 + ζ 2
y,1

)
. (20)
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