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One-versus two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re = 3900

The one-versus two-degree-of-freedom vortex-induced vibrations of a circular cylinder are investigated on the basis of direct numerical simulation results. The Reynolds number, based on the oncoming flow velocity and cylinder diameter, is set to 3900. Three cases are examined: the elastically mounted body is free to oscillate either in the direction aligned with the current (in-line direction; IL case), in the direction normal to the current (crossflow direction; CF case), or in both directions (IL+CF case). In each case, the behavior of the flow-structure system is studied over a range of values of the reduced velocity (inverse of the oscillator natural frequency). The in-line and cross-flow responses observed in the IL+CF case substantially differ from their one-degree-of-freedom counterparts, especially in the intermediate reduced velocity region. In this region, no vibrations develop in the IL case and in-line oscillations only occur if cross-flow motion is allowed. These in-line oscillations are accompanied by a major increase of the cross-flow responses, compared to the CF case. The two-degree-of-freedom vibrations are associated with the emergence of large-amplitude higher harmonics in the fluid force spectra. These aspects and more specifically the impact of the existence of a degree-of-freedom and oscillations in a given direction, on the fluid force and structural response in the perpendicular direction, do not seem to be systematically connected to changes in wake topology. Here, they are discussed in light of the orientation and magnitude of the instantaneous flow velocity seen by the moving body.

Introduction

Vortex shedding downstream of a bluff body immersed in a cross-flow is accompanied by unsteady fluid forces exerted on the body. If the body is flexible or flexibly mounted, these forces may lead to structural vibrations, called vortex-induced vibrations (VIV). VIV occur when the body oscillation and the unsteady wake synchronize, a mechanism referred to as lock-in. Many natural and industrial systems are subjected to VIV. Their physical analysis and prediction have motivated a number of research works, as reviewed by [START_REF] Bearman | Vortex shedding from oscillating bluff bodies[END_REF], [START_REF] Sarpkaya | A critical review of the intrinsic nature of vortex-induced vibrations[END_REF], [START_REF] Williamson | Vortex-induced vibrations[END_REF] and [START_REF] Païdoussis | Fluid-Structure Interactions: Cross-Flow-Induced Instabilities[END_REF].

Even though most of real systems subjected to VIV involve slender flexible bodies (e.g. chimneys, marine risers), this phenomenon has been extensively studied through the canonical problem of a rigid circular cylinder mounted on an elastic support allowing oscillations in the cross-flow direction (i.e. perpendicular to the oncoming flow), the direction along which large oscillation amplitudes are generally expected (e.g. Huera-Huarte and [START_REF] Huera-Huarte | Wake structures and vortex-induced vibrations of a long flexible cylinder -part 1: dynamic response[END_REF]. Through this simplified configuration, VIV can be analyzed with a limited number of structural parameters and a single structural mode (e.g. [START_REF] Feng | The measurement of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders[END_REF][START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF][START_REF] Khalak | Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[END_REF][START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF][START_REF] Blackburn | A complementary numerical and physical investigation of vortex-induced vibration[END_REF][START_REF] Shiels | Flow-induced vibration of a circular cylinder at limiting structural parameters[END_REF][START_REF] Leontini | The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow[END_REF]. Significant body oscillations are known to occur over a well-defined range of values of the reduced velocity, defined as the inverse of the oscillator natural frequency non-dimensionalized by the inflow velocity and body diameter. In this range called the lock-in range, the oscillation frequency coincides with wake frequency. The body response amplitude exhibits a bell-shaped evolution as a function of the reduced velocity. Peak amplitudes of the order of one body diameter can be observed, depending on the structural properties [START_REF] Khalak | Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[END_REF] and Reynolds number (Re), based on the oncoming flow velocity and body diameter [START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF].

The response of an elastically mounted cylinder restricted to move in the in-line direction (i.e. parallel to the oncoming flow) has also been addressed in prior studies (Aguirre, 1977;[START_REF] Naudascher | Flow-induced streamwise vibrations of structures[END_REF][START_REF] Okajima | Flow-induced in-line oscillation of a circular cylinder[END_REF][START_REF] Cagney | Wake modes of a cylinder undergoing free streamwise vortex-induced vibrations[END_REF]. In-line oscillations are known to occur over a range of lower reduced velocities, compared to the typical lock-in range associated with cross-flow VIV. The evolution of the response amplitude as a function of the reduced velocity is characterized by two bell-shaped branches, separated by a region of low-amplitude oscillations. The peak amplitudes are comparable in both branches; they are typically of the order of 0.1 body diameters.

Recently, more attention has been paid to the case where the body is allowed to oscillate in both the in-line and crossflow directions. [START_REF] Cagney | Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom[END_REF] studied the two-degree-of-freedom VIV of a cylinder in the low reduced velocity region, where in-line oscillations occur for a single-degree-of-freedom system. No cross-flow oscillations appear in the first branch of in-line oscillations. In the second branch, cross-flow oscillations develop with amplitudes similar to those noted in the in-line direction. In both branches, the in-line response is almost unaltered compared to that observed for a singledegree-of-freedom system. The effect of adding a degree of freedom in the in-line direction on the system behavior for higher reduced velocities, i.e. where cross-flow oscillations are expected to occur, has been examined by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. When the structural mass and damping are small, large-amplitude in-line oscillations are superimposed to the crossflow responses, and the body typically exhibits figure-eight-shaped trajectories, as also confirmed by several studies [START_REF] Dahl | Dual resonance in vortex-induced vibrations at subcritical and supercritical reynolds numbers[END_REF][START_REF] Navrose | Free vibrations of a cylinder: 3-d computations at Re= 1000[END_REF][START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at re = 3900[END_REF]. The in-line oscillations are accompanied by an increase of the cross-flow oscillation amplitudes, compared to the one-degree-of-freedom case.

The behaviors of the one-and two-degree-of-freedom systems have been widely studied but most of prior works have considered each system separately. The present study aims at a joint analysis of these system responses, over a range of reduced velocities. Among other aspects, the alteration of the in-line vibrations in the intermediate reduced velocity range, and the evolutions of fluid force statistics and frequency content, when adding/removing a degree of freedom to the system, still need to be investigated. More generally, several connections between the in-line and cross-flow responses remain to be clarified.

In the present work, the behaviors of three distinct systems where the cylinder is free to oscillate either in the in-line direction, in the cross-flow direction, or in both directions, are examined over an interval of reduced velocities encompassing the region of cross-flow VIV. The Reynolds number is set to 3900 as a typical case of the early turbulent regime. The comparison between the structural responses, fluid forces and wake patterns observed for the one-and two-degree-offreedom systems is based on direct numerical simulation results. Particular attention is paid to the relative impact of the in-line and cross-flow oscillations on fluid forces and simple mechanisms are proposed to shed some light on the responses of the two-degree-of-freedom system.

The paper is organized as follows. The methodology employed in this study is presented in Section 2. The behaviors of the three systems are described Section 3. Some elements concerning in-line/cross-flow motion interaction and forcing are discussed in Section 4. The principal findings of this work are summarized in Section 5.

Method

The physical systems are described in Section 2.1. The numerical method and data processing approach are presented in Section 2.2. The tools employed to analyze fluid forces are introduced in Section 2.3.

Physical systems

A sketch of the physical configuration is presented in Fig. 1(a). An elastically mounted, rigid circular cylinder of diameter D and mass per unit length ρ c is immersed in a cross-flow. The cylinder axis is parallel to the z axis. The flow, parallel to the x axis, is characterized by its velocity U, density ρ f and dynamic viscosity µ. The Reynolds number based on U and D, Re = ρ f UD/µ, is set to 3900. The flow dynamics is governed by the three-dimensional incompressible Navier-Stokes equations. The cylinder is elastically mounted and free to oscillate either in the in-line direction (x axis), in the cross-flow direction (y axis), or in both directions, as schematized in Fig. 1(b); the three distinct cases are referred to as IL, CF and IL+CF, respectively. The structural stiffness and damping ratio in the i (x or y) direction are designated by k i and γ i . All the physical quantities are made non-dimensional by D, U and ρ f . The non-dimensional cylinder displacement, velocity and acceleration in the i direction are denoted by ζ i , ζi and ζi . The force coefficient in the i direction is defined as C i = 2F i /ρ f DU 2 , where F i Fig. 1. Sketch of the physical configuration: (a) general two-degree-of-freedom system, and (b) three cases addressed in this paper, where the cylinder is allowed to oscillate in the in-line direction (IL), in the cross-flow direction (CF ), or in both directions (IL+CF ).

denotes the span-averaged force in the i direction. The non-dimensional mass is defined as m = ρ c /ρ f D 2 ; it is set to 2. The body dynamics in the i direction is governed by a forced second-order oscillator equation:

ζi + 4π γ i U * i ζi + ( 2π U * i ) 2 ζ i = C i 2m
.

(1)

The reduced velocity in the i direction is defined as

U * i = 1/f nat,i , where f nat,i is the natural frequency in vacuum, f nat,i = D/2π U √ k i /ρ c .
In the one-degree-of-freedom cases (IL and CF ), the reduced velocity U * i is denoted by U * , and the natural frequency f nat,i by f nat . In the two-degree-of-freedom case (IL+CF ), the structural stiffnesses are the same in both directions; the reduced velocity and natural frequency of the oscillator are referred to as

U * = U * x = U * y and f nat = f nat,x = f nat,y
. The damping ratio is set equal to zero in both directions to allow maximum amplitude oscillations (γ i = 0).

Numerical method and data processing

The behavior of the coupled flow-structure system is predicted by direct numerical simulation of the three-dimensional Navier-Stokes equations. The numerical procedure is identical to that employed in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at re = 3900[END_REF]. The computations are performed using the finite-volume code Numeca Fine/Open (www.numeca.com), which is based on second-order spatial schemes and a second-order dual-time-stepping time integration. The Navier-Stokes equations are expressed in the cylinder frame which avoids any grid deformation. The frame motion is taken into account by adding inertial terms in the Navier-Stokes equations. At each physical time step, the body motion equations (1) are solved implicitly through a dual-timestepping scheme. Flow and body solutions are therefore updated simultaneously.

A detailed convergence study has been performed in order to set the numerical parameters, as reported in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at re = 3900[END_REF]. The flow is discretized on a non-structured grid in a rectangular computational domain. The streamwise (x), crossflow (y) and spanwise (z) lengths of the domain, non-dimensionalized by D, are 120, 60 and 3. Periodic boundary conditions are used in the spanwise and cross-flow directions. The grid size in the wall-normal direction at the cylinder surface is ∆n = 1.5 × 10 -3 . In the spanwise direction, 80 cells are considered. The total number of cells is equal to 11.5 × 10 6 .

All the computations are initialized with a static body. The reliability of the simulation approach was assessed in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at re = 3900[END_REF], where the two-degree-of-freedom system responses and associated fluid forces were found to be close to the experimental results of [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. Additional elements of validation can be found in Section 3.1 for the CF case: the present simulation results match the experimental data reported by [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF] for a similar physical system.

The physical quantities are analyzed over time series of more than 20 oscillation cycles, collected after convergence of the structural response. The maximum amplitude of a time-dependent signal s, denoted by s m , is defined as the average of the highest 10% of its amplitudes. The time-averaged value of s is denoted by s, ands = ss designates the fluctuating part of s. The root-mean-square (RMS) value of s is denoted by s ′ . The dominant frequency of the body response in the i direction, based on the Fourier transform of ζ i time series, is denoted by f i . The frequency ratio is defined as

f * i = f i /f nat . As
in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at re = 3900[END_REF], the signals were high-pass filtered in order to avoid low-frequency fluctuations which are not occurring through lock-in. A span and phase averaging procedure of the flow quantities is employed to determine the wake patterns in Section 3.3. The phase averaging is performed over 4 oscillation cycles. For each cycle, a series of 5 snapshots close to the targeted phase are selected. The phase-averaged fields are thus computed with 20 snapshots.

Neglecting higher harmonic terms, the square of the instantaneous flow velocity magnitude can be expressed as follows:

Ψ ≈ Ψ + Ψ 2 sin(4π f 1 t + φ Ψ 2 ), (7) 
where Ψ 2 and φ Ψ 2 denote the amplitude and phase of the second harmonic of Ψ . Combining expressions (4), ( 6) and ( 7), the fluid force coefficients in the η and ξ directions can be modeled as follows:

C η ≈ [ 1 + κ η (Ψ -1) ] C f x + 1 2 κ η Ψ 2 C f x,2 cos(φ Ψ 2 -φ C f x,2 ) +κ η C f x Ψ 2 sin(4π f 1 t + φ Ψ 2 ) + [ 1 + κ η (Ψ -1) ] C f x,2 sin(4π f 1 t + φ C f x,2 ) - 1 2 κ η Ψ 2 C f x,2 cos(8π f 1 t + φ Ψ 2 + φ C f x,2 ), (8) 
and

C ξ ≈ [ 1 + κ ξ (Ψ -1) ] C f y,1 sin(2π f 1 t + φ C f y,1 ) + 1 2 κ ξ Ψ 2 C f y,1 cos(2π f 1 t + φ Ψ 2 -φ C f y,1 ) - 1 2 κ ξ Ψ 2 C f y,1 cos(6π f 1 t + φ Ψ 2 + φ C f y,1
).

(9)

The connections between fluid forces and the two kinematic quantities α and Ψ will be explored in Section 4.

Results

The results issued from the numerical simulations for the one-and two-degree-of-freedom systems are reported in this section. The body responses are quantified in Section 3.1, the fluid forces are examined in Section 3.2 and some elements regarding wake topology are presented in Section 3.3.

Structural responses

The structural responses obtained in the three studied cases (IL, CF and IL+CF ) are depicted in Fig. 3. In the CF case, the oscillation amplitudes match the experimental data of [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF] for U * < 9 (Fig. 3(a)). The peak amplitude, observed for U * = 5, is approximately equal to 0.8 diameters. For U * > 9, the oscillation amplitudes reported by Hover et al.

(1998) decrease down to 0.2 diameters, while relatively large vibrations are still observed in the present numerical results. As shown in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at re = 3900[END_REF], the body response is particularly sensitive to structural damping in the high reduced velocity region: a small structural damping can substantially decrease the response amplitude in this region. In the experiments of [START_REF] Hover | Forces on oscillating uniform and tapered cylinders in crossflow[END_REF], the structural damping is small but still not negligible; this may explain the differences observed with the present results. The cross-flow oscillation amplitudes obtained in the IL+CF case are also reported in Fig. 3(a). The cross-flow response is globally amplified when the in-line degree of freedom is added to the system, as previously noted by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. The peak oscillation amplitude is lower than the maximum amplitude reported by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. This may relate to the value of the Reynolds number, which is higher in the experiments as discussed in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at re = 3900[END_REF]. Otherwise, the cross-flow amplitudes remain globally close to the experimental data. The differences noted in the high reduced velocity region can be explained by the above mentioned effect of the structural damping.

The in-line oscillation amplitudes obtained in the IL and IL+CF cases are plotted in Fig. 3(b). In the IL+CF case, the amplitudes match those reported by [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF]. Small oscillations occur in the low reduced velocity region (U * = 3). This region has been thoroughly analyzed by [START_REF] Cagney | Streamwise vortex-induced vibrations of cylinders with one and two degrees of freedom[END_REF] for a slightly different system (pivoted cylinder). They found that the in-line vibrations are not impacted by the addition of the cross-flow degree of freedom. This observation is confirmed by the present results. In contrast, at higher reduced velocities, the IL and IL+CF cases exhibit distinct behaviors: negligible vibrations are noted in the IL case, while significant oscillations appear in the IL+CF case, especially around U * = 6. In this region, which coincides with the region of peak cross-flow oscillation amplitudes, in-line response amplitudes up to 0.3 diameters are encountered. The in-line vibration amplitude rapidly decreases beyond this region where only residual oscillations persist. The present results suggest that in the IL+CF case, the in-line oscillations occurring in the intermediate reduced velocity range are closely connected to the presence of cross-flow motion. This aspect is discussed in Section 4.

Body responses are generally close to harmonic. Their frequencies are quantified in Fig. 3(c) which represents the evolutions of the frequency ratios in both directions, as functions of the reduced velocity. In the IL case, the oscillations appearing for U * = 3 occur close to the oscillator natural frequency. The frequency of the oscillations of negligible amplitude noted at higher U * matches the frequency of the in-line fluid force in the fixed body case, equal to twice the Strouhal frequency (i.e. vortex shedding frequency in the fixed body case, denoted by f st in the plot). In the CF case, the oscillation frequency remains close to the Strouhal frequency for U * ∈ [3,6]. At higher reduced velocities, f * y reaches a plateau, and the oscillation frequency significantly departs from the Strouhal frequency. In the IL+CF case, the in-line response frequency is equal to twice the cross-flow response frequency over the range of U * under study. For U * = 3, the in-line The RMS value of the fluctuating in-line force coefficient is plotted in Fig. 4(b). The CF case results indicate a major amplification of Cx when the body oscillates in the cross-flow direction, compared to the fixed body case. Such amplification of the in-line force fluctuation is expected to impact the in-line responses when the body is allowed to oscillate in both directions. An increase of C ′

x , even though less pronounced than in the CF case, is also noted in the IL case (for

U * = 3). C ′
x is generally larger in the two-degree-of-freedom case in the intermediate reduced velocity region. In particular, the peak of C ′ It is recalled that f 1 denotes the dominant frequency of the wake unsteadiness, synchronized with body oscillations under the lock-in condition. The frequency ratio between the in-line and cross-flow forces is expected due to the symmetry of the system. Higher harmonic components may also emerge. In particular, a third harmonic (3f 1 ) appears in C y spectrum and a fourth harmonic (4f 1 ) is sometimes noted in C x spectrum. The contributions of the force higher harmonic components

The amplitudes of the principal spectral components of the in-line (C x,2 and C x,4 ) and cross-flow (C y,1 and C y,3 ) forces are plotted in Fig. 6, as functions of the reduced velocity, in the three studied cases. In each direction, the evolution of the dominant spectral component amplitude (C x,2 and C y,1 ) is comparable to the evolution of the RMS value of the entire signal (C ′

x and C ′ y , Fig. 4(b,c)). In the in-line direction (Fig. 6(a)), the magnitude of the fourth harmonic component remains small compared to C x,2 . An increase of C x,4 can however be noted for U * = 5 and U * = 6 in the IL+CF case. In the cross-flow direction (Fig. 6(b)), a large-amplitude third harmonic component occurs in the IL+CF case, in the intermediate reduced velocity region: for U * = 6, the third harmonic amplitude reaches 40% of the first harmonic amplitude. The IL case results

for U * = 3 also indicate a significant amplification of the third harmonic when the body oscillates in the in-line direction. On the other hand, C y,3 remains negligible in the CF case. These observations suggest that the large-amplitude third harmonic noted in the IL+CF case may be essentially related to the in-line oscillations of the cylinder; this phenomenon is examined in Section 4.

Wake patterns

Visualizations of wake patterns encountered in the three studied cases are presented in Fig. 7. They consist of iso-contours of the span-and phase-averaged, spanwise vorticity, for U * = 6, i.e. in the region where body responses and fluid forces significantly differ from one case to the other (Figs. 3, 4 and6). Two phases are considered for each case. In each plot, the phase-averaged trajectory of the body is indicated as well as its actual position. In the IL case (Fig. 7(a,b)), the body is almost stationary and the flow exhibits a typical vortex street pattern, similar to that observed when the body is fixed, where single counter-rotating vortices are alternatively shed. Following the nomenclature introduced by [START_REF] Williamson | Vortex formation in the wake of an oscillating cylinder[END_REF], this flow topology can be referred to as a 2S pattern. Wake structure is altered when the body oscillates in the cross-flow direction (Fig. 7(c,d)). A 2P pattern can be identified in this case: two pairs of counter-rotating vortices form per oscillation cycle. This is consistent with prior experimental results reported by [START_REF] Brika | Vortex-induced vibrations of a long flexible circular cylinder[END_REF] and [START_REF] Govardhan | Modes of vortex formation and frequency response of a freely vibrating cylinder[END_REF], in the region of peak oscillation amplitudes. In contrast, a 2S pattern, globally comparable to that noted in the IL case, develops in the IL+CF case, which corroborates the observations of [START_REF] Navrose | Free vibrations of a cylinder: 3-d computations at Re= 1000[END_REF], but departs from the visualizations of [START_REF] Jauvtis | The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[END_REF], due to the different Reynolds numbers, as discussed in [START_REF] Gsell | Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at re = 3900[END_REF].

The topology of the flow may thus vary from one case to the other. However, cases with distinct behaviors, as those observed in the intermediate reduced velocity region, may also exhibit comparable wake patterns: for example large higher harmonic components appear for U * = 6 in the IL+CF case but not in the IL case, while both cases exhibit a 2S wake pattern. The differences noted between the IL+CF case and its one-degree-of-freedom counterparts, and more generally the interactions between in-line and cross-flow forces/responses, do not seem to be systematically connected to wake topology. Some possible mechanisms driving the contrasted behaviors of the one-and two-degree-of-freedom systems are investigated in the next section.

Discussion

The results reported in Section 3 show that the fluid force and body response in a given direction (x or y) may be substantially impacted by the existence of a degree-of-freedom and oscillations in the perpendicular direction (y or x). Three striking features observed in the intermediate reduced velocity region are particularly addressed in this section: (i) in this range of U * , in-line oscillations only occur if cross-flow motion is allowed (Fig. 3(b)); (ii) cross-flow oscillations are also influenced by the in-line degree of freedom in this region, since an increase of the oscillation peak amplitude is noted between cases CF and IL+CF (Fig. 3(a)); (iii) concerning fluid forces, large higher harmonic contributions are observed in the cross-flow direction when the body is subjected to both in-line and cross-flow oscillations, while in the CF case they remain negligible (Fig. 6(b)).

In the following, these features are discussed in light of the evolutions of the two kinematic quantities introduced in Section 2.3, α and Ψ , which relate to body motion. The angle α is the angle between the x axis and the instantaneous oncoming flow velocity (expression (2)). The evolution of the maximum angle α (α m ) as a function of the reduced velocity is plotted in Fig. 8(a), in the three studied cases. As expected, α vanishes in the IL case. Large values of α m are encountered when cross-flow oscillations occur. In both the CF and IL+CF cases, the region of peak α m matches the region of peak oscillation amplitudes (Fig. 3). The values of α m are generally larger in the IL+CF case, where angles up to 0.9 radians (≈ 50 • ) can be noted.

The second kinematic quantity, Ψ , relates to the magnitude of the instantaneous oncoming flow velocity (Ψ = |V in | 2 ). When the cylinder is fixed then Ψ is equal to 1 and it may substantially depart from this value when the body oscillates. A spectral analysis shows that the fluctuating part of Ψ is dominated by its second harmonic component (2f 1 ) so that expression (7) provides a reasonable approximation. The values of Ψ and Ψ 2 are plotted in Fig. 8(b) as functions of U * . In the IL case, Ψ is almost unaltered when the body oscillates (U * = 3). In contrast, it significantly increases in the CF and IL+CF cases, especially in the intermediate reduced velocity region. In the IL+CF case, a maximum increase of 50% is noted compared the fixed cylinder case. Ψ 2 is also altered when the body oscillates. Both in-line and cross-flow oscillations are associated with an increase of Ψ 2 , as shown by the results obtained in the IL and CF cases. The largest values of Ψ 2 are observed in the two-degree-of-freedom case; in the region of peak oscillation amplitudes (U * ≈ 6), Ψ 2 is close to the value of Ψ in the fixed body case (Ψ 2 ≈ 1).

The role of α and Ψ in the alteration of fluid forcing is examined hereafter.

or y) can be written as follows:

C i = D i + L i , (10) 
where D i denotes the drag-like contribution to C i (D x = C η cos(α) and D y = C η sin(α)), in reference to its alignment with the instantaneous flow velocity, and L i denotes the lift-like contribution (L x = -C ξ sin(α) and L y = C ξ cos(α)), i.e. perpendicular to the instantaneous flow velocity. In the fixed body case and IL case, α vanishes, therefore C x = D x and C y = L y . Assuming that C i , D i and L i are periodic functions of time, they can be expressed as Fourier series,

C i = ∞ ∑ n=0 C i,n sin(2π nf 1 t + φ C i,n ), ( 11a 
)
D i = ∞ ∑ n=0 D i,n sin(2π nf 1 t + φ D i,n ), (11b) 
L i = ∞ ∑ n=0 L i,n sin(2π nf 1 t + φ L i,n ), (11c) 
where C i,n , D i,n and L i,n are the spectral amplitudes of the nth harmonics, and φ C i,n , φ D i,n and φ L i,n the corresponding phases.

The amplitude of the nth harmonic of C i relates to the nth harmonics of D i and L i as follows:

C i,n = D i,n cos(φ D i,n -φ C i,n ) + L i,n cos(φ L i,n -φ C i,n ). ( 12 
)
The results reported in Fig. 4(b) reveal a major amplification of the fluctuating in-line force when the body oscillates in the cross-flow direction. According to (10), this amplification may relate to two effects: an amplification of D x related to body motion, and the appearance of a lift-like contribution (L x ) induced by the angle α. A spectral analysis of C x shows that its fluctuating part is dominated by the second harmonic component. According to (12), the magnitude of this harmonic can be expressed as follows:

C x,2 = D x,2 cos(φ D x,2 -φ C x,2 ) + L x,2 cos(φ L x,2 -φ C x,2 ). (13)
The relative weights of the different terms in (13), issued from the present simulation results, are plotted in Fig. 9, in the CF and IL+CF cases. In the CF case (Fig. 9(a)), the lift-like contribution is clearly dominant, especially in the region of peak amplitudes of C x,2 . For U * = 4 and U * = 5, the drag-like contribution is even negative: it tends to decrease the amplitude of the in-line force fluctuation. At higher reduced velocities, both contributions are positive but the relative contribution of L x to C x,2 remains larger than 70%. This result suggests that the large amplitude of the fluctuating in-line force noted in Fig. 4(b) in the CF case, is mainly related to the emergence of a lift-like contribution associated with the angle α. A comparable behavior is observed in the IL+CF case (Fig. 9(b)). A simple mechanism of interaction between the in-line and cross-flow motions can be proposed: as the body moves in the cross-flow direction, a fluctuating lift-like component emerges and considerably alters the amplitude of Cx , and the resulting in-line vibration, if the body is allowed to move in this direction. This may explain why, in the intermediate range of U * , in-line oscillations appear when cross-flow oscillations occur. Similarly, the cross-flow force coefficient C y can be altered by the emergence of a drag-like contribution related to the angle α. According to expression (12), the amplitude of the first harmonic of C y (which dominates its spectrum) writes

C y,1 = D y,1 cos(φ D y,1 -φ C y,1 ) + L y,1 cos(φ L y,1 -φ C y,1 ). ( 14 
)
An analysis of the relative weights of each term in ( 14) shows that the drag-like contribution to C y,1 is negligible.

Influence of Ψ

A simple model has been introduced in Section 2.3 to shed some light on the modulations of the fluid forces expressed in the moving frame, due to the variation of the instantaneous flow velocity magnitude. Following this model, the timeaveraged value of the force coefficient aligned with the instantaneous flow velocity can be expressed as

C η ≈ (1 -κ η )C f x + κ η C f x Ψ + 1 2 κ η C f x,2 cos(φ Ψ 2 -φ C f x,2
)Ψ 2 .

(15)

In ( 15), C η depends on the time-averaged and fluctuating parts of Ψ (Ψ and Ψ 2 ). However, as C f x,2 is generally small compared to C f x , the contribution of the term related to Ψ is expected to dominate, especially when Ψ ≫ Ψ 2 . In this case, the model suggests a linear trend of C η versus Ψ :

C η ≈ C f x + κ η C f x (Ψ -1). ( 16 
)
The evolution of C η as a function of Ψ -1, issued from the simulations, is plotted in Fig. 10(a). In this plot, the color of the symbols indicates the relative weights of Ψ and Ψ 2 : high/low values of the ratio Ψ /Ψ 2 are colored in dark blue/white. The The phenomenological model also suggests a trend for the fluid force normal to the instantaneous oncoming flow velocity, C ξ . According to (9), the magnitude of the first harmonic can be expressed as follows:

C ξ ,1 ≈(1 -κ ξ )C f y,1 cos(φ C f y,1 -φ C ξ ,1 ) +κ ξ C f y,1 Ψ cos(φ C f y,1 -φ C ξ ,1 ) + 1 2 κ ξ C f y,1 Ψ 2 sin(φ C ξ ,1 -φ Ψ 2 + φ C f y,1
),

where φ C ξ ,1 denotes the phase of the first harmonic of C ξ . The third term of (17) becomes negligible when Ψ ≫ Ψ 2 . In this case, C ξ ,1 is expected to follow a linear evolution as a function of Ψ ,

C ξ ,1 ≈ C f y,1 cos(φ C f y,1 -φ C ξ ,1 ) + κ ξ C f y,1 cos(φ C f y,1 -φ C ξ ,1 )(Ψ -1). ( 18 
)
The results reported in Fig. 11 (19b) where ζ i,n are the spectral amplitudes and φ ζ i,n the corresponding phases, the time-averaged value of Ψ is equal to

Ψ = 1 + 2π 2 f 2 1 ( 4ζ 2 x,2 + ζ 2 y,1
) .

(20)
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 4 Fig. 4. Fluid force statistics as functions of the reduced velocity, in the three studied cases: (a) time-averaged in-line force coefficient and RMS values of the fluctuating (b) in-line and (c) cross-flow force coefficients.

x

  in this region is approximately twice larger in the IL+CF case than in the CF case.The evolution of C ′ y versus U * is depicted in Fig.4(c). As shown by the results obtained in the one-degree-of-freedom cases, both in-line and cross-flow oscillations are accompanied by an amplification of Cy . It appears that small-amplitude in-line oscillations can induce a substantial increase of C ′ y (U * = 3 in the IL case). The cross-flow force fluctuation is often amplified in the IL+CF case compared to one-degree-of-freedom cases. Typical time evolutions of the fluid force coefficients are presented in Fig. 5. Selected time series of the force coefficients and their spectral amplitudes based on Fourier transform are plotted for U * = 3 in the IL case and U * = 6 in the CF and IL+CF cases, i.e. in the regions of peak oscillation amplitudes. The spectra show that the fluctuating in-line and cross-flow forces are dominated by frequencies equal to 2f 1 and f 1 , respectively; this is generally the case over the parameter space investigated.
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 9 Fig. 9. Drag-and lift-like contributions to the fluctuating in-line force as functions of the reduced velocity: evolutions of the three terms in (13) in the (a) CF and (b) IL+CF cases.

  (a), which are issued from the present simulations, globally confirm this trend for Ψ ≫ Ψ 2 (dark-blue symbols).As shown inFig. 11(b), the amplification of C ξ ,1 is generally accompanied by an increase of C y,1 . Therefore, the modulation of C ξ ,1 by Ψ may play a role in the alteration of the cross-flow response when in-line oscillations occur. The structural responses are often close to harmonic. For harmonic oscillations defined asζ x =ζ x,2 sin(4π f 1 t + φ ζ x,2 ),(19a)ζ y =ζ y,1 sin(2π f 1 t + φ ζ y,1 ),