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Karol Desnos, Luigi Raffo, Member, IEEE, and Maxime Pelcat

Abstract—Domain-specific acceleration is now a “must” for all
the computing spectrum, going from high performance comput-
ing to embedded systems. Unfortunately, system specialization is
by nature a nightmare from the design productivity perspective.
Nevertheless, in contexts where kernels to be accelerated are
intrinsically streaming oriented, the combination of dataflow
models of computation with Coarse-Grained Reconfigurable
(CGR) architectures can be particularly handful. In this paper
we introduce a novel methodology to assemble and characterize
virtually reconfigurable accelerators based on dataflow and
functional programming principles, capable of addressing design
productivity issues for CGR accelerators. The main advantage of
the proposed methodology is accurate IP-level latency predictabil-
ity improving Design Space Exploration (DSE) when compared
to state-of-the-art High-Level Synthesis (HLS).

Index Terms—Coarse-Grained Reconfiguration, Dataflow
MoC, Functional Programming, HLS, CAPH, MDC, FPGA,
Design Predictability, Design Productivity.

I. CONTEXT, BACKGROUND AND MOTIVATION

Flexibility and performance are two highly valued properties
of processing systems in many application domains. Modern
systems include ubiquitous and upgradable devices for IoT or
cyber-physical applications that also communicate with cloud
infrastructures. These systems must adapt to mutable condi-
tions, while avoiding unpredictable performance degradation.

To boost performance, High Performance Computing (HPC)
and embedded systems designers are pushed to opt for
Domain-Specific Accelerators (DSAs), built from ad-hoc
hardware-coded kernels exploiting parallelism for optimizing
performance. Two representative examples of this trend are
Amazon Web Services (AWS) and Movidius. On the HPC
side, AWS offers FPGAs in a cloud environment [2]. On the
embedded side, the Intel® MovidiusTM Vision Processing Unit
(VPU) is a low-power DSA used in smartphones and drones
for computer vision and artificial intelligence applications.

In terms of system flexibility, hardware DSAs based on
CGR architectures offer flexibility by adapting to variable
application parameters. CGR architectures are traditionally
composed of a mesh of Processing Elements (PEs) whose
interconnections are reconfigured over time [16] to offer flexi-
bility. CGR architectures inherit from their hardware nature the
capacity of executing compute-intensive kernels in an energy-
efficient way. However, efficiency and flexibility offered do
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not come for free. Hardware design is a complex and error-
prone task, leading to productivity losses, especially for het-
erogeneous and irregular targets. High-Level Synthesis (HLS)
approaches have been proposed to cope with these losses,
obtaining design productivity gains by separating functional
system verification, performed from a time-agnostic high-
level language, from timed system verification, performed after
automatically inferring hardware-specific code [7].

Many HLS tools are now available, such as Xilinx Vivado
HLS [17] and Intel FPGA SDK for OpenCL [4]. These tools
are based upon imperative, C-like, languages. The algorithm
to be implemented is formulated as a sequence of instructions
operating on mutable data. This choice is motivated by the
very large number of developers trained to manipulate imper-
ative languages that have been dominating computer sciences
for decades. But, from a hardware perspective, this choice
presents two major drawbacks: 1) imperative formulations
generally do not distinguish iterations over time from iterations
over space, which do not translate uniformly in hardware (the
latter do not imply causality and can therefore be parallelized
using replication); 2) they implicitly rely on the concept of
global memory at the implementation level, which immedi-
ately leads to a “bottleneck” on memory accesses [1]. These
drawbacks can be circumvented by relying upon so-called
applicative or functional languages in which algorithms are
described as a (mathematical) composition of side-effect free
functions. This approach naturally fits DataFlow (DF) Models
of Computation (MoCs). An application is decomposed into
independent processing actors, communicating with First-In
First-Out data queues (FIFOs), with no global storage or
synchronization. This is particularly true for stream processing
applications, processing data “on the fly” and which benefit
significantly from CGR architectures-based acceleration, as
found in signal/image processing, media coding/compression,
cryptography, video analytics, etc.

This paper, in Section II, introduces a novel methodology
for the optimal characterization of virtually reconfigurable
DSAs exploiting a DataFlow-Functional (DFF) HLS approach
as an alternative to traditional HLS tools based on imper-
ative languages. The proposed methodology is targeted for
heterogeneous and irregular CGR architectures, leveraging
on application specific PEs and tailoring the interconnect to
minimize FIFOs. For prototyping purposes, and to compare
with commercial flows, experiments target FPGA technologies
and demonstrate that, thanks to its modularity and abstraction
capabilities, the proposed approach guarantees latency pre-
dictability (see Section III). Beside we also show (Section
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IV) that our DFF approach leads to improved performance
for DSAs with CGR architectures.

II. PROPOSED DATAFLOW-FUNCTIONAL HLS

The proposed framework is built from two existing tools
developed by the authors: the CAPH compiler and the Multi-
Dataflow Composer (MDC) toolset. CAPH [12] is an open-
source, domain-specific framework for the specification, sim-
ulation and implementation of stream-processing applications
based on a dynamic dataflow MoC. Applications are spec-
ified as DataFlow Networks (DFNs) using a higher-order,
polymorphic functional language. The behavior of each DF
actor is defined as a set of transition rules using pattern
matching on structured data, resulting in improved abstraction
capabilities. The CAPH toolchain provides graphical visual-
ization of DFNs; code simulation with trace facilities; and
HLS producing SystemC code for simulation and resource-
monitoring purposes, as well as platform-agnostic ready-for-
synthesis VHDL code. CAPH provides 1:1 DFN PEs synthe-
sis, but no support for reconfiguration. MDC is a suite for the
design and development of heterogeneous and irregular DSAs
based on a set of DFNs to specify the desired behavior of
the system [6]. It builds reconfigurable datapaths, leveraging
on a two-step approach: 1) a model-to-model compiler, the
Multi-Dataflow Generator (MDG), derives a multi-functional
DFN [10] starting from a set of disjointed DFN specifications;
2) a dataflow-to-hardware mapper, the Platform Composer
(PC), deploys an HDL description of the CGR datapath. Up to
this work, MDC was specific to RVC-CAL language and the
actor communication protocol was hardwired on the resulting
CGR architecture. Now users define custom communication
protocols, and MDC accordingly implements the handshake
among PEs. MDC provides N:1 DFNs mapping on a CGR
DSA, but it does not support PE synthesis.

Based on the described complementaries, this work pro-
poses a fully automated toolchain, integrating MDC and
CAPH, for specifying and deploying CGR DSAs. The
toolchain architecture is depicted in Fig. 1. The proposed DFF
HLS flow consists of three main phases:
1) Composition - Model-to-model compilation performed by

MDC MDG, taking as inputs generic DFNs. Output: high-level
multi-dataflow DFN of the DSA.
2) Optimization - Optimal sizing of the actor-connecting

FIFOs . Optimization starts from an estimation produced by
the CAPH Compiler SystemC backend, which is adapted to
the multi-functional DFN case by worst case analysis.
3) Generation - Deployment of the CGR DSA. The MDC PC

component outputs a top-level HDL module, corresponding
to the optimized multi-functional DFN, using the CAPH
generated Hardware Component Library (HCL) actors.

Figure 1b summarizes the flow steps. (1) Users are required
to provide the input set of specifications (N different DFNs) to
be accelerated using the CAPH language. Starting from these
inputs, three parallel steps take place to i) make CAPH DFNs
compliant with MDC through the CAPH-to-XDF parser (2),
ii) optimize sizing of the buffer connecting DF actors (3), and
iii) generate the target-independent HCL (4). Three more steps
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Fig. 1. Proposed flow: components (a); and execution sequence (b).

come in succession. The N XDF networks produced by (2) are
merged in a multi-dataflow network (5), which is optimized
(6) using the worst case analysis results of (3). Finally, the
CGR platform-independent DSA is deployed in (7). During
the merging process (5), common actors are identified and
connections minimization is guaranteed. In the CGR DSA,
combinatorial switching elements are used to access shared
modules, this may affect frequency but not latency.

III. PROPOSED APPROACH: FEATURES AND NOVELTY

CGR architectures provide the flexibility needed by modern
signal processing applications, while achieving high efficiency
through specialization. Their features and granularity are
highly varied [3], and several works in literature address their
design issues. Raffin et. al [8] propose the ROMA framework
for the scheduling, binding and routing of reconfigurable
accelerators for multimedia applications. The ROMA archi-
tecture is composed of custom reconfigurable PEs and the
framework is specific to them, following an approach similar
to general purpose devices, thus loosing specialization and,
in turn, efficiency. Voros et. al [15] leverage on a fixed CGR
structure that comes along with its synthesis flow, and where
3 different types of PEs can be used for accelerating purposes.
Our effort focuses on a more specific problem: we discuss in
this paper a flow to characterize and synthesize circuits to be
embedded in a DSA infrastructure. MDC has been combined
in previous work with the Xronos HLS to offer DFF HLS
to build a Xilinx-specific DF-to-hardware design environment
[9]. Table I reports a qualitative comparison among our work
and other frameworks available in literature for CGR DSAs.

TABLE I
PROPOSED FLOW VS. STATE-OF-THE-ART.

[8] [15] [9] this work
Framework: Input Specs C C dataflow dataflow

Framework: (Re-)mapping Y Y Y Y
Framework: PE generation N Y Y Y

DSA: technology custom custom Xilinx ASIC,
device device FPGA FPGA

DSA: heterogeneity N Y Y Y
DSA: topology fixed fixed custom custom
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CGR DSAs can also be obtained with sole HLS, while
modeling reconfiguration by hand. State-of-the-art HLS frame-
works are typically imperative-based, and most of them are
also target-dependent [5]. As we are going to demonstrate in
Section IV, imperative-based HLS is not the best choice for
developing CGR DSAs, differently from DFF HLS. Synflow
Studio [14] provides a proprietary HLS framework for multi-
vendor FPGAs using the Cx DF language, which does not sup-
port ASICs. Platform-agnostic HDL specification is challeng-
ing, as the resulting hardware has difficulties to compete with
platform-specific code performance. To the best of our knowl-
edge, only two academic flows support platform-agnostic DF-
oriented HLS: the Orcc HDL backend [13] leveraging on
the RVC-CAL language, and CAPH [12]. CAPH, adopted in
this work, has the advantage of using functional programming
semantics that, contrary to the RVC-CAL language, removes
imperative semantics from actors. The Orcc HDL backend
is no longer available, thus it is not possible to compare
performance with [13].

Performance predictability is important in a design flow.
Indeed, knowing the properties, and in particular the latency,
of the implemented system at early design stages improves
productivity and reduces design effort. This is a key feature
of our approach. HLS tools based on imperative languages
can only provide IP latency estimates after synthesis when a
reconfigurable system is designed. In Vivado HLS [17] this
estimate takes the form of a range (min to max latency):
the actual value of each single configuration in a reconfig-
urable case is obtained by running the corresponding mode
over the deployed CGR accelerator. The Intel FPGA SDK
for OpenCL [4] pursues automatic system-level integration
(and parallelization) of hardware accelerators complying the
OpenCL computing model. As a result, low-level, cycle-
accurate pipeline/scheduling information, typical in other IP-
based HLS tools, is sacrificed in favor of an annotated depen-
dence graph describing the generated kernel as a combination
of blocks. The estimation provided in the graph refers to the
types/sizes of load/store units, stalls and latencies, but a non-
trivial calculation of the IP latency is left to designers. Fi-
nally, optimization is performed by profiling kernel execution,
requiring re-synthesizing an equivalent kernel, automatically
instrumented with performance counters, to analyze memory
access behavior (stall, occupancy, bandwidth).

The key selling feature of the proposed DFF flow is the
ability to compute early and accurate latency1 estimations
before synthesis. Such values depend on the critical path length
in the DFN and on the maximum number of cycles required
for each actor firing. For Synchronous DataFlow (SDF) graphs,
both can be computed statically. For non-SDF graphs, CAPH
estimates latency running the cycle-accurate code generated
by its SystemC backend. The latency of the CGR-based DSA
generated by the DFF flow depends on the selected mode
only, corresponding to the selected stand-alone networks, since
merging does not affect latency. As a result, the DSA can be
optimized in terms of latency before synthesis. To the best of
our knowledge, neither [8] nor [15] present this predictability

1Number of clock cycles required to compute all outputs as in [17].

feature, while [9] handles SDF inputs only.
In general, pre-synthesis prediction offers an additional

advantage: developers can focus on the application to be
accelerated with an algorithmic-oriented approach rather than
a synthesizer-based one. Imperative-based HLS tools require
DSE to improve latency. Developers have to deal with the
mentioned lack of information and to understand how to
exploit both the available #pragmas and their combinations
towards best performance. Moreover, code refactoring may
also be necessary to achieve optimal latency values. For these
reasons, developers must have a thorough knowledge of the
synthesizer and a considerable effort is required to obtain
an optimized architecture. To conclude, when compared to
imperative HLS, the DFF nature of the proposed HLS provides
earlier explorations, while offering system predictability and
guaranteeing performance, as demonstrated in the next section.

In summary, with respect to the context of CGR DSAs, the
main benefits/features of the proposed integrated flow are:
1) Custom PE Generation - Hardware generation considers

heterogeneous, HLS-generated PEs for each DF actor, favoring
flexibility with respect to [8].
2) Reconfigurability Management - DF-based mechanism

maximizes and controls resource re-use, leveraging on dat-
apath merging techniques. Moreover, reconfiguration manage-
ment is guaranteed by MDC.
3) Predictability - Modular specifications facilitate the pre-

dictability of system properties. Before synthesis latency esti-
mations can be carried out on the basis of the pre-processed
CAPH DFNs.
4) Target Independence and Availability - Both MDC and

CAPH are platform-agnostic and open source.
5) Code Readability - MDC and CAPH preserve the cor-

respondence among DF actors and hardware PEs. This is
important for example in case of post-HLS enhancements.
Vivado HLS acts differently since it assigns IPs to functional
units (see Fig. 2).

module rec_iP(…); …
rec_IP_mux_3to1_sel2_32_1 #(…)
rec_IP_mux_3to1_sel2_32_1_U0(

.din1( tmp_2_fu_602_p1 ),…);
rec_IP_mac_muladd_8ns_8s_16s_16_1 #(…)
rec_IP _mac_muladd_8ns_8s_16s_16_1_U17(

.din0( grp_fu_1351_p0 ),…); …
endmodule

void rec_IP(…){  …
switch(id){

case 2: 2tap_function(…); break;
case 3: 3tap_function(…); break; 
default: 4tap_function(…); break;}…}
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module rec_iP(…); …
configurator config_0(.sel(sel),.ID(ID));
mul_act actor_mul_act_0(…);
fifo #(.depth(8),.size(16)) 
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// 2tap
net prod=mul(…);
net sum=add(prod,…);
net out=fir2(sum, …);
…

.c

.v .v

// 3tap
net prod=mul(…);
net sum=add(prod,…);
net out=fir3(sum, …);
…

// 4tap
net prod=mul_act(…);
net sum=add_act(prod,…);
net out=fir4_act(sum, …);
…

.cph2tap_function

rec_IP_mac_muladd
_8ns_8s_16s_16_1 

add_act

add_act

Fig. 2. Proposed Flow vs. Vivado HLS: starting and generated codes.

IV. EXPERIMENTAL RESULTS

This section compares results obtained with three design
flows: i) the proposed DFF one, using Vivado v2015.2 and
Quartus v17.1 to synthesize the CGR DSAs; ii) Vivado HLS
v2015.2; and iii) Intel FPGA SDK for OpenCL v17.0. Target
devices are Xilinx Virtex 7 and Intel Cyclone V FPGAs. The
test case chosen is a 1D/2D HEVC 3/5/8-tap hardware accel-
erator for approximate image interpolation filters, in fixed and
reconfigurable configurations (with runtime filter switching)
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Fig. 3. Proposed flow vs. (a)/(b) Xilinx (XC7VX485T) and (c) Intel (5CSEMA5) target FPGAs. Intel/Xilinx resources: REG=register/FF, LOGIC=ALUT/LUT,
RAM=M10K/BRAM, DSP=DSP/DSP. Data are shown on a logarithmic scale with base of 10. Latency values in clock cycles (CC) are reported in (a).

[11]. In the case of Xilinx/Intel HLS tools, a moderate effort
has been put into code refactoring for optimization using shift
register inference, line buffers, resource reuse when possible,
and pragmas (loop unrolling and pipeline). For this reason they
involve two reconfigurable designs: baseline (R) and optimized
(R*). A comparison among the different flows is proposed in
terms of resource utilization and early latency estimation.
DFF HLS vs. Vivado IP-Level HLS: Fig. 3a shows that
for standard implementations (indicated by 3/5/8/R) the DFF
flow achieves better latency results. The very large latencies
obtained with Vivado HLS are explained by the default area-
driven synthesis (which required adding #pragma and code
refactoring). Moreover, as stated in Sect. III, our flow preserves
the latency values of the reconfigurable IPs, meaning that
merging does not alter latency as opposed to other synthesizers
and, on top of that, before sythesis estimations are equal to
actual post-synthesis results. With respect to the optimized
reconfigurable versions (R*), only for the 1D filter a lower
use of resources (see Fig. 3b) and latency has been obtained
using Vivado HLS (-72.0% register count, REG; -76.1%
logic elements, LOGIC; -10.5% for minimum and 14.8% for
maximum latency). In the 2D filters case our performances
are superior. Latency results are more than 3 times larger in
the best Vivado HLS case, and again their value is (i) not
preserved and (ii) highly variable in the reconfigurable case.
DFF HLS vs. OpenCL System-Level HLS: As in the Vivado
HLS case, a significant effort on code refactoring is needed for
optimization, which is driven by an optimization report offered
at early design phases (it contains highly inaccurate resource
and system-level pipeline latency/stalls estimations, rather than
individual kernel latency values). Hence, there is no sane way
to accurately calculate kernel latency and have insights into the
generated datapath; therefore, no latency results are reported
in Fig. 3a. For resource usage results refer to the kernel
instantiation (See Fig. 3c). The support for the OpenCL model
even at kernel level (automatic pipeline to support various
threads on the fly, memory accesses optimization, replications,
etc.) introduces significant resource overhead.

V. CONCLUSION

The results presented in this paper suggest that DFF HLS
is a promising alternative to classical imperative HLS to build

flexible and predictable CGR DSAs. Competitive resource
usage are achieved with respect to commercial HLS meth-
ods, while allowing pre-synthesis and exact datapath latency
predictions. By trying to ease hardware design to software
developers, mainstream HLS tools have probably missed a key
point in hardware design that is critical to embedded systems:
having precise information on the generated datapaths to better
optimize hardware accelerators through improved DSE. We
demonstrated this issue on latency, proposing an alternative
design flow that overcomes traditional HLS tools under this
aspect. DFF HLS is able to tackle both issues: raising the ab-
straction level while keeping low-level performance estimates
available for further hardware tuning. In this work, for the
sake of brevity, we have provided the complete assessment of
one single accelerator. Future works will extend the proposed
analysis to other system features and more test cases.
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