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a b s t r a c t 

Deflagration to Detonation Transition (DDT) is an intricate problem that has been tackled numerically, un- 

til recently, using single-step chemical schemes. These studies (summarized in Oran and Gamezo, 2007) 

[1] showed that DDT is triggered when a gradient of reactivity forms inside a pocket of unreacted ma- 

terial. However, recent numerical simulations of hydrogen/air explosions using detailed reaction mecha- 

nisms (Liberman et al., 2010; Ivanov et al., 2011) [2,3] showed that detonation waves can emerge from

the flame brush, unlike what was usually seen in the single-step simulations. The present work focuses

on chemistry modeling and its impact on DDT. Using the idealized Hot Spot (HS) problem with constant

temperature gradient, this study shows that, in the case of hydrogen/air mixtures, the multi-step chemical

description is far more restrictive than the single-step model when it comes to the necessary conditions

for a hot spot to lead to detonation. A gas explosion scenario in a confined and obstructed channel filled

with an hydrogen/air mixture is then considered. In accordance with the HS analysis, the Zeldovich’s

(1970) mechanism [4] is responsible for the detonation initiation in the single-step case, whereas an- 

other process, directly involving the deflagration front, initiated DDT in the complex chemistry case. In

the latter, a shock focusing event leads to DDT in the flame brush through Pressure Pulse (PP) amplifica- 

tion.

1. Introduction

Mining, process and energy industries suffer from billions of

dollars of worldwide losses every year due to gas explo sions. In

addition to these costs, explosion accidents are often tragic and

lead to severe injuries and fatalities. These damages vary signifi- 

cantly from an a ccident to another, depending on the explosion

scenario. A sound knowledge of explosion physics is therefore of

vital importance for the prediction of hazard potentials and the

implementation of efficient preventive measures.

Gas explosions have been studied experimentally [1,5] , theoret- 

ically [4,6–11] and numerically [1,12–14] . They occur when a re- 

active mixture is subjected to an external source of energy from

which a combustion wave emerges. This reaction wave can have

two possible propagation modes [15,16] : supersonic in the case of

detonation and subsonic in the case of deflagration. The direct ini- 

tiation of detonation has been studied experimentally and theoreti- 

cally [17–20] and is only possible if a sufficient energy is deposited

quasi-instantaneously. In most cases, this condition is not met and

a deflagration emerges from the ignition source.
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Deflagrations are intrinsically unstable and tend to accelerate

continuously after ignition [16] . This Flame Acceleration (FA) pro- 

cess is well understood thanks to extensive experimental (summa- 

rized in the Ciccarelli and Dorofeev review paper [5] ), theoretical

[6–8] and numerical [12,13] works and depends on the degree of

confinement and obstruction encountered by the flame during its

propagation. FA can either result in fast deflagrations or create the

appropriate conditions for the Deflagration-to-Detonation Transi- 

tion (DDT). Understanding DDT is crucial because it often leads

to an escalation in the hazard scenario. Years of theoretical and

numerical effort s, have been devoted to exploring the different

mechanisms that can initiate DDT. Despite this, a first principle

description of the relative importance of these mechanisms, and

the possible interplay among them, is still incomplete.

During flame acceleration, the reaction front acts like a piston

[15] moving the reactants ahead of it. As a result of the displace- 

ment flow, compression waves/shocks are formed ahead of the

flame. Thus, a propagating deflagration wave usually consists of the

reaction front following a precursor compression wave/shock. This

deflagration-shock complex has been tackled by many investiga- 

tors [9,10,16] . They showed that: (1) the precursor shock is, in gen- 

eral, faster that the deflagration; (2) once the deflagration reaches

a critical speed, equal to the sound speed of the burned gases,

there exists a path along which a deflagration can reach a veloc- 



Fig. 1. Sketch of the Gravent explosion channel geometry [26] . A series of 7 obstacles are evenly placed at the top and bottom plates of the channel. The constant spacing S 

is equal to 300 mm and the blockage ratio is Br = 2 h/H = 30% . From the last obstacle to the end plate, the channel is unobstructed allowing detonation propagation without 

perturbation. Distances are in millimeters. 

ity equal to that of the precursor shock, forming a self-sustained

detonation wave (or CJ detonation). This path is referred to as the

generalized Hugoniot curve by Troshin [11] and basically describes

all the successive solutions for the double discontinuity problem

during DDT. In other words, according to this simple approach to

DDT, a transition to detonation must occur once a certain flame ve- 

locity is reached. It does not, however, give a detailed description

of the transition itself.

A breakthrough in detonation research occurred when Oppen- 

heim and Urtiew [9,21] , later backed up by the simulations of Oran

and Gamezo [1] , showed that the detonation onset is not simply

the result of the coalescence between a flame and a shock. In- 

stead it was observed that the reactants trapped between the lead- 

ing shock and the deflagration are heated and compressed to the

point where enough energy is accumulated and an explosion can

occur. These observations are consistent with the mechanism pro- 

posed by Zeldovich et al. [4] and later observed experimentally by

Lee et al. [22] . Consider a reactive mixture exposed to a gradient

of induction time ∇τ I , which may be a gradient of temperature or

pressure or reactants concentration [23] . A reaction wave emerges

from the point of lowest induction time τ I and its propagation

speed depends on ∇τ I . For a steep initial gradient, a weak shock

forms and quickly detaches from the reaction wave which proceeds

as a normal flame. Conversely, for a small initial ∇τ I , the mixture

is simply uniformly ignited without shock formation. For interme- 

diate values of ∇τ I , the reaction wave and the compression waves

can propagate in phase. In this case, the coherent energy release

causes the compression wave to steepen into a shock. The ampli- 

fication of the latter and its coupling to a combustion wave later

forms a detonation.

The presence of obstacles in the flame path is known [1,24] to

facilitate DDT. First, obstructions enhance FA thus producing strong

shocks ahead of the flame. Second, these shocks can interact with

the obstacles allowing shock focusing at the corners, shock reflec- 

tions and collisions and shock flame interactions. These events cre- 

ate the appropriate conditions for the detonation onset.

This has been the major trend in DDT research until a recent

paper of Kuznetsov et al. [25] . Evaluating the Mach of the shock

ahead of the flame prior to DDT, they showed that the temperature

of the preheat zone ahead of the flame ( 550 K for a stoichiomet- 

ric hydrogen/oxygen mixture) does not allow spontaneous ignition.

Therefore, the Zeldovich mechanism could not explain DDT in this

case, which raised questions about the universality of the mecha- 

nism. Instead Liberman et al. [2] and Ivanov et al. [3] performed

numerical simulations with detailed chemistry modeling to show

that there exists another mechanism, different from the gradient

of reactivity and involving the flame brush, that can explain the

transition to detonation.

These last findings suggest that the Zeldovich mechanism is not

a universal trigger for DDT, and that the scenario leading to DDT

may depend greatly on the chemistry modeling used in numerical

simulations. This motivated the present study, which focused on

the influence of kinetics on DDT using two-dimensional DNS. The

configuration considered is based on the Gravent explosion chan- 

nel database [26] . The confined and obstructed channel, presented

in Section 2 , is filled with a quiescent stoichiometric hydrogen/air

mixture. The 9S18R (9 species and 18 irreversible reactions) and

3S1R (3 species and 1 reaction) chemical schemes used in this pa- 

per are presented in Sections 3.1 and 3.2 . These mechanisms are

first compared using the canonic Hot Spot (HS) case with constant

temperature gradient in Section 3.4 . This allows to investigate the

requirements, in terms of temperature and radius, for HS to trig- 

ger DDT using 3S1R and 9S18R, similarly to the analysis proposed

by Liberman et al. [27,28] . The conclusions will be used to explain

the results of the simulations of the BR30hS300 channel, presented

in Section 4 . The impact of the chemistry modeling on the DDT

mechanism is analyzed in Section 4.3 .

2. Numerical setup

The 2D direct numerical simulations presented in this paper

are performed using the DNS/LES solver for the fully compress- 

ible multispecies Navier-Stokes equations AVBP, co-developped by

CERFACS and IFPEN [29] . A centered continuous Taylor–Galerkin

scheme third-order in space and time (TTGC [30] ) is used.

To investigate DDT in obstructed and confined channels, the

BR 30 hS 300 configuration of the Gravent database [26] is chosen

( Fig. 1 ). The channel is H = 60 mm high and L = 5400 mm long. 7

obstacles are evenly spaced along the top and bottom walls of the

channel with a constant blockage ratio Br = 2 h/H = 30% , where h

and H are the height of an obstacle and the channel, respectively.

The spacing S between the obstacles axis is equal to 300 mm .

From the last obstacle ( X = 2 . 05 m ) to the closed end wall

( X = 5 . 4 m ), the section of the channel is constant allowing deto- 

nation propagation without perturbation. A three-dimensional DNS

of a channel this large is not affordable. Only a two-dimensional

longitudinal slice of the BR 30 hS 300 configuration is therefore

considered. Note that 2D simulations of DDT are still largely used

nowadays [1] to explore the mechanisms involved in DDT. All

obstacles and walls are treated as no-slip adiabatic boundaries.

Usually an Adaptive Mesh Refinement (AMR) is used when sim- 

ulating DDT in large channels. While this strategy is useful to

maintain reasonable computational costs, it requires an a priori

knowledge on the key ingredients impacting the problem, thereby

increasing the resolution in the regions where these mechanisms

activate. Here, another strategy, based on multiple meshes, is used

(see Fig. 2 ). Each grid is stepwise homogeneous and composed of

two zones: (1) a refined section, 4.5 S large, where the resolution

is uniform 1x f ine = 20 µm , thereby allowing to capture the defla- 

gration front (350–450 µm thick), the detonation front (half reac- 

tion thickness: 153 µm) as well as the flow structures; (2) a coarser

grid, starting at least 2 S = 600 mm ahead of the combustion wave,

with a uniform and larger element size 1x coarse = 120 µm . When

the distance separating the tip of the combustion wave from the



Fig. 2. Illustration of the interpolation procedure between the different meshes used for the present simulations. The interpolation from mesh to mesh is performed when 

the flame is separated by a distance of two spacings 2 S from the end of the fine section of the mesh. t Interp (1 → 2) denotes the time when the interpolation, from the first 

mesh to the second, is performed. 

Fig. 3. Left: One dimensional hydrogen/air laminar flame speed s L at atmospheric conditions for various equivalence ratios φ. (Solid line) 9S18R mechanism [31] ; experi- 

mental data: ( ¤) Berman [38] , ( ◦) Dowdy et al. [39] , ( ▽ ) Egolfopoulos and Law [40] , ( △ ) Iijima and Takeno [41] , ( : ) Takahashi et al. [42] . Right: Influence of temperature and 

chemistry on the induction time τ I and the excitation time τ E for φ = 1 and P = 1 atm . τ I from experiments: ( ¤) Slack and Grillo [43] and ( ◦) Snyder et al. [44] . T c 9 S and T 
c 
3 S 

are the ignition threshold temperatures for the 9S18R and 3S1R mechanisms, respectively. 

end of the refined section reaches 2 S ( Fig. 2 (b)), a piecewise linear

interpolation of the solution is performed to another mesh with

the same characteristics as the previous one except that the re- 

fined section now starts just behind the flame tail ( Fig. 2 (c)). This

interpolation is performed 3 times during the flame propagation

in the obstructed region without any noticeable numerical noise.

It allows to correctly capture the combustion waves as well as the

flow structures far ahead of the flame.

The channel is filled with a quiescent mixture of hydrogen and

air at atmospheric conditions. It is ignited at the left closed end

using a semi-spherical 5 mm radius hot kernel. This initialization

procedure was employed in other gas explosion studies ranging

from venting deflagrations [12,14] to DDT [1,13] . Among all the

equivalence ratios considered in the experiments, the case cor- 

responding to stoichiometric hydrogen/air and showing DDT was

selected.

3. Chemistry modeling

The objective of the present paper is to study the influence

of the kinetics modeling on DDT. To do so, a single-step reduced

chemistry, which is the classical approach for DDT simulations,

is confronted to a multi-step mechanism. Besides the chemical

scheme, the numerical setup is the same for all simulations.

3.1. Detailed chemistry

The multi-step mechanism chosen to model hydrogen/air chem- 

istry is the mechanism derived by Boivin et al. [31] , composed of

9 species and 18 irreversible reactions. This mechanism is referred

to as 9S18R in the following. 9S18R is validated against experimen- 

tal data for atmospheric hydrogen/air laminar flame speeds s L for

a wide range of equivalence ratios φ ∈ [0.4..1.5] in Fig. 3 (left). The

mechanism predicts s L with very good accuracy at stoichiometry,

which corresponds to the case considered for the DDT simulations

presented in Section 4 .

3.2. One-step reduced chemistry

Until very recently, the most common approach in DDT simu- 

lations has been the use of reduced single-step mechanisms [1] .

The methodology to derive such chemistries using only one trans- 

ported species is detailed in [32] . The same procedure was later

used by Wang et al. [33] to derive a one-reaction mechanism for

hydrogen/air flames, taking into account the reaction order. This

strategy was selected to develop the single-step chemistry, named

3S1R, used in the simulations presented in Section 4 .

3S1R is designed to reproduce both the flame and the det- 

onation global features. Two fictive species S 1 and S 2 are used,

and the reaction formula reads S 1 + 0 . 5 S 2 → P, where P denotes



Fig. 4. Left: A sketch of the hot spot (HS) of radius r 0 with constant temperature gradient. The reaction wave emerges from the point of minimum ignition time τ I . Right:

The ξ − ε diagram shows the detonation peninsula [35] : DDT is possible between the upper branch ξ u and the lower branch ξ l . 

the products. This allows to mimic the hydrogen oxidation re- 

action. S 1 and S 2 have the same molecular weight W equal to

the average molecular weight of an hydrogen/air mixture at sto- 

ichiometry, i.e. W = 0 . 021 kg/mol . Therefore W is constant across

the flame. The reactants share the same specific heat capacities at

constant pressure C p and constant volume C v so that the specific

heat ratio γ is constant across the flame front. The Lewis num- 

ber of the species Le S k is set to unity. The reaction rate of the

irreversible reaction is modeled using an Arrhenius formulation:

˙ ω = A (ρ/W ) 1 . 5 Y S 1 (Y S 2 ) 
0 . 5 exp(−T a /T ) . The set of target parameters

are:

• The laminar flame speed s L and the adiabatic flame tempera- 

ture T b : they allow the reduced mechanism to reproduce the

effect of reactants consumption and gas expansion on the flame

propagation during the FA phase. s L and T b are imposed equal

to the one obtained with the 9S18R mechanism at φ = 1 .

• The Chapman–Jouguet detonation speed D CJ and the half deto- 

nation thickness δd given by the ZND model for the detonation

structure. δd can be linked to the detonation cell size via em- 
pirical relations [1] .

To match these targets, a set of parameters can be tuned:

the specific heat ratio γ , the chemical energy release Q , the pre- 

expon ential factor A and activation temperature T a . The val- 

ues γ = 1 . 17 and Q = 43 . 28 RT 0 / M [ J/kg ] result in the desired tar- 

gets: T b = 7 . 13 T 0 and D CJ = 1993 m/s , T 0 = 300 K being the fresh

gas temperature and M the mean molar mass of the mixture.

Computing the 1D laminar flame in AVBP and the theoretical

ZND model using the selected values of γ and Q , the chem- 

ical parameters A and T a are determined so that s L = 2 . 43 m/s

and δd = 153 µm . The reaction rate model then reads ˙ ω = 3 . 9 ×

10 7 (ρ/W ) 1 . 5 Y S 1 (Y S 2 ) 
0 . 5 exp(−46 . 36 T 0 /T ) kg/m 

3 
/ s .

3.3. Influence of chemistry on ignition characteristic times

DDT involves spontaneous ignition. Therefore, the influence of

the chemical scheme on the induction time τ I and the excitation

time τ E has to be investigated. τ I is defined as the time for which

an homogeneous mixture must be maintained at a given temper- 

ature and pressure before exothermic reactions activate. After τ I ,

the heat release rapidly blows up and τ E is defined as the time

necessary for the heat release to go from 5 to 100% of its peak

value. τ I and τ E obtained with 9S18R and 3S1R are displayed in

Fig. 3 (right) for temperatures in the range [60 0 .. 140 0] K and atmo- 

spheric pressure ( φ = 1 ). The τ I dependance on temperature ob- 

tained with the 9S18R mechanism is in good agreement with the

experimental data. The ignition threshold T c is defined here as the

temperature below which the induction time needed before ig- 

nition is higher than the longest time scale of flame propagation

in the BR30S300 configuration τ f = L/s L ≈ 2 . 2 ms . This means that

when the temperature of the reactants is below T c , any point on

the fresh mixture can be burned by the flame before it can ig- 

nite. The ignition threshold T c 9 S ≈ 950 K obtained with the nine- 

step scheme agrees reasonably well with the experimental data.

Conversely, the induction times obtained using the reduced mech- 

anism are orders of magnitude smaller than the experimental data,

which coincides with the conclusions of Ivanov et al. [3] regard- 

ing τ I obtained with reduced chemistries for stoichiometric H 2 / O 2

mixture. Note that, with 3S1R, the mixture can be ignited even

for low temperatures, about 300 K lower than T c 9 S . Like τ I , τ E ob- 

tained with 3S1R are much lower than the ones obtained with

9S18R. The impact of these findings on DDT will be discussed in

Section 3.4 .

It is important to note that even though detailed mechanisms

can reproduce accurately both s L and τ I for conditions of pressure

lower than 3–5 bar, they suffer from a lack of calibration data for

the higher pressure conditions often encountered during DDT. This

issue has been mentioned by a number of investigators (see [34] ).

3.4. Influence of the chemistry modeling on a canonic DDT problem

In this section, a comparison between the two chemical models

is performed with regard to DDT caused by the Zeldovich mecha- 

nism [4] . The latter has been designated by a series of DNS [1] as

a sufficient condition for DDT onset. The canonic HS problem,

sketched in Fig. 4 (left) is considered in the following.

3.4.1. The hot spot problem and the detonation peninsula

According to Zeldovich and co-workers, a detonation can

emerge from a hot spot, i.e. a region characterized by a gradient

of induction time ∇τ I [4] . Inside the hot spot, a combustion wave

forms at the point of minimum τ I . If ∇τ I is too steep, a shock

forms and separates from the combustion wave. The latter pro- 

ceeds as a deflagration. On the other hand, if ∇τ I is too small,

the entire hot spot is ignited uniformly. For an intermediate range

of ∇τ I however, a coupling between the shock and the combus- 

tion wave is possible. A positive feedback between the two waves

eventually leads to the formation of a detonation front.

Bradley and Kalghatgi [35] characterized the gradient of induc- 

tion time ∇τ I needed to trigger DDT. Inside the hot spot, both a

reaction wave and a compression wave are formed. To allow a res- 

onance between both waves, the reaction wave velocity u I = d x/d τI
must neither be too high nor too low compared to the compres- 

sion wave velocity (sound speed) a . A comparison between u I and

a can be made through the variable ξ = a/u I . For certain values

of ξ allowing resonance, the compression wave can gain in am- 

plitude if the heat release inside the reaction wave is deposited



Fig. 5. The influence of pressure P and temperature T ⋆ on critical HS parameters for the single-step (dashed lines) and the multi-step mechanisms (solid lines). Left: h ⋆c is the 

minimum non-dimensional size that allows energy input to pressure waves, i.e. ε c = 1 . Right: [ ∂ T /∂ r] ⋆c is the minimum non-dimensional temperature gradient that allows 

resonance between pressure and reaction waves, i.e. ξc = 1 . 

fast enough. This can be characterized by introducing the vari- 

able ε = r 0 / (aτE ) , where ε measures the chemical energy fed to

the pressure pulse during its residence inside a hot spot of radius

r 0 . A region in the ξ − ε space, called the detonation peninsula

[35] , has been identified as the region where the conditions at the

hot spot are ideal for the onset of detonation. The region is illus- 

trated in Fig. 4 (right), between the upper branch ξ u and the lower

branch ξ l .

3.4.2. The influence of chemistry modeling on the hot spot scenario

In this section, the ξ − ε diagram is used to investigate the

outcome of a hot spot using the 9S18R and the 3S1R mecha- 

nisms. Consider a hot spherical kernel with a constant tempera- 

ture gradient and a non-dimensional size h ⋆ = 2 r 0 /h, where h is

the height of an obstacle in the BR30hS300 channel (see Fig. 4 ).

The non-dimensional peak temperature inside HS is defined as

T ⋆ = (T 0 − T c ) /T c , where T c is the ignition threshold. Negative val- 

ues of T ⋆ indicate temperatures at which the mixture will not be

ignited. Since the values T c obtained with 9S18R agree very well

with the experimental data, at least for atmospheric conditions, T c

is set equal to T c 9 S .

The ξ − ε plane offers two limit lines: (1) the minimum en- 

ergy input ε c = 1 , (2) the perfect resonance between compres- 

sion and combustion waves ξc = 1 . These limits allow to define

critical hot spot parameters that can trigger DDT: (1) h ⋆ c is the

minimum non-dimensional HS size where pressure waves can

travel to gain energy, i.e. h ⋆ c = 2 ε c (aτE ) /h ; (2) ξ can be refor- 

mulated [35] as ξ = a (∂ T /∂ r)(∂ τI /∂ T ) in the radial coordinates,
thereby the minimum HS temperature gradient that leads to a res- 

onance between pressure and reaction waves can be expressed as

[ ∂ T /∂ r] c = ξc / (a∂ τI /∂ T ) . A non dimensional form for [ ∂ T / ∂ r ] c is
then [ ∂ T /∂ r] ⋆ c = (T 0 /h c )[ ∂ T /∂ r] c , where h c = h ⋆ c h . h 

⋆ 
c and [ ∂ T /∂ r] 

⋆
c

depend on the conditions of pressure P and temperature T ⋆ inside

the hot spot. The influence of P and T ⋆ as well as the chemical

scheme on the critical HS parameters is assessed in Fig. 5 . Because

τ E is much higher for the multi-step chemistry, h 
⋆ 
c values obtained

with 9S18R are higher than those obtained with 3S1R, indepen- 

dently of the temperature. For relatively low pressure ( p = 5 atm ),

the critical hot spot size is higher than half an obstacle height ( h )

and tends to h as the temperature becomes close to the tempera- 

ture threshold. Increasing the pressure leads to a radical decrease

of h ⋆ c to meet values close to the one obtained with the single- 

step mechanism. This implies that, for this canonic scenario and

when using detailed hydrogen/air schemes, conditions where en- 

ergy can be fed to pressure waves can only be obtained when

strong shocks are involved, resulting in drastic pressure increase.

This conclusion was also reached by Ivanov et al. [3] and Liberman

et al. [27,28] who computed the hot spot problem with a more

detailed hydrogen/air reaction scheme. Note that, for the single- 

step mechanism, conditions where HS can lead to an increase in

pressure waves amplitude can be met even for temperatures lower

than the ignition threshold ( T ⋆ < 0). Figure 5 (Right) shows that for

the 3S1R case, there exists a temperature gradient for which DDT

can occur for a large temperature range, and for conditions below

the ignition threshold. Increasing the hot spot peak temperature

results in an increase in the minimum temperature gradient. On

the other hand, the multi-step scheme allows DDT for high tem- 

peratures only ( ≥ 1100 K ). As the pressure increases, the DDT re- 

gion tends towards higher temperatures also pointing out the need

for strong shocks. Note that the single-step mechanism shows al- 

most no pressure dependance.

The hot spot problem may represent a simplified scenario far

from the realistic conditions that lead to DDT in gas explosions. In

practice, the hot kernel is certainly non-spherical and the distri- 

bution of the temperature gradient can be heterogeneous. In ad- 

dition, reactants mixing can occur leading to additional reactivity

gradients. However, Fig. 5 suggests that the single-step approach

allows DDT to occur for conditions far less restrictive than those

required by the detailed hydrogen/air chemistry. The latter, which

is validated against experimental data, may not even allow DDT

via gradient of reactivity in configurations such as the BR 30 hS 300

channel, unless strong shocks are formed. Further investigation is

needed to assess the extent of such conclusions to other mixtures

and fuels.

4. Numerical simulation of the BR30hS300 configuration

4.1. Flame speed and DDT

The conclusions of the previous section are assessed on a more

complex scenario of DDT in a confined and obstructed channel. The

explosion scenario of the BR30hS300 [26] is computed using the

single-step and multi-step mechanisms. The evolution of the non- 

dimensional flame tip velocity s tip / D CJ versus the flame tip position

is displayed in Fig. 6 (left). The flame tip position is defined by c =

Y H 2 /Y H2 ,u = 0 . 95 for the detailed chemistry and c = Y S 1 /Y S 1 ,u = 0 . 95



Fig. 6. Evolution of the non-dimensional flame tip speed (left) and non-dimensional flame surface (right) with the flame tip position. The gray area represents the experi- 

mental shots. The vertical bars represent the position of the seven obstacles. a u , 0 is the sound speed at the fresh gases for the initial conditions. 

Fig. 7. Numerical Schlieren ( ∇ρ/ ρ) and isocontour of progress variable c = 0 . 5 showing the flame interaction with the first obstacle. Left: single-step mechanism. Right: 

Multi-step mechanism. 

for the single-step mechanism, where u denotes unburned gases.

The numerical simulations correctly capture the main features of

the experiment. Upon ignition, the flame undergoes multiple accel- 

erations, which are well reproduced by both chemical mechanisms.

This can be explained by the fact that 3S1R and 9S18R share the

same laminar flame speed s L and burnt gas temperature T b , which

allows a good prediction of reactants consumption and gas expan- 

sion during flame propagation. In addition, according to Joulin and

Mitani [36] and Sun et al. [37] , the effective Lewis number Le eff
of two reactants flames depends on the reaction order, the equiv- 

alence ratio and the Lewis number of the reactants. Le eff reduces

to the lewis number of the fuel (oxydizer) in the case of very lean

(rich) flames. In between, a gradual evolution of Le eff is observed.

At stoichiometry, Le eff is close to unity for hydrogen/air flames,

which: (1) depletes thermo-diffusive instabilities (confirmed by the

experiment); (2) makes the flame speed response to stretch iden- 

tical for both chemistries.

Before the first obstacle, FA is laminar in nature and is induced

by the strong channel confinement (high S / H ratio). The latter

quickly forces the flame to transition from the spherical to the

finger shape with a rapid increase in flame surface as seen in

Fig. 6 (right). The obstacles ahead of the flame enhance FA with

successive and stronger flame surface increases, until a sharp

increase in flame speed is observed, indicative of a transition from

deflagration to detonation.

While both mechanisms predict DDT, its location is strongly im- 

pacted by kinetics. Nevertheless, DDT was observed in both simu- 

lations just one section either before (9S18R) or after (3S1R) the

one predicted by the experiments. Prior to DDT, both flames have

reached the fast propagation regime: s tip is equal to 0.4 D CJ (0.5 D CJ )

for the 9S18R (3S1R respectively) case. The value D CJ /2 is equal to

the CJ deflagration speed and corresponds to the maximum defla- 

gration speed [16] . Figure 6 shows that, in the 3S1R case, the flame

acceleration process slows down when this limit value is reached

( X ∈ [1 . 45 , 1 . 75] m ). The flame surface also reaches a plateau at

this regime. After the abrupt DDT process, and in accordance with

experimental data, the flame propagation speed reaches a quasi- 

steady value close to the predicted autonomous detonation speed

D CJ . The non-dimensional flame surface A f / H then quickly relaxes

to unity showing that a quasi-planar detonation propagates in the

channel.

The flame acceleration phase, as a necessary step for creat- 

ing the appropriate conditions for DDT, is briefly analyzed in

Section 4.2 . Then, the flow conditions prior to DDT are investigated

in details in Section 4.3 to determine whether the ingredients that

lead to detonation are identical for both chemistries.



Fig. 8. Numerical Schlieren ( ∇ρ/ ρ) and isocontour of progress variable c = 0 . 5 showing the shocks network formed ahead of the flame. Left: single-step mechanism. Right: 

Multi-step mechanism. 

Fig. 9. Numerical Schlieren ( ∇ρ/ ρ) and isocontour of progress variable c = 0 . 5 showing the highly turbulent flame crossing the third obstacle. RM denotes the Richtmyer–

Meshkov (RM) instability. Left: single-step case. Right: multi-step case. 

4.2. FA phase

Few microseconds after ignition, the flame undergoes the first

acceleration episodes due essentially to confinement (finger flame

[7] ). Starting from the first obstacle, additional FA mechanisms are

triggered. The first one is related to the sudden flow contraction.

The fresh gases, pushed by the reactive piston, are accelerated

when they penetrate the congestion. When the flame starts in- 

teracting with the obstacle, the jump velocity condition induces a

sudden increase of the flame speed. This mechanism is however

limited to the vicinity of the obstacle. The FA process continues

downstream of the first congestion because of the flame inter- 

action with the flow structures. When the tip of the combustion

wave exits the congestion, the remaining part of the reactive

surface journeys in a turbulent flow (where vortex shedding has

been triggered earlier). Consequently, the flame front is wrinkled

as illustrated in Fig. 7 for both chemistries. Flame vortex inter- 

actions account for the strong increase of the flame surface just

downstream of the congestion observed in Fig. 6 (right). Because

of the large obstacle spacing to channel height ratio ( S/H = 5 ),

the contribution of the congestion to the flame acceleration stops

a certain distance away from the obstacle and the flame surface



Fig. 10. Zoom on the onset of detonation. Pressure field and isocontour of progress variable c = 0 . 5 are displayed. The dashed lines correspond to a cut through which DDT 

is analyzed in Sections 4.3.1 and 4.3.2 . Left: single-step case. Right: multi-step case. 

Fig. 11. Key events surrounding the detonation onset for the 3S1R simulation. Pressure gradient ∇P is displayed. x w represents the distance from the obstacle 6 left wall (grey 

dashed area). IS is the incident shock. RS and CW indicate the reflected shock and a compression wave, respectively. HCG stands for Highly Compressed Gas. A detonation 

wave is triggered at t = 10 . 561 ms and propagates along the obstacle. 

drops significantly. This explains the repeated flame acceleration–

deceleration phases observed for both chemical mechanisms in

Fig. 6 .

Contrary to the deflagration-precursor shock structure ob- 

served in smooth channels [9,21,25] , repeated shock reflections at

the obstacles result in an unstructured shock network ahead of

the flame ( Figs. 8 and 9 ). When leaving the second obstacle, the

flame is highly turbulent as seen at t = 8 . 10 ms ( t = 6 . 72 ms ) for

the single-step (multi-step) mechanism, respectively.

Shock reflections at the obstacles allow flame-shock interac- 

tions. This is highlighted in Fig. 9 in the 3S1R case where a

Richtmyer–Meshkov (RM) instability is triggered with a large fun- 

nel of unburned material penetrating the region of burnt gases.

This instability further contributes to the increase of the flame sur- 

face. Until the fourth obstacle, FA in both simulations matches rea- 

sonably well. The reason why DDT is observed first with the de- 

tailed chemistry and delayed with the reduced mechanism is dis- 

cussed in the next section.

4.3. Detailed analysis of DDT onset

The detonation onset location is strongly impacted by the

chemistry modeling as shown in Fig. 6 . There may be two possi- 

ble explanations for this: (1) the DDT mechanism is the same but

the necessary conditions to trigger it are met earlier in the 9S18R

case than the 3S1R case; (2) the mechanism is different and in- 

volves different ingredients to initiate detonation. A first step to- 

wards identifying the key elements responsible for DDT in both

simulations is to look at the DDT location. Figure 10 displays the

pressure field when the detonation wave starts to form. In both

cases, DDT occurs close to the obstacles, in regions of highly com- 

pressed gas. In the 3S1R case, DDT starts in the unreacted mixture

ahead of the deflagration front. On the other hand, DDT seems to

take place either in the flame brush or between the flame and the

wall for the 9S18R case. Figure 10 suggests that the deflagration

may play a role in the DDT scenario with 9S18R.

Given the seemingly particular nature of the DDT scenario in

the 9S18R case, a grid independence study has been carried out to

ensure that this mechanism is not induced by numerical artefacts.

Therefore, the computation was also performed with another mesh

where the grid resolution has been increased around the DDT lo- 

cation shown in Fig. 10 (Right). This refined mesh is composed of

a window 300 mm large and centered around the DDT location.

The mesh size in this window is 10 µm , which is about half the

size of the smallest cells in the reference mesh. Details on this grid

independence study are given in the annexe section. It shows that

an identical scenario takes place with the refined mesh, thereby

confirming the mechanism. In the following, the detailed analysis



Fig. 12. Key events surrounding the detonation onset for the 9S18R simulation. Pressure gradient ∇P is displayed. x w represents the distance from the obstacle 4 right wall 

(gray dashed area). The flame front is represented by the isocontrour of progress variable c = 0 . 5 . IS and RS denote the incident shock and the reflected shock, respectively. 

PP is the pressure pulse observed prior to the detonation onset. D and R represent the detonation wave and the retonation wave, respectively. 

Fig. 13. Time evolution of pressure (a), temperature (b) and λ = 1 − c (c) in the single-step case through the cut line presented in Fig. 10 (Right), positioned 500µm from the 

bottom wall. x w is the distance from the obstacle 6 left wall. IS, RS, CS, R and D denote an incident shock, a reflected shock, a compression wave, the retonation wave and 

the detonation wave, respectively. HS is a hot spot. 

of the DDT event in the 9S18R case is conducted on the refined

mesh, since it enables a finer description of the phenomenon.

Figures 11 and 12 focus on the moments surrounding DDT for

the single-step and the multi-step mechanisms, respectively. For

the 3S1R case, an Incident Shock (IS) gets reflected at the sixth ob- 

stacle ( X = 1 . 744 m ) and a Compression Wave (CW) is seen coming

in the opposite direction to the reflected shock (RS). The collision

between CW and RS leads to the formation of a highly compressed

and heated region (HCG) from which a detonation wave emerges a

few microseconds later. A detailed analysis of the detonation onset

in this case is performed in Section 4.3.1 . Shock reflection is also

involved in the DDT process in the detailed chemistry case but the

scenario is completely different. Figure 12 shows that, as a conse- 

quence of the reflected shock crossing the flame path, a Pressure

Pulse (PP) forms at the flame front and leads to detonation initia- 

tion inside the flame brush. This confirms that the deflagration is

indeed an active participant in the DDT mechanism observed for

the 9S18R case. DDT in the flame brush triggered by the head-on

collision of a shock with a flame front was also observed recently

by Goodwin et al. [24] . This scenario is analyzed in Section 4.3.2 .

4.3.1. Single-step chemistry and the Zeldovich mechanism

DDT in the 3S1R case takes place in the unreacted mixture as

already observed in other simulations [1] . The detonation wave is

initiated behind the reflected shock observed in Fig. 11 . To under- 

stand the effect of this shock on the gas and its role in the DDT

process, the simulation is inspected through the cut line presented

in Fig. 10 (Right), positioned 500 µm from the bottom wall. The re- 

sult is displayed in Fig. 13 .

The propagation of IS, RS and CW , shown in Fig. 11 , can be ob- 

served in Fig. 13 (a,b). As a result of the incident shock reflection

on the obstacle, a pressure and temperature increase can be ob- 

served behind RS. The latter can interact back with the boundary

layer and a further increase of temperature is observed due to vis- 

cous heating. A region of hot unburned gas ( T ≥ 750 K ) can then

be observed at the RS tail. The collision of the reflected shock with



Fig. 14. Time evolution of temperature (a), ε (b) and ξ (c) in the single-step case through the cut line presented in Fig. 10 (Right), positioned 500 µm from the bottom wall. 

x w is the distance from the obstacle 6 left wall. IS, RS, CS, R and D denote an incident shock, a reflected shock, a compression wave, the retonation wave and the detonation 

wave, respectively. HS is a hot spot. 

Fig. 15. Temporal evolution of key parameters integrated along the control volume (CV) shown on the right figure: (Left) Temperature, pressure and density; (Right) Chemical 

energy release rate and sensible energy release rate. S1 − 4 mark a series of four consecutive shock compressions. D marks the moment the mixture detonates. 

a compression wave propagating in the opposite direction leads to

the formation of a region of hot ( T ≥ 800 K ) and highly compressed

( P ≥ 35 bar ) unburned reactants called Hot Spot ( HS ). A detonation

wave clearly emerges from HS as a strong shock (see Fig. 13 (a))

propagates away from HS, coupled to a reaction wave suggested

by the formation of combustion products behind it in Fig. 13 (c).

A retonation wave can be observed in Fig. 13 (a) as a result of the

reflection of the detonation front on the obstacle. The conditions

in pressure and temperature observed inside HS are caused by the

strong leading shock (IS) reflecting off the wall. This explains why

DDT was delayed until the sixth obstacle in this case, allowing the

leading shock to gain in strength while the flame propagates in the

channel.

To understand why a detonation wave emerges from the hot

spot, the evolution of the variables ε and ξ is displayed in Fig. 14 .

The formation of the hot unburned region HS coincides with val- 

ues of ε higher that unity. This means that in HS, a compression

wave can form and gain in amplitude as its residence time in HS

is higher than the time needed locally for the mixture to deliver

chemical energy. On the other hand, in the hot spot, for T ≤ 800 K ,

high values of ξ are met, since the gradient ∂ τ I / ∂ T is high for
low values of temperature. The increase in temperature inside HS

leads to higher values of energy input to pressure waves ε ≥5 just

prior to DDT and lower values of ξ . This means that the evolu- 
tion of HS was towards high energy transmission to pressure waves

( εր ) and resonance between the latter and the reaction fronts that

emerge from HS ( ξ → 1 + ). The initiation of the detonation wave

in the case 3S1R is therefore the result of the classical Zeldovich

mechanism.

Note that the temperature conditions met inside the hot spot

are not high enough to initiate a detonation via the Zeldovich

mechanism if the multi-step mechanism was used instead. Indeed,

the flame residence time inside an obstructed section can be de- 

fined as τ f = S/ (D CJ / 2) ≈ 300 µs . Therefore, to allow ignition at

these conditions in pressure (i.e. τ I ≤ τ f ), the minimum tempera- 

ture inside the hot spot should be higher that 1100 K , which would



Fig. 16. (a) Temporal evolution of the pressure gradient for the multi-step case through the cut line presented in Fig. 10 (Left). y w is the distance to the bottom wall. RS 1 

and RS 2 are two reflected shocks. D denote the detonation wave. The black contours indicate the flame tip and tail. (b) Local flame Mach number Ma f . s f is the propagation 

speed of the closest point on the flame front to the bottom wall. 

have required a much stronger shock IS than the one observed in

the 3S1R simulation.

4.3.2. Detailed chemistry and pressure pulse amplification

Similarly to what was done by Goodwin et. al. [24] , who ob- 

served seemingly the same mechanism as the one shown here

for the 9S18R case, a control volume analysis is performed on a

(50 µm ×50 µm) region (CV) shown in Fig. 15 . This allows to track

the evolution of state variables during DDT. The analysis covers the

whole set of events from the arrival of the incident shock (IS in

Fig. 12 ) to the emergence of the detonation front.

Figure 15 (left) shows that the material first goes through a

series of shock compressions (induced by shocks S1–S4) that

drastically increases the pressure and the density of the mate- 

rial. IS reflects back and forth between the flame front and the

wall, which induces these consecutive shock compressions. Later

(at t ≈ 8 . 011 ms ), as the material detonates, the mixture starts re- 

acting chemically while pressure increases.

The impact of these shock compressions on the mixture ahead

of the flame can also be assessed looking at the rate of energy de- 

position in the control volume (CV) ( Fig. 15 (right)). The four shock

compressions induce a series of rapid sensible energy depositions

in the unburnt mixture, prior to DDT. Later, when the material det- 

onates, a fifth peak of sensible energy deposition is observed, along

with a rapid chemical energy release. As the flow carries out en- 

ergy behind the detonation, negative energy rates are observed.

The results of this control volume analysis are in very good

agreement with the one performed by Goodwin et. al. [24] , who

used a single-step mechanism. This shows that DDT triggered by

the reflexion back and forth of a shock between a flame front and

a wall is not solely observed when detailed chemistry is used.

Figure 15 (left) also indicates that the temperature of the un- 

burnt material increases during the shock compressions, to reach

temperatures slightly higher than 750 K . This temperature, how- 

ever, is not sufficient to trigger DDT in the unreacted material.

Indeed, 9S18R predicts that τI ≈ 50 ms at the pressure and temper- 

ature conditions ahead of the flame. When the flame exits obstacle

Fig. 17. The meshes used to perform the grid independence study in the multi-step 

chemistry case. (Top) Reference mesh, used in the core of the manuscript, where 

the smallest cell size is 20 µm. (Bottom) A new mesh with a higher resolution win- 

dow, 300 mm large, centered around the DDT location (just after obstacle 4) and 

where the cell size is 10 µm. 

4, it approaches the end wall at 500 m/s and decelerates to 100 m/s

prior to the emergence of the detonation (see Fig. 16 (right)). This

lower bound for the flame speed (i.e. 100 m/s ) allows to evaluate

a higher bound for the time needed by the flame to reach the end

wall h/ 100 ≈ 100 µs , which is two orders of magnitude smaller

than τ I at the fresh gases. This definitely rules out the Zeldovich

mechanism ahead of the flame.

The impact of shock compression is not limited to the unburnt

material ahead of the flame but also extends to the flame front

itself. This can be assessed using a procedure similar to the one

presented in Section 4.3.1 . The scenario is investigated through the

cut line shown in Fig. 10 (Left). Figure 16 shows that the head-on

collision of the reflected shocks ( RS 1 and RS 2) slows down the

flame due to a back-flow of fresh gases, the second deceleration

being much more pronounced. The flame thus propagates in a

continually compressed material with decreasing speed, which

triggers an explosion in the only region where the temperature

is high enough: the flame preheat zone. A pressure pulse (PP) is



Fig. 18. Zoom on the onset of detonation. Pressure field and isocontour of progress variable c = 0 . 5 are displayed. The dashed lines correspond to a cut through which DDT 

is analyzed in the core of the manuscript. (Left) Reference mesh. (Right) Refined mesh. 

Fig. 19. Key events surrounding the detonation onset for the multi-step simulation using the reference mesh (top) and the refined mesh (bottom). The pressure gradient is 

displayed. x w represents the distance from the obstacle 4 right wall (gray dashed area). The deflagration front is represented by the isocontrour of progress variable c = 0 . 5 . 

IS and RS denote the incident shock and the reflected shock, respectively. PP is the pressure pulse observed inside the flame brush prior the detonation onset. D and R 

indicate the detonation and the retonation waves, respectively. 

then observed at t ≈ 8 . 009 ms inside the flame preheat zone. PP

gains in amplitude as chemical energy is released inside the flame

before a detonation emerges from the flame brush.

The DDT mechanism observed in the 9S18R case can finally

be summarized as follows: (1) an incident shock gets trapped be- 

tween the flame front and a wall; (2) this shock reflects back and

forth between the reactive wave and the boundary which leads to

a series of rapid sensible energy depositions in the unburnt ma- 

terial; (3) the flame thus propagates in a continually compressed

mixture and a pressure pulse forms inside the flame preheat zone,

where temperatures are high enough to trigger an explosion; (4) a

transition to detonation is observed inside the flame brush when

the flame reaches the vicinity of the wall through pressure pulse

amplification (a form of the SWACER mechanism [16] ).

5. Conclusion

The influence of chemistry modeling on the intricate Defla- 

gration to Detonation Transition (DDT) problem is investigated

through two chemical mechanisms: (1) a single-step mechanism

(3S1R) designed to reproduce the key features of flame and deto- 

nation propagation; (2) a multi-step mechanism (9S18R) validated

against experimental data in terms of flame speed for a large range

of equivalence ratios and in terms of ignition delays for a large

range of temperature.

First the idealized hot spot problem with constant temperature

gradient is considered. The requirements in terms of temperature

and radius for a hot spot to trigger DDT are assessed based

on the Bradley et al. [35,45,46] analysis. Results show that the



Fig. 20. Time evolution of the pressure gradient in the multi-steps case through the cut line presented in Fig. 10 (right). y w represents the distance to the bottom wall. RS, 

RS1 and RS2 indicate three reflected shocks and PP denote a pressure pulse. (a) Reference mesh. (b) Refined mesh. 

single-step approach can lead to detonation onset from a hot spot

for conditions of temperature much lower that the ignition thresh- 

old obtained from the experimental data. On the other hand, with

9S18R, the hot spot sizes required for pressure wave amplification

by chemical energy input are much higher than those obtained

with 3S1R for relatively low pressure conditions, and become

comparable at high pressure. This finding suggests that when

using a detailed mechanism, the necessary conditions to allow

detonation initiation via gradient of reactivity can hardly be met as

long as strong shocks are not formed. This is true for hydrogen/air

combustion, further studies however are needed to investigate the

extent of such a conclusion to other fuels and mixtures. One must

keep in mind however that even detailed mechanisms may suffer

from large uncertainties at conditions relevant to DDT (i.e. high

pressure) due to a lack of calibration data at these conditions. This

adds hurdles to an already complex problem.

The DDT problem was also studied through a more realis- 

tic configuration: the DDT experiment of the Gravent database

[26] where a gas explosion propagates in a confined and ob- 

structed channel filled with a stoichiometric hydrogen/air mixture.

Shock reflections were found to be the common ingredient for

DDT for all simulations. However, a great influence of the chem- 

istry modeling on the DDT process was observed. In the 3S1R

case, the detonation wave emerges from a region of unreacted ma- 

teriel characterized by a gradient of reactivity, consistently with

the Bradley et al. [35,45,46] ε − ξ analysis. High energy input and

resonance between reaction wave and compression wave are re- 

quired to trigger a detonation. On the other hand, the transition to

detonation is found to be triggered inside the flame brush in the

9S18R case. An incident shock, trapped between the flame front

and a wall, reflects back and forth between these two interfaces

leading to repeated sensible energy depositions. The flame thus

propagates in a continually compressed mixture, which leads to

the formation of a pressure pulse inside the flame preheat zone,

where the temperature is high enough to trigger an explosion. An

amplification process is then initiated inside the flame front. DDT

is therefore attributed to the resonance between the pressure pulse

and the flame brush and to the high chemical energy release inside

the flame front. There are reasons to believe that this mechanism

might be more frequent when hydrogen/air complex chemistry is

considered since the necessary conditions for a hot spot to lead to

detonation wave formation may be difficult to meet when using

detailed chemistry.
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Annex: Grid independance study for the 9S18R case 

To assess the influence of the mesh resolution on the DDT

mechanism that appears in the 9S18R case, a grid independence

study has been performed using a refined mesh, where the grid

resolution has been increased around the location of DDT shown

in Fig. 10 . The objective here is not to analyse the influence of the

mesh resolution on the whole explosion scenario but only on the

DDT process. The refined mesh, shown in Fig. 17 , is composed of

a window, 300 mm large and centred around the DDT location,

where the mesh size is 10 µm (i.e. half the mesh size in the ref- 

erence mesh). This way both the flame and the flow ahead of it

benefit from an increased grid resolution.

The DDT location is not impacted by the increase in grid reso- 

lution as illustrated in Fig. 18 . Figure 19 presents a closer look at

the key events surrounding the DDT process for both meshes. It

shows that, even though the flow is not exactly the same, the sce- 

narios taking place using both meshes seem to be identical. Note

that the pressure pulse is also observed using the refined mesh,

hinting that its formation is not due to flame under resolution.



Finally, a similar analysis as the one shown in Fig. 16 is also

performed on both meshes and displayed in Fig. 20 . It shows that

the DDT mechanism in the multi-step case does not seem to be

impacted by the increase in the grid resolution. All the ingredients

including the reflected shock and the pressure pulse formation are

observed in both simulations.
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