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Abstract

We consider a fluid-structure interaction system composed by a three-dimensional viscous incompressible
fluid and an elastic plate located on the upper part of the fluid boundary. The fluid motion is governed
by the Navier-Stokes system whereas we add a damping in the plate equation. We use here Navier-slip
boundary conditions instead of the standard no-slip boundary conditions. The main results are the local
in time existence and uniqueness of strong solutions of the corresponding system and the global in time
existence and uniqueness of strong solutions for small data and if we assume the presence of frictions in the
boundary conditions.
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1 Introduction

The aim of this work is to analyze the interaction between a viscous incompressible fluid and a viscous elastic
plate. Let us start by presenting the corresponding model. We denote by w the rectangular torus

zs3

Figure 1: Configuration of the domain at time £.

w=(R/I[1Z) x (R/LyZ) Ly >0, Ly>0. (1.1)
For any function n: w — (—1,00), we define (see Figure L))

Q(n) = {(x1,29,23) Ew xR |0 <3 <1+n(x1,22)},
L(n) = {(z1,22,73) €Ew xR |23 =1+ n(r1,22)},
Fo =w X {O}

In particular
99 n) = T(n) UTY. (1.2)

We consider the following system describing the evolution of the fluid governed by the incompressible Navier-
Stokes equations, and the movement of the elastic plate

U+ (U -VU-V-T(U,P)=0 t>0, zeQ(nt,-)),
V-U=0 t>0, z€Qnt-)), (1.3)
Oun + aA’n — KA+ on — SAdm = H,(U,P) t>0, s€w.

In the above system, we have denoted by U the fluid velocity, P the fluid pressure and 7 the transversal plate
displacement.
The Cauchy stress tensor T(U, P) is defined by

T(U,P) = —PI3 +2vD(U), D(U);; = % (an 8Uj> .

Or;  Ox;
The function Iﬁ[77 is the fluid strain on the structure and is defined by

H, (U, P) = —/1+|Vn? (T(U, P)n - e3).
We assume

v>0, a>0, 0>0, k>0 and §>0. (1.4)



These constants correspond respectively to the rigidity («), the stretching (x), the damping on the structure
(6) and the viscosity (v).
We have denoted by n the unitary exterior normal of 9€Q(n):

n = —eg on Iy,
and on I'(n):
—0s,1(s)
N(s,1+n(s)) .
n(s,1+n(s)) = ———=, where N(s,1+7n(s))=|—-0sn(s)], s€w. 1.5
)= NG 1 0()) (8 L+ 7(e) ] (15)
Here and in what follows, | - | denotes the Euclidian norm of R*, k > 1.

We complete (|1.3] . ) by the Navier slip boundary conditions. In order to write these boundary conditions, we
need to introduce some notations. We denote by a, and a, the normal and the tangential parts of a € R3:

anp=(a-n)n, ar=a—a,=-nx(nxa). (1.6)

Then, our boundary conditions write as follows

U, = t>0, xely,
[2D(U )] + 61U, =0 t>0, xe€ly, (17)
(U(t,s, 1+ n(t, s)) on(t,s)es)p, =0 t>0, s €w, '
2DU)n]_(t,s,1+n(t,s)) + L2(U(t, s, 1 +n(t,s) —on(t,s)es)r =0 t>0, s €w.
In what follows, we write the above equations in the following more compact way
U,=0 t>0, zely,
R2vDWU)n+pU], =0 t>0, zely, (1.8)

(U—0me3)p =0 t>0, zeI(n),
RuD(U)n+ p2 (U —0mes)], =0 t>0, zeT(n).

We assume that the friction coefficients 8; and B2 are constants satisfying

51203 5220

These boundary conditions can be compared with the standard no-slip boundary conditions usually considered
with the Navier-Stokes system. In our case, these conditions would write as

{ U=0 t>0, z €Ty,

U=0mes t>0, zel(n). (1.9)

The Navier slip boundary condition was proposed by Navier in 1823 [28] and is relevant in several physical
contexts, see for instance [24] 35, 22].
To complete the system (1.3),(1.8), we add the following initial conditions

n(0,) =7 inw,
9m(0,-) = 1 in w, (1.10)
U, = UO in Q(n°).

Let us remark that we don’t need to consider boundary conditions on the “lateral” boundaries since we work
with the torus w (see (1.1]) and (1.2))). This means that we are considering periodic boundary conditions for U,
P and #:

U(t, X + L1, T2, (Eg) = U(t, L1, T2, .’Eg), U(t, T1,x2 + LQ, (Eg) = U(t, L1, T2, .’Eg),
n(ta s1+ L17 52) = 77(157 51, SQ)a n(ta s1,82 + LQ) = 77(t7 51, 52)7



and a similar relations for P.

Several works have been devoted to the study of the system , with the Dirichlet boundary
conditions (L.9): existence of strong solutions ([3], [23]), feedback stabilization ([30], [2]), global existence of
strong solutions ([I5]). Let us point out that in this latter work, the authors manage to obtain in particular that
there is no contact between the plate and the bottom of the domain in finite time for the system (1.3)),(L.9)),(L.10).
This result, as previous works on fluid-structure interaction systems, shows that the standard no-slip boundary
conditions may lead to some paradoxal results as the distance between two structures is going to 0: in the case
of rigid bodies immersed into a viscous incompressible fluid, it is shown that in particular geometries there is
no contact in finite time of two structures ([I8], [19]) and in general, if there is contact, then it occurs with null
relative velocity and null relative acceleration ([3I]). In [9] and [10], the author considered boundary conditions
involving the pressure. Here, our aim is to analyze the same system with the Navier-slip boundary
conditions instead of the Dirichlet boundary conditions. Such a system was already considered in [I7] and
[27] where the existence of weak solutions is proved in dimension 2 (global existence as long as the deformable
structure does not touch the fixed bottom). The uniqueness of weak solutions for this system has been obtained
in [16].

Our objective is to prove the existence and uniqueness of strong solutions for small time or for small data.
This is the first work on strong solutions for such a system in the case of Navier-slip boundary conditions and
to our knowledge, it is also the first work on strong solutions for this kind of systems in the 3D case.

In the case where the structures are rigid bodies immersed into a viscous incompressible fluid, several authors
have already considered the Navier-slip boundary conditions: existence of weak solutions [29] and [12], existence
of contact in finite time [I3], existence of strong solutions and study of contacts in finite time [36], uniqueness
of weak solutions [7]. Let us also mention the work of [8] where they consider a nonlinear boundary condition
of Tresca’s type.

The main result of this article is

Theorem 1.1.
1. Assume B; =0 fori=1,2 and (T.4). Suppose n° € H*(w), n* € H*(w) and U° € [H*(2(n°))]? such that
1+7°>0, V-U=0 inQ#°), (U°—n'es)n=0 onT(n°), U’=0 onTy.

There exists a time Ty such that the system (1.3),(1.8), (1.10) admits a unique strong solution (U, P,n)
on (0,Tp):

n € L*(0, To; H*(w)) N C°([0, To]; H?(w)) N H (0, Ty; H*(w)) N C*([0, To]; H (w)) N H?(0, Tp; L (w)),
U € L*(0, To; [H*(Q(n(t))]*) 0 CO([0, To); [H' (Un(t)]*) N H (0, To; [L*(Qn(1))]*),
VP e L*(0,Ty; [L*(Qn(t))]?).

2. Assume B; = 0 fori = 1,2 with f1 + P2 > 0 and (1.4). There exist vo > 0 and Ry > 0 such that if
n° € H*(w), n* € H'(w) and U° € [H(Q(n°))]? satisfy

147°>0, V-U'=0 inQ®n), U°-n'es)n=0 onl(n"), U’=0 onT,.

and
1Tz ey + 11 s oy + 10" ] 1y < Bos

then the system (1.3),(L.8), admits a unique strong solution (U, P,n) on (0,00):
1 € L3(0,00; H' (w)) N BCY((0, 00); H* (w)) N H(0, 005 H? (w)) N BO([0, 00); H (w)) N H3(0, 003 L2 (w)),
U € L3(0, 005 [H*(Q(n(1))]*) N BCS([0, oc]; [H (Qn(1)))]*) N HA(0, 003 [L*(Q(n(1)))]*),
VP e L2(0,00; [L2(Q(n(1)]),
for v €10,70].



In the above statement, the spaces LP, H® are the classical Lebesgue, Sobolev spaces. We use the notation
BC? = C°N L*® and BC' = C' n W1, The notation -y is explained below in , and corresponds
to an exponential decay of order . Finally, the notation L?(0,T; H'((n(t)))) corresponds to the fact that
the fluid velocity and pressure are written in a moving domain depending on 7. To obtain our result, we thus
need to use a change of variables for U and P and the fluid velocity and pressure after change of variables are
obtained in spaces of the form L*(0,T; H'(Q)) with a fixed Q. The precise definition of strong solutions is given
in Section 3 (Definition and we reformulate the above result in a more precise way in Theorem |6.1

Remark 1.2. We can write a bi-dimensional version of the system ,, and for such a system,
one can prove a similar result as Theorem[I.1l In fact, in that case, one could obtain a global in time existence
of strong solutions up to a possible contact between the beam and the bottom of the domain by following the
arguments in [15].

Remark 1.3. For the sake of simplicity in the proof of Theorem[1.1] and in the remaining part of this article,
we assume k = o = 0 since these constants do not play any role in the analysis.

The plan of this paper is as follows: In Section[2] we give some notation. In Section [3] we remap the problem
into a fixed domain using a change of variables like it was introduced in [2I], and we restate Theorem We
obtain some regularity properties of the Stokes system in domains of class H® in Section 4l In Section |5 we
study the linearized problem by writing it as an evolution equation. We prove in particular that the associated
semigroup is analytic and in Section [6] we prove the main result using a fixed-point argument.

2 Notation

During the course of our analysis, we will use some functional spaces that we introduce in this section.
First, let us note that due to the incompressibility of the fluid and to the boundary conditions (1.8]); and

(1.8)3, we have
— [ nds=0.

w

For simplicity, we assume throughout the paper that

/nods =0

so that

It yields to consider the following space

%@nz{feﬁ@»|L5w=0}7

and the orthogonal projection M : L?*(w) — L3(w). Applying M on the plate equation (1.3))3, we find

6tt77 + A1’I] + Agatﬂ = HW(U, P),

where
Ain = aA?y), D(A)) = H*(w)N Li(w),
Aon = —0An, D(A3) = H2(w) N LE(w),
and

H, (U, P) = M(H,(U, P)).



The projection of 3 onto Lg (w)J‘ leads to impose the choice of the constant normalizing the pressure, see
for instance [15].

We denote by H*(0,T;X) the usual Sobolev spaces with values in a Banach space X. For s > 0, s ¢ N, the
norm of these spaces can be defined by using

1/2
@) — )3 ., .0
55,,,,2/ L= Xt .
Elsz0mx ©.1)x 1) [t—t[*T!

More precisely, the norm |[.[| 7. o 7.x) for s € (0,1) is given by

) 1/2
1€l &+ 0,7:2) = (”fHL?(o,T;x) + |.€J§,2,(O,T),x) : (2.1)

1
We recall (see [6]) that if s € <2, 1), then the norm |-, (o,7),x is equivalent to the norm defined in (2.1 in

the space {¢ € H*(0,T; %) | £(0) = 0}.
Let X1, X2 be two Banach spaces endowed with the norm ||.||, respectively [.|[y,. For s > 0, we define the

following space
W*(0,T; X1, %2) = {v e L*0,T;%1) |ve H(0,T;X2) },

endowed with norm

||~HWS(0,T;351,3€2) = ||-||L2(0,T;351) + ||'HHS(07T;XQ) :

For s = 1, we will denote W'(0,T; X1, X5) by W(0,T; X1, X5).
For v > 0, we also consider the spaces

L2(0,00; X1) = {v € LP(0,00; X1) 5 t = v, (t) = e"0(t) € LP(0,00; X1)}, p € [1,+00], (2.2)

and
W2(0,00; X1, X2) = {v € W*(0,00; X1, X2) 5 £+ vy(t) = 0(t) € W*(0,00; X1, X2)}. (2.3)

For these spaces, we use the norms defined by

HU”Lg(o,oo;xl) = ||U7|‘Lp(01w;xl)7
H’U”W;:(O,oo;xl,Xg) = HUvHWs(o,oo;xl,xg)-
In what follows, we set
Q=0@°), (2.4)
for the local existence and
Q = Q(0), (2.5)

for the global existence.
In order to differentiate the normal or the normal and tangential component of a vector v in Q and in Q(¢),
we use the notation ng, vy, and v,, for the configuration 2.
We denote by
D,(9) = {6 € [CE ()], div = 0}

the space of infinitely differentiable functions with free divergence in €2 with compact support .
Let us also define the following space

Xp =W(0,T; [H*(Q))3, [L*(Q)]?) x L*(0,T; H*(Q)/R) x W2(0,T; D(A,), L2(w)), (2.6)



endowed with the norm

| (u, p, 77)||XT = HUHW(o,T;[H2(Q)]3,[L2(Q)]3) + HUHLOO(O,T;[Hl(Q)P) + ||VPHL2(0,T,[L2(Q)]3)
+ 1llwz0,7:0(40),2w)) + 1l oo (0, 7583 (@) T 100 | Loo 0,751 0y - (27)
If T'=+o0 and v > 0, we will write
Koy = Wi (0, 005 [H ()], [L2(Q)]%) x L3(0, 005 H' Q) /R) x W2 (0, 00; D(A1), Li(w)), (2.8)

endowed with the norm

1w pmlx, = Il 0.00ipm2 @2 2@ + 18l Lo 0,00s1m ()19) F 1VPI L2 0,00, 122 (2)19)
Flllwz0,00m40), 23000 F 17l Loe 0,005 ) 1060 Lo 0,001 (0 - (29)
To write the boundary conditions, we also introduce the operator 7 defined as follows (see [2]):

B 0 if y € I,
Tpoé(y) = { E(s)es if y=(s,14+n°s)) €T (n°).

We can verify that 7,0 € £(L*(w); [L*(09)]*) and that

TooC =1+ [ViP2C e3, V(€ [L*(09))%.
We set,
T = T M.

We also define
if y €Ly,

[
5‘{@ it yer().

3 Change of variables

For n*,n* € H?(w) with
12 -
n,n">-1 inuw,

we can consider the change of variables X, ,> defined below

Y1
Y1
Xt Q) s 2 N Y2 ) 3.1
wte 3 2077 — 207, " L4 n* (g1 ) .

1+ (y1,v2) ’

The mapping X, ,2 is invertible of inverse X,z 1. Moreover, using the Sobolev embedding H?(w) — C'(w)
and that
1+ 7?
T
we deduce that X, 2 is a C'-diffeomorphism from Q(n') onto Q(n?).
In the case Q = Q(1°) (see [2.4)), we set

det(Van)nz)

X(tv ) = Xn0,7](t,~)7 Y(t7 ) = X’r](t,~),7}0 (32)
and in the case Q = (0) (see (2.5))), we set

X(t, ) = XO,n(t,~)a Y(t7 ) = X7)(t,~),0 (33)



We have in both cases that Y (¢,-) = [X(¢,-)] "
We consider the following transformation of u and p:

u(t,y) = (Cof VX (t,y))"U(t, X(t,y)), p(t,y) =P(t,X(t,y)) (=0, yeQ). (3.4)

Here, (Cof VX (t,y))" denotes the transpose of (Cof VX (t,y)). After some standard calculations (see, for

instance, [21]), the system (1.3]), (1.8]), (1.10) can be written as

Ou —V - T(u,p) = Fu,p,n) t>0, y €,
V-u=0 t>0, yeQ, (3.5)
Oun + A1n + A20im = Hyo(u,p) + H(u,n) t >0,

with the boundary conditions

[u—Tomnl,, =0 t>0,ye o, (3.6)
[2vD(u)ng + B(u — Tom)],, = G(u,n) t>0, y €, '
and with the initial conditions
u(0,) =u’ = U0 in Q,
n(0,-) = in w, (3.7)
on(0,-) = in w.
In order to write the nonlinearities F', H, G, we first set
(Cof VY')" = (aik);, - (3.8)
Then
(‘3u
Fi(u,p,n) =Y (6ik — aix(X))Opur, — Zam —E(X)Yi(X Zatam
k
Y, 0%y,
i X)—(X) = 0;x0m;0i1 | =—=——
#r 3 (aax ey )axj« )= B ) o
(“)alk 8Yl 0%Y; Oouy, 0%a;p,
+v X))+ a; (X)) —=—5(X) | =— +v ——(X)u
jzkl< 81:] 5‘1:j( ) K )8x3( )) oy % 817?( Juk
8Yk 8p 8aij(X)
+ ) (6ki — 9 (X))ay Zakl(X) praL
k k,l,j
Y, ou;
0;iOk10km — Xa;; (X)=—2(X J =1,2,3, .
+k§n( S — e (X)a OG0 Ju S, 11,23, (9
and
Oasy, 6ajk Y, Oug,
H =vM| — X X N 1(Ng); — X)— (X)N; | —
() = [ Zk(ax (0 + 525030 ) i 3 (2 = o) 70 )

+ (63l5jk(N0)j - ajk(X)gZ(X)Nj) ayl] (3.10)

To define GG, we introduce the following notations.

1 0
Tl = 0 5 7'2 = 1 5 (3.11)
85177 85217



Oakm O jm
WkZVan (;;(X)um—i— aa;k (X)um>+,6’ Zakj(X)uj—Tam~ek
J

Jsm

+v Z n; (akm(X)auman(X) —l—ajm(X)aumw](X)) ., k=1,2,3, (3.12)

Frt 0yq 0x; 0yq Oxy,
and ' 4 4
V' = 2uD(u)ng + B(u—Tom)) -5 —W- 7%, =12 (3.13)
Then G(u,n) is given by
Vl 852 02+1 _V2 831 0632 0
Gl(uan) (( L ) |])V0|2 ( L 1 )7
20(0. )2 £ 1) — V! 09 70
Gafuyy) = LUOIIS |J)\,O|2V O 007, (3.14)
D5, 1PV + 05, n°V?
G3(u, = = 2
3( 77) |N0|2
More precisely, let us note that
RvDU)n+ U —-Ton)], =0 t>0, zcdQn) (3.15)
writes as _ )
(2uD(u)ng + B(u — Tom)) -5 =V", i=1,2. (3.16)

The formula (3.14)) for G is such that
G-10=V, i=12 G-ng=0

so that (3.16)) is equivalent to the second condition of (3.6)), with G' tangential.
Using the above transformation, we can now introduce our definition of strong solutions for system ([1.3)),(1.8]),
(T.10)

Definition 3.1. The triplet (U, P,n) is a strong solution of (1.3),(L.8), (L.10) if the following conditions are
satisfied
ne W2(0,T;D(A1),L(2)(OJ)), D1

(D1)
1+n>0 inl0,T], (D2)
X and Y are given by and (u,p) are given by (3.4), (D3)
(u,p) € W(0, T3 [H*(Q)]%, [L*(Q)°) x L*(0,T; H' (2)/R), (D4)

(u,p,m) satisfies the system (3.5),(3.6), (.7). (D5)

Following this definition, in order to prove Theorem we have to prove the existence and uniqueness of

(u,p,m) € W(O, T3 [H*(Q)P, [LX(Q)F) x L*(0,T; H'(Q)/R) x W?(0,T; D(Ar), L(w))

solution of the system (3.5),(3.6), (3.7) and satisfying (D2).



4 Regularity properties of the Stokes system

In this section, we obtain some results on the stationary system in Q(n) for n = n° (see (2.4))) or for n = 0 (see

(2.5)): _
ot —vAuT+Vp=f in ang,
V-u=79g in Q(n),
U, =a on 0(n), (1)
[2vD(u)n + Bu] =b on 90(n).

Let define the following space

Hy ={¢ € [H' QM) | ¢n = 00n 0Q(n)}.
We give the definition of a weak solution of the system (4.1)).
Definition 4.1. We say that (@, p) is a weak solution of {.1)) if (@,p) € [H (2n))]* x L*((n))/R and the

following variational equation is satisfied:

O‘/Q(n)u'¢dy+21/ Q(n)D(ﬂ):D(fﬁ) dy—/Q(n)pV'¢dy+/aQ(n)ﬂv~¢dF: f.¢dy+/ b- ¢dl,

Q(n) 0Q(n)
for all * € HL.
We have the following result

Theorem 4.2. Assume > 0 and o > 0 with B + B2 > 0 or a > 0. Let n € H3(Q(n)) and § > 0 such that
141> d onw. For any

Fe®l)y, gel’Qm), ae[H2@0Qm)P, be[H*(09M0)7

such that

/ gdy = / a-ndl', b-n=0, (4.2)
Q(n) Q2 (n)

there exists a unique weak solution (W, p) € [H'(Qn))]® x LE(Qn)) to the Stokes system ([E.1). Moreover, we
have the following estimates:

1@lar @mpps + 19801 @mys < C (I ey + 191 2y + W@lliar s oneais + Bllisr-1/2ongye) » (43)

where C'is a constant which depends on |1 g, and do.
Moreover, if

Fel>@Qm)P, ge ' Q) ae[H@2m)P, be H*0m)P,

such that [&.2)) holds, then (w,p) € [H*(Qn))]* x (H*(Qn)) N L3(Q(n))) and we have the following estimates:

HHH[H2 )3 + ||Vp|| [L2(Q ()] (HfH[Lz Q)3 + Hg”Hl(Q + ||6H[H3/2(E)Q(n))]3 + HEH[Hl/z(BQ(n))P) )
(4.4)
where C'is a constant which depends on ||| g, and do.

In the case where € C**(w) such a result is already known, see [I] (see also []). Here, we manage to
obtain the result for n € H3(w) by following an idea of [I4] and [I5].
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Proof of Theorem[].4 The proof follows closely the proof of Lemma 6 in [I5]. We assume here 81 + 32 > 0, the

proof is similar with a > 0.
First, we write the system (4.1]) in the domain

Q = Q(0)

by using the change of variables X, defined by (3.1). Then we set

1
BB

B, = Cof(VXy,), A,= det(VXo,) "7

and we define

UZﬂOXo,m p:ﬁoXO,n;

f=det(VXon)foXon ¢g=det(VXo,)goXon,
GZEOX()’T,, b; :Bn_l(giOX()’n)'ei, 1 =1,2.
Then system (4.1)) is transformed into the following system

Vp=f inQ,
. g in €,
(Byu) -ng = (Bpa)-ng on 09,

! ((Vu)*Bn)n()) + ﬂBnlu'] ce;=b;, i=1,2 on 9Q,

v ~1
[ <(B77 VuAn)TLoJr det(VXom)

[NV
where N is defined by (1.5) and ng is the unit exterior normal to Q (that is te3).

Since n € H?(w), we deduce that
B,, A, € H*(w; H*(0,1)),

(4.6)

for all s > 0 and the corresponding norms depend on |7]| m3(w) and . Moreover, using the embeddings
H'(w) < LP(w) for all p > 1 and H?*(w) < L>°(w), we deduce that it is sufficient to prove that the solution of

(4.6) satisfies
llzzqeaygs + VP z2ags < € (1 ligecans + 190y + lallizs oays + 1ellurzays ) -

Step 1: Weak solutions. Let note that the solution of (4.6|) verifies

Let A > 0 and consider the following system

1

— B *B,)+ B,Vp=f inQ
der(v Xy n(VW) Ba) + ByVp = [ in 2,

Ap+ V- (Byu) =g inQ,
(Byu) -no = (Bpa) -ng  on 0,

((Vu)*Bn)n()) + BBn_lu'] ce;=b;, i=1,2 ondQ,

-V - (Vu4, +

1

v -1 .
[ ((377 Vud,)ng + et (VX0

|V

with
o, g
f=1-B.Y (det(vxo,n)> '

11
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To simplify the notations, we set

1

Dy (u) = Vud, + ———
n(w) = Vu 1 3et(VXo.,)

B, (Vu)*B,,.
We define
V={ve H Q)| (Bpv) -ng =0 on 9Q}.
We look for weak solutions to the system ([{.8)). Let f € V', g € L*(Q), a € [H/2(8Q)]? and b € [H~/?(00Q))°.

g ’
We have B,V [~ ) e V":
¢ have B,V (det(VXom) ©

g 9 *
B v - < = — 7V' B d .
(o () o)y, = e v 50 o

Therefore ]7 € V'’ and we multiply the first equation of (4.8) by v € V and the second equation of (4.8) by
Y € L*(Q) to obtain

N
/Dn(u) : Vo dy—/pV-(BZv)dy%—A/p~w+(V~(B;u)) -¢dy+/ uﬂum dr
Q Q Q o v
~ N|(det(VX
= (f,v)v v +/ g-dy + <b7 |(e(0,n)v> . (4.9)
Q v H-1/2 H1/2
We consider a lifting w satisfying
V- (Byw)=g in 4,
{ (Biw) -no = (Bra) -ng on 9. (4.10)
In order to this, we use [, Corollary 8.2] and (#.2)) to deduce the existence of w € [H*'(2)]® such that
V-w=g in,
W-ng = (Bpa)-ng on JQ.
Then w = (B;;)_lﬁ satisfies (4.10)) and the estimate
Hw||[H1(Q)]3 < C(HQHL2(Q) + Ha||[H1/2(aQ)]3)~ (4.11)

We set u = u+ w. Then, a couple (u,p) is a weak solution of the system (4.8]) if and only if (u,p) verifies the
following variational formulation

~ “ o~ N| .
/Dn(u):Vv dy—/pV-(an) dy+/\/p~¢+(V~(Bnu))-wdy+/ u,@uwdf‘
Q Q Q o v
~ N|(det(VX,
= [ Do) T dy+ oy + (3 IR0l )
Q v H-1/2 H1/2
—/ mﬁw-v dU' (veV, ¢ e L*(Q). (4.12)
v
We have that )
|VuB; + B, (Vv)*
D,(v): Vv dy = n__7 dy, 4.13
[ Doty vway= [ Bt gy (413)

and writing
v=wvo X’?»O’

12



we deduce

2
|V1)B* + B (Vv)*|
n n 12
dy = / D@)|” dz, YvelV,
/Q det(VXo,p) Q(n)l @)l

with ¥-n =0 on 9Q(n). Applying a Korn inequality (see Proposition below):

N
/Dn(v) L Vo dy+/ ‘7|5|u|2 dr > Clvllm (veV). (4.14)
Q o

Hence, we can apply the Lax-Milgram theorem and using (4.11)), we deduce the existence of a unique solution
of (u,p) = (ux,px) € [H'(Q)]® x L*(Q) for (4.8) which verifies the estimates

iz @y + APl 2y < € (11l + 1blliz-12ompe + 19l 2y + Il /s omys ) - (4.15)
Taking ¢ = 0 and v € [Hg(Q)]* in ([@.9), we obtain
[ Dy Vo dy+ [ T (By) dy = Foohw
Q Q

This shows that Vp € [H'(Q)]* and using standard result (see, for instance |4, Proposition 1.1]), we deduce

||p||L2(Q)/]R <C (Hf“v/ + ||UH[H1(Q)]3 + Hw||[H1(Q)]3) : (4.16)
Then, combining (4.15)), (4.16)) and (4.11)), we obtain the estimate independent of A:
lull gz + 1Pl L2y e < C (Hf”vf + 10l gr-1/200002 + 119]l 220y + Ha||[H1/2(6Q)]3> : (4.17)

We can thus pass to the limit as A — 0 in (4.8) to obtain a weak solution (u,p) of (4.6). Using the above
coercivity argument we also deduce the uniqueness of the weak solution of (|4.6]).

Step 2: Strong solutions. We use an argument developed in [I4] and [15]: if we approximate n by 7. €
Cl’l(w), and the corresponding u., p. are H*> and H'. We show below that their norms depend only on the H?
norm of 7. so that we can pass to the limit. To simplify, we do not write any € below.

We first differentiate system with respect to y; and ys to obtain a similar problem as with source
and boundary terms corresponding to the differentiates of f, g, a and b and to terms coming from the A, and
B,,. We only need to estimate these terms, that is

IV - (Vudy, Ay) = 8y, ByVplvr, IV -0y, Byu)llziys 1By 0y, Byull gz oay:
10y, By 'Vudyllmr-1200)0, 1By Vudy, Ayl jr-1/2(009
1 1

O Get(V Ko Bet(v gy VW 0 B

(VU)*BnH[

H*”z(aﬂ)]g’ H[*1/2(89)]9.

Here we use a nice idea proposed in [I4] and [I5]: we estimate the above terms by using the H? regularity of u
and the H' regularity of p. More precisely, using the embeddings H'/?(w) ¢ L*(w) and H4(w) c L¥3(w), we
deduce that the above terms are estimated by

1/4

1 4
Il oy (el s s Il + Pl

@ P15 ) ) (4.18)

Using the first part of this proof and in particular (4.17)), we obtain for i = 1,2

10y, u

|[H1(Q)]3 + Ha D

Lz <€ (1 zaayps + 1ell s/ oays + 19l ) + lallizs2onys)

1/4 1/4 3/4
+ Clinlls ey (el s 1l @y + 12l 5ty 1Pl ) ) - (419)
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We differentiate (4.6))2 with respect to ys3, we obtain

| =y38y, 105, u1 — y30y,m0;, us + 353U3HL2(Q) <C (||f||[L2(Q)]3 + 10l gr2r2 00y + 191 1) + ||a||[H3/2(aQ)]3>
1/4 3/4 1/4 3/4
+ C||77||H3(w) (HuH[}{[l(Q)]s HUH[I{[z(Q)]s + Hp||L/2(Q) Hp”}I/I(Q)) . (4'20)

Then, going back to (4.6])1, we also obtain

HA338§3“1 — Y30y, naySpHL2(Q) + ||A336§s“2 - y36y2nay3p||L2(Q) + HA33853“3 + ay3p||L2(Q)
<C (Hf||[l,2(§l)]3 116l 172000y + 19110y + Ha||[H3/2(BQ)]3)

1/4 3/4 1/4 3/4
+ C’||77||H3(w) (HUHU{[l(Q)]s ||u||[]/{2(9)]3 + Hp||L/2(Q) Hp”f{l(g)) . (4'21)

1
Since Ass = m(1 + (Y30y,m)* + (y39,,m)%) > 0, we deduce

HaZguHL2(Q)3 F 10y:Pll 2y < C (Hf”[m(sz)]s F 16l 172 002 + 9l 1) + H@H[waﬂ)]a)

1/4 3
+ Clinlls ey (ull i s

4 1/4 3/4
s s + 115ty P13 ) ) -
Combining this with (4.19)), we deduce the result. O

We also need the following theorem which is proved in [32].

Theorem 4.3. Assume 3 > 0 with By 4+ B2 > 0. Let n € H3(w) and 5y > 0 such that 1 +n > 6y on w. Let us
consider the following non stationary Stokes system:

v —V - -T(v,m) =0 t>0, yeQ,
V.v=0 t>0, ye,
Upo =0 t>0, yeoQ, (4.22)
[2vD(v)ng + Bv], =g  t>0, y€0Q,
v(0,-) =0 y € .

There exists g > 0 such that if
G € Wi/%(0, 00; [H'Y2(09)]%, [L*(09)]%),  Gne = 0. (4.23)

for some v € [0,70]. Then the problem (4.22)) admits a unique solution which satisfies the estimate

2 2 ~12
Hv||W,Y([),oo,[HQ(Q)P,[Lz(Q)]S) + HVWHL?Y(O,OO;[L?(Q)P) <C ”gHle/“(O’OO;[Hl/Z(QQ)]S7[L2(6Q)]3) (4'24)
where C' is a positive constant.
We recall that the spaces W7 (0, 00; X1, X2) and L% (0,00; L*(Q)) are defined by (2.3)), (2.2).

Remark 4.4. In [32], the author assumes that 1 is more reqular but such an assumption is only used to obtain
a lift of the boundary condition by taking a stationary Stokes system of the form (4.1)), see relation (75) in [32)].
Note also that in [32], the condition (4.23) is replaced by the equivalent condition

g€ W3/2(0,00; [ (P, [L* (), Gay =0.
Such an equivalence can be obtained by using the surjectivity of the trace operator (see [25, p.21, Theorem 2.3]).

We end this section by proving a Korn’s type inequality (that we used in the above proof).
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Proposition 4.5. Assume n € W (w). Assume that B1 + B2 # 0. There exists a positive constant C > 0,
such that

lull ey < <|D( Wiz @mye + ”\f H (L2 (05 n))]3> ) (4.25)
for allu € [H(Q(n))]?.
Proof. We first show by contradiction that
lullss o < € (1P e + [V ) (4.26)
Assume uy, € [H*(Q(n))]* with
||Uk-||[L2(Q(7,))]3 =1, (4.27)

and

D [vBu | 0
1D (wi) 2@ + vV Buy e eamy

Using the classical Korn inequality (see, for instance, [20]), the above relations imply that (ug)y converges
weakly to some u € [H*(Q(n))]® with D(u) = 0 and \/Bu = 0 on dQ(n). In particular, see [34, Lemma 1.1
p.18], there exist a,b € R?, such that for any y € Q(n), u(y) = a + b Ay. Using that

u(y + Lier) = u(y), uly+ Laea) =u(y), (y € Qn)),

we deduce that b = 0, then u = a in Q(n). Since /fu = 0 on dQ(n), we obtain that u = 0 in Q(n). Up to
a subsequence uj, — u strongly in [L*(€(n))]* and thus from ([{27), we get lull (z2(q@yyz = 1 Which leads to a
contradiction. In order to prove , we combine and the classical Korn inequality (using that Q(n) is
Lipschitz continuous). O

5 Linear System

Let us consider a linearized system of (3.5)), , (13.7):

Ou —V - T(u,p) = f t>0, ye,
V-ou=0 t>0, yeQ, (5.1)
Oun+ Ain+ A20m = —T*(T(u,p)no) +h ¢t >0,

with the boundary conditions

[u—=Toml,, =0 t>0,yeo,

{ 2uD (g + Blu—Tom),. =G >0, yed, (5-2)
and with the initial conditions
u(0,-) = u in Q,
n(0,-) = 77 in w, (5.3)
dn(0,-) =n' inw.
Let us consider (v, ) the solution of (4.22]) associated with g. Then w =« — v and ¢ = p — 7 satisfy
Ow—V -T(w,q) = f t>0, ye,
V-w=0 t>0, yeQ, (5.4)
Oun + Ain + A20im = =T (T(w, ¢)no) — T (T (v, m)no) + h t>0,
with the boundary conditions
[w—Tonl,, =0 t>0, yeo, (5.5)
[QZ/D( )’flo + ﬂ(w Tam)] =0 t>0, ye 89, '
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and with the initial conditions

w(0,-) =u" inQ,
n(0,) =7 nw, (5.6)
Om(0,:) =n" inw

To solve (5.4)-(5.6)), we use a semigroup approach. We endow the space [L2(Q)]* x D(A1/?) x L2(w) with
the scalar product

+ (M2, &2) r2(0) -

w v
< ml,|& >:<w7v>[lz2(9)]3+<A1/2n17A1/2§1>L2(w)

712 52

We consider the following functional spaces

H= {(w,m,ng) € [L*(Q)]* x D(Aiﬂ) X Lijw) | V-w=0 inQ, [w—Tmnl, =0 on 89},

V= ([HI(Q)}S x D(AYY) x D(A}/‘*)) NH. (5.7)
We also denote by P the orthogonal projector
P: [L3(Q)]? x D(A})/?) x L2(w) — H.
Finally, we define

DA) = {(w,m,m) € (HAQF x D(41) x D(A})) NV | RuD(w)no + flw — Tra)],, =0 on 92}, (5.38)

w —vAw
Alm | = —12 , (5.9)
72 A + Aane + T (2vD(w)no)
and
D(A)=D(A), A=PA. (5.10)
Using the above definition, we can write (5.4)—(5.6|) as
W'+ AW =PF, W(0)=W", (5.11)
with
w f
W=1|n]|, F=10
8,57] h

Proposition 5.1. Assume that 81482 # 0. The operator A defined by (5.8)—(5.10) is the infinitesimal generator
of a strongly continuous semigroup of contraction on H.

w
Proof. First we show that the operator A is dissipative: assume W = | 71 | € D(A). Then, by integration by

2
parts, we obtain:

(AW, W) = (AW, W) :2V/Q|D(w)|2 dyf/a 2w D(w)ng - [ — T(n)] dr+/w]A;/2nzf ds.

Q

We write

- / 2w D(wno - [w — T ()] dF = / 2D (w)nory - [ — T ()], dT = / 81w — T ()] [? T,
o0 o0 o0

16



and we deduce

2
aw.w) =2 [ ) dy+ [ 430 ds+ [ Bl Tow P dr >0
Q w o0

Second, we show that the operator A is m-dissipative: we prove that for some A > 0 the operator \I + A is

f w
onto. Let F = | g | € H. The problem is to find | 71 | € D(A) solution of the equation
h N2
w
M+ A)|m | =F, (5.12)
72
which is equivalent to the system
2w —V - -T(w,q) =f inQ, (5.13a)
V-w=0 i, (5.13b)
A —n2 =g onw, (5.13c)
Ang + A1 + Aane = =T (T(w,q)no) + b on w, (5.13d)
[w—Tna2)n, =0 on O, (5.13e)
[2vD(w)ng + B(w — Tn2)],, =0 on 0. (5.13f)

1
To solve the above system, we use that 7, = X(g + 7)2) to obtain a system in (u,72) and we introduce the space

v:{(gb,g)e[Hl(Q)PxD(A}/?)|v.¢:o nQ  [¢—TEn, =0 on8Q}.

We can thus write the equation ((5.12)) in a variational form: find (w,nz) € V such that

(()(2) =) (()=v) 619
with a:V x V —» R given by
%(;‘;)(?)) :)\/Qw-qbdy—i—2y/QD(w):D(¢) dy+)\/wn2-§ds+/w(A2ng)-§ds

+§/meymWaw+ Blw =T ()l - [ = T (Ol dT.
w o0

and L : YV — R given by

) = . . 1 1/2 N 41/2
L(Q) = [ reodns [neas=5 [ a0 a

The bilinear form a is continuous and coercive on V thanks to the classical Korn inequality. We can also check
that L is linear and continuous on V. By the Lax-Milgram theorem, there exists a unique (u,72) € V solution

of (5-14).
Now, taking £ = 0 and ¢ € D,(f2), the equation (5.14]) becomes
A [weody+2w [ Dlw): D@ dy= [ o dy,
Q Q Q

which is equivalent to
M —vAw — f,¢) =0, V¢ € Dy(Q).
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Using the De Rham theorem [33, Proposition 1.2, p.14] , we deduce the existence of a unique ¢ € L*(Q)/R such
that (5.13a) holds. In particular, we have V - T(w,q) € [L?(2)]* and T(w, q) € [L*()]°. Therefore, we deduce
that T(w, ¢)no € [H1/2(8Q)]® and

[ Tw.0) : DGy = (w0, b1 = [ (=) - o (5.15)
for all ¢ € [H'(Q)]*, V-¢ =0, ¢,, = 0. On the other hand, taking £ = 0 in yields
A /Q w-dy+2v /Q D(w) : D(8) dy + (Blw — T(1)ror & )-/2 grise = /Q foody,  (5.16)
for all ¢ € [HY(Q)]?, V- ¢ =0, ¢, = 0. Comparing and and taking into account that
| w0 : D@y =20 [ D(w): D@y, o < [N T 6= 0. 60, =0,

we obtain

- <T(w7Q)n0a¢>H—1/2)H1/2 = <[6(’UJ - Tn2)]7'07¢>H—1/2)H1/2 = 07 VQ/) € [Hl(Q)]37 V. ¢ = Oa QS'VL() = 0. (517)

Let ¢ € [HY2(00)]? such that ¢,, = 0, and let consider the system

VTG4 =0 inQ,
V-g=0 inQ,
g=¢ on ON.

The above system admits a unique solution (7,q) € [H'(Q)]® x LZ(R2) such that V- g = 0 and glaq = ¢. This

implies that (5.17) holds for all ¢ € [H'(Q)]*, ¢y, = 0. Inserting (5.17) in (5.15) we get
/Q 2vD(w) : D(6)dy — /Q 4V - gy + (B(w — T)ror bro) g1/ gne = /Q (f — ) - by, (5.18)

for all ¢ € [H ()], ¢p, =0 .
Thus, we deduce that (w, ¢) is a weak solution of (5.13al), (5.13b)), (5.13€)) and ([5.13{]) in the sense of Definition
Since 1, € H*(w), Tna € [H?(09)]* we can apply Theorem [4.2 and obtain (w,q) € [H*(Q)]* x H'(Q)/R.
Going back to the variational formulation , we deduce

/meme@wz—y/mfm—/mWafw—/Twmwmafw+/hf@,

for any £ € D(Ai/Q) and where 7 = %(g +12). We have T(w,¢)ng € [HY?(09)]* and thus T*(T(w, ¢)ng) €

L%(w). Moreover since 1y € H?(w), we deduce that 1y € D(Ay). Thus A1y € L3(w).
Applying Lumer-Phillips theorem, we conclude that (e*tA)@o is a semigroup of contractions on H. O

In order to prove that (e*tA)@o is an analytical semigroup, we use Lemma 3.10 in [2]. We first need to show
that (e~*);>0 is exponentially stable.

Proposition 5.2. Assume that B1 + B2 # 0. The semigroup (e_tA)t>0 is exponentially stable.

Proof. Since (e_tA)t>0 is a semigroup of contraction, we apply the classical result of Huang-Gearhart (see for
instance [26, Theorem 1.3.2, p.4]). We have to show that

iR C p(A) and sup ||iA+ A)7| < co.
AER
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Using the proof of [2, Proposition 3.5], we only need to prove the existence of C' > 0 such that

VAeC, ReAe(0,1), [[((A[+A4)7|,<C.
f w
Let us consider A € C, with ReA € (0,1), F=[g | € Hand | ;m | € D(A) such that
h 2
w
M+A)|[m ]| =F (5.19)
2

We can write the above relation as the system (5.13). We multiply (5.13a) by w, (5.13d)) by 7, and we perfom
integrations by parts to deduce

1/2 2
I%Aowmﬂmp+Mﬂ;wﬁ\M/n4 )+mewmﬂmp+/xwamM2ﬂ

L2(w)
1/2

Ay, <CIFlal@m . (620
We have )
1/2
ez < C [ AY %], < ClUFlg i, m)lls (5:21)
0 Lo(w)
On the other hand, we have
lwl? 2o S C(1Bw — To)I? (2o T ||TTI2||[L2(aQ)]3)

Using (4.25), (5.21)) and the fact that 7 € £(L?*(w), [L*(9Q)]*), we obtain
w1 s < CNF g 1 [l - (5.22)
Following the proof of Proposition 3.5 in [2], we have

|4

2 2 2
[, <€ (1ol oy + NP + 1Pl o) )

Gathering the above inequality with (5.22) and (5.21)), we obtain

[Cws mus )l < C 1 g

for some positive constant C'. This concludes the proof. O

Proposition 5.3. Suppose that 81 + B2 # 0. The operator A is the infinitesimal generator of an analytic
semigroup on H.

Proof. We apply Lemma 3.10 in [2]: since (e_tA)t;O is exponentially stable, it sufficient to show

|+ A) 7 F||, < o HF||H (F € H, X\ €iR¥). (5.23)
f w

Assume \ € iR*, F = | g | € H and let us consider W = (AI + A) "' F. We write W = [ n; | so that (5.13)
h 2

holds. We now proceed as in [2, Proposition 3.11]: we multiply (5.13a) by @ and (5.13d]) by 7}, and we integrate
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by parts

A ([ oy Ity = 41|

+2y/ \Dw|? d +HA1/2 \2
12(w) a S e T

+/ Bl(w — Tn2)r|? dT = (F,W). (5.24)
a0
Multiplying by X and taking the real part, we find
2
AR ([W% = 2A2 || AV 2 + Re (F; A\W) .
H 1 L2(w)
Using the Cauchy-Schwarz inequality, we obtain
2
1/2
AR WG < 4IA2|| 41 %m| |+ I (5.25)
Since A; and A, are self-adjoint positive operators and D AYYY = pAl? , we apply |11, Theorem 1.1] to
1 2

deduce that
0 I
a=li 4

is the infinitesimal generator of an analytical semigroup on D(Al/ %) x L3(w). We have in particular

_ - 1/2
INIT +8) 2] 172y 120y S CNZlparrzy ) (A ERY, Z € D(A, %) x L2 (w)).
Applying this estimate on (5.13c])-(5.13d]), we deduce

([t

We use the fact T* € L([L*(9Q)]*, L§(w)) and we combine (5.26) and (5.25) to find

* 1/2
oy Hllay ) <€ (1T (Tl o + | 4%

h . 5.26
S 1P P CE)

AWl < © (||ﬂr<w,q>no>||[L2<amp 11 Flly) (5.27)

Combining Theorem and an interpolation argument, we get for ¢ < 1/4

17w, gl g qoays < € (1Y (@, @) s aps + 1Tl a2 oy ) - (5.28)
The rest of the proof is similar to the proof of [2, Proposition 3.11]. O
We recall that X , is the space given in . We are now in position to give the following theorem.
Theorem 5.4. Suppose that 81 + P2 # 0. There exists v9 > 0 such that if
W’ ev, fe Li(O,—Foo; [L2(Q)]?), he L%(O,—Foo;Lg(w)),

and
G € Wi/%(0, +o00; [H2(09))%, [L*(09)]*)  with  Gne =0,

for~y €[0,70], then there exists a unique solution (u,p,n) € Xoo 4 on (0,+00) of the system (5.1)-(5.3). Moreover
there exists a positive constant C such that

”(’u’?p’ ”XOc ~ < (H 77707771)“V + ||f||LE{(O,+oo;[L2(Q)]3) + ‘Ig‘|Wa}/4(O,+oo;[H1/2(6Q)]3’[L2(6§2)]3)

1l g2 0,402y ) (5:29)
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Proof. Since A generates an analytical and exponentially stable semigroup, from [5, Theorem 3.1, p.143|, the
evolution equation (5.11)) admits a unique strong solution and verifies the estimates
||(wa771,772)||L3(0,+00;D(A)) + | (w, 7717772)”1:;0(0,_5_00;\/) + [ (w, m, 772)||H%(07+oo;]}]1)

C (1)l + 1122 0 ooz gy + Wl a2 o, soi2y ) - (5:30)

Applying the De Rham theorem [33, Proposition 1.2, p.14], we deduce the existence of ¢ € L? 5(0,00; (HY(Q)/R)
such that (w,n,q) is the solution of (5.4)-(5.6). Setting u =w + v, p = ¢+ 7 where (v, 7r) is the solution of
(4.22) associated with g, we obtain the result. O

Corollary 5.5. Suppose that 81 + P2 # 0. Assume T > 0 and
@’ n°nt) eV, feL0,T;[L*(Q)°), heL*0,T;Liw)),
g€ W0, T; [H'2(09)°, [L*(0Q))°)  with G, = 0.

Then there exists a unique solution (u,p,n) € Xr on (0,T) of the system (5.1)-(5.3). Moreover, there exists a
positive constant independent of T such that

[[(w, p, )| 2y, < (H 77707771)”V + ||fHL2(O,T;[L2(Q)]3) + HgHW1/4(07T;[H1/2(89)13’@2(89)]3)
+ ||h||L2(O,T;LZ(w)))' (5.31)
Proof. We extend f, g, h by 0 in (7, 00) and apply Theorem -

We can now deal with the case 5; =0 for i = 1,2

Theorem 5.6. Suppose that 5, = B2 = 0. Assume T > 0 and
W’ n°nt) eV, feL0,T;[L*(Q)°), heL*0,T;Liw)),

g€ WYH0,T; [H?(0Q)]%, [L*(09)]*)  with gno =0.
Then there exists a unique solution (u,p,n) € Xr on (0,T) of the system (5.1] . Moreover, there exists a
positive constant (non decreasing with respect to T ) such that
[ (uy 20l 5, < (H w0 )|y + 1l 0.2uqz2 ) + 19llwsao.m e o0)p L2 o0)9)
+ ||h||L2(O,T;L2(w)))' (5.32)
Proof. Let introduce the space
X = WY40,T; [HY?(00))°, [L*(9)]®) x W40, T; H/?(w), L*(w)).

Let (@,72) € X. From Corollary [5.5] (with 8; = 82 = 1), there exists a unique strong solution (u,p,n) € Xr to
the system (5.1)), (5.3)) with the boundary conditions

[u—Tomnl,, =0 te(0,7), y € o,

{ [2vD(u)n),, + [u— Tl =g+ [W—Tipls,  t€(0,T), ycdf. (5.33)

Using the trace theorems and the definition (2.6)) of X1 we can thus define the mapping

e ()= (3

2
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Let us prove that the mapping F is a contraction for 7" small enough: assume (77,?73) € X,7=1,2 and let
(u',p',n") € Xp i = 1,2 be the corresponding solutions of the system (5.1, (5.3)), (5.33). We write

1

u=u'—u?, p=p —p’ p=n' -0, u=a'

71{7’27 52:77%777%

so that
Opu —V - T(u,p) =0 t>0, yeQ,
V-ou=0 t>0, yeQ, (5.34)
Oun + A+ A0 = =T (T(u,p)no)  t>0,
[u—Tomnl,, =0 t>0, ye o, (5.35)
[2vD(u)no + (v — Tom)l,, = [(u—Tn)l,, t>0, ye o, ’
u(0,-) =0 in £,
7(0,-) =0 inw, (5.36)
om(0,-) =0 inw.
From ([5.31)) and the boundedness of 7, we obtain
[l (wy 2, )|y, < C Nl (2 72) . - (5.37)

From (2.6)), (2.7)), the trace theorem and Lemma A.5 in [6], there exists a constant C' independent of T' such
that

10enll gr5/a 0,11 72w0)) + 10 575 0,75122 0021) F 101 oo 0,511 2 002)12) < C M (W ) || - (5.38)
From Corollary A.3 in [6] and (5.36), we deduce
1010 114 0,722 0y) + 1911511740, 2200312y < CT*+T22) [|(w, py 1) (5.39)

and
1961l 2 (0., 11172 ) + 101 20, 111200035y < OT 2 (s ) - (5.40)

Combining the estimates ([5.38)), (5.39)), (5.40]), we obtain

[F@, ') — F@, )|, < CT* + %) ||@,7") — (@, 7)||y

This shows that F is a contraction for 7' small enough and using the Banach fixed-point theorem, we deduce the
existence and the uniqueness of a strong solution for the system — (with 81 = B2 = 0) and the estimate
(5.32). To deduce the result fo any T', we simply reiterate the above procedure on small intervals [kTp, (k+1)Tp],
where T is such that F is a contraction. O

6 Fixed point

In this section, we prove the main result Theorem Using Definition we first restate this result after
change of variables.

Theorem 6.1.
1. Let 3; >0, i=1,2. Assume that (u°,n°,1n") € V with

1+n">0.

There exists a time Ty > 0 (depending only on ||(u®,n°,n")|lv) such that the system (3.5)), (3.6) and (3.7)
admits a unique strong solution (u,p,n) € Xr for T < Tp.
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2. Let B; > 0 with By + B2 >0, i = 1,2. There exists Ry > 0 such that for any (u®,n° n*) € V with
147" >0 and with |[(u°,7°n")|lv < Ro,

then the system (3.95), (3.6) and (3.7) admits a unique strong solution (u,p,n) € Xoo on (0,00) for
v E [0770]

We recall that V is defined by (5.7]). The above result is obtained by using a fixed-point argument.
First let us show the local in time existence. We define for all T' > 0 the space

Yr = L*(0,T5 [L2(Q)]°) x W40, T3 [H'2(0Q)]°, [L*(09)°) x L*(0,T; L*(w)), (6.1)
and for R > 0, we define the set

Br.r ={(f,9,h) € Yr | [I(f,9,h)lly, < R}. (6.2)

In the sequel, we denote by C' a quantity which does not depend on R and 7. We first start by assuming

([ (w®,n% )|, < R. (6.3)

Thus, applying Theorem 5.6} we know that for any (f,g,h) € Br g, there exists a unique solution (u,p,n) € Xr

of . . Moreover, the estimate (5.29)) yields
|,y < CR, (6.4)

for some positive constant C. For the local existence, the constant R is fixed. In the next section, we show that
for T' small enough, we can define F, G, H by (3.9)), (3.10) and (3.14]) and thus consider the mapping ® defined
as follows:

®:Brr — Yr, (f,9,h) — (F(u,p,n), G(u,n), H(u,n)). (6.5)

In what follows, we show that for T'small enough, we have ®(Bp r) C Br,r and that 5, , 1s a strict contraction.
First, we notice that (| . yields several other useful estimates. From 1 6), (2.7) and Lemma A.5 in [6],
there exists a constant C' independent of T such that

||77||H1(0,T;H2(w)) + H77||H3/4(0 T;H5/2(w) + Hatn||L4(o7T;H3/2(w)) + ||85j77HH7/8(0’T;HS/4(UJ))

&

+ llwll L3 o, 751573 ()2

518 ‘H7/8(0 T;L8/3 (w)

+ ||UHH1/4(0 riar o0)2) T 1ullgs/a0,10200)3) < CR. (6.6)
For simplicity, in all what follows, we assume
T<1. (6.7)

The above assumption simplifies the estimates in the sense that we only keep the smaller power of T'. We also
denote by Cr a constant that can depend on R in a nondecreasing way (typically the sum of CR™, m € N,
C > 0). The value of these constants may change from one appearance to another.

6.1 Estimates on the change of variables

We first prove some useful estimates on n

Lemma 6.2. We have

11 =1 e 0 720y < C M7= 0% o 0 5112y < T, (6.8)
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In particular, there exists

C
T[) = ﬁ > 0
such that if T < Ty, then
<C (6.9)
Hl N Lo (0,70 (w))
We also have the following estimates
1/4
Hasjn ;1 HLoo(OTLoc(w)) CrT', (6.10)
1/4
I =2z + [ = B[ g, S ORTS (611)
1911l o 0.7, 111 () < CRT®. (6.12)
Proof. In order to prove , we write

and we combine it with (6.6) and with H?(w) = L™ (w)
Since
1’ € DAY) = H(w) = C°(@),

there exists ¢ > 0 such that 1+ 7" > 2¢. Using , we obtain if T' is small enough.
We set & = 95,0 — Os;n° and £*(t*,-) = £(t°T,"), t* € [0,1]. Then we combine (A, the embedding
H3%(0,1) < L>(0,1), Lemma A.1 in [6] and to obtain

||§||L°°(O,T;H3/2(w)) = ||€*||L°°(0,1;H3/2(w)) <C ||f*||H3/4(o,1 JH3/2(w)) < CK*J3/4 2,(0,1),H3/2(w))
= CT1/4 ng 3/4,2,(0,T),H3/2 w)) CTl/ Hasj77||H3/4(0,T;H3/2(w)) < CT1/4R

Then, we deduce (6.10) and (6.11) by using H>/?(w) < L (w) and HY?(w) < L*(w).

Finally, (6.12) is a consequence of and (2.7). O

Now, we show some estimates on the changes of variables X and Y defined by (3.2). We recall that a; is
given by (3.8).

Lemma 6.3. Assume .

llair (X) = Gikll oo (0,750 () F+ IVY(X) = I3[ Lo (0,131 (a)]9) < CrT*. (6.14)
laie (X)) oo 0,752 (02)) + IVY (X)) oo (0,712 ())9) < Cr- (6.15)
. 2y.
H Ok x) H oY < CrTY4, (6.16)
Dy, L= (0,T;L4(Q)) OOy, Lo°(0,T;L4())

82aik
52 X) < Cr. (6.17)
J L>=(0,T;L2(%2))
10Y (X))l a0, 7,1 () < Cr- (6.18)
10cain (X)) o 0.1, 12(0)) < CrRT 18, (6.19)
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Proof. By definition (see (3.1) and (3.2)), we recall that

1+ 1%z, 22)

Ys(t =
3( 756) 1 + n(ta$17x2)

zs3, i/z(t,l’):I“ 7’:172

As a consequence, the estimate on VY (X) — I3 reduces to the estimate of the following terms

3Y3

3Y3
—1
H Oz X

Ox;j

, 7=1,2 and H

Loc(o,T;Loc(Q)) L= (0,T;L°°(Q)) .

We have

By using and , we deduce

—° X _
Hal‘g,

L==(0,T;L=>=(Q))
On the other hand, for j = 1,2, we have

oYy .
GTj(X)_y?’

and thus, using , , and ,

8Y3
836 J

(88~770 - 35.77) (77 - 770)
TS S Ogm—rt 12
R L s TGy

< CTY*R+CT'?R* < CrTV*.
> (0,T;L> (%))

Hence, we obtain (6.14]) and thus (6.15)).
We have for k, j € {1,2},

62Y3 X (82 e,ﬂ 882]'3]9"7) (8 i1 — 8 O) ( sl — aSkWO)

— as e —— as T N7+ . AN
it s e e LU ey wry I LUK T ey
2

85.5”'7 aS aS'
+y3(77—77°)< el g GO0 ).<6.24>

IT+791+n) (1 +7°)1+n)?

0%Y;3
Ox,0x;

Then, we obtain
35.7‘ nHL‘X’ (0,T;L> (w))

L= (0,1 §L4(°~’))
Lo (0,T5L%(w))

Using (6.11] -, and , we obtain . The other cases for k, j are easier to do and we skip them.

+ R[0s,1° —

%= 0|
s; sk '5.75"]977 Lx((),T;L4(w))

sl

+ 1" =1l e 0710 (0 (‘ o

The third derivative ———— involves the following terms
8$]‘ak8$l
agjskslno 8517785 sk77 851770‘952 sk ag sksln 38177332jsk77
Y3 Y3

]-+77 ) Ys (1_’_77)2 )
3s]-7]asmasﬂ7 3sj7755k775sl770

1+ Ba+pa+n) Pa+na+nP)

(6.20)

(6.21)

< CRrTY2, (6.22)

(6.23)

B B0+
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Thus, using , , , and , we obtain .

We have

_ 9
atY(X)_ y31‘|‘7763

and thus
10:Y (X )HL‘I(OT[LOO(Q) CR||at77||L4(OTL°°(w))

Thus, using (6.3 and , we obtain .

The terms appearing in dra;;(X) are of the form

0inds;n 9inds,n"° 9%m (L4 n")dm
Blarnr Parapare) Py (L+n)?

Consequently, using and (6.10)),

10eair (X))l Lo 0,720y < CrNOM Lo (0,710 (1)) -

The above estimate and (6.12)) yield (6.19). O

Now, we need the following lemma to estimates the terms on the boundary.

Lemma 6.4. Assume . Then we have the following estimates
IVY(X) = I3l oo (0, 751213/2002))0) + @ik (X) = Gikell poc (0,7 11272 (02
+ 1m0 = nll oo 0,71 112/2 (902)2) + 76 — Ti||L°°(0,T;[H3/2(8Q)]3) < CrTYE. (6.25)

6amk
Bacj

(X) < CrTY*. (6.26)

Loo(0,T;H/2(992))

VY (X) = I3[ gro/s 0, 1,110 (0))0) T @ik (X) = Gkl /80,1 1.0 (062

+ [lno — n||H7/8(0,T;[L°°(BQ)]3) + HTS - TiHH7/8(07T;[Loo(aQ)]3) < Cr. (6.27)

Haamk

o, (X)H < Ch. (6.28)

H7/8(0,T;L8/3(0))

Proof. Relation is a consequence of (6.21)), (6.23)), (1.5) and (3.11) combined with (6.11). We obtain
- 6.26]) by using Lemma P with .

Using (6.6) j and HY — L°°(w), we obtain

||3s.7 n’ =, < Ch. (6.29)

77||H7/8(0,T;L°°(w)) =
For (ay,as,a3) € N3, we also deduce that

N (0s,m)*?

T e Gusn’ = Ouym) € HH(0, T3 L (w)).

Nevertheless, one has to take care about the dependence in T' of the corresponding norm. In order to do this,

we notice that if
frg € H3(0,T; L= (w)) N L=(0,T; L= (w)),

then
fg€ H/30,T; L= (w)) N L*(0,T; L™ (w)),
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and

£ 90l 778 0,75 100 (w))nzoe 0,130 () < ClNF 7750, 115 (w))nLoe 0,135 (w)) 191 775 (0,7 150 (w)) Lo (0,770 (w))

The last estimate is obtained by writing the definition (2.1)) of the norm in H™/8(0, T; L>(w)).

Then, combining (6.29)) with (6.4), we obtain that
(6Sj770 - 883‘ W)H g CR

' n (asJ- n)*?
H7/8(0,T;L> (w))

(14 mn)ee
From this estimate and (6.21)), (6.23), (L.5) and (3.11)), we obtain (6.27).
a

To prove (6.28]), we use that the terms appearing in
arguments with and (6.4]), we deduce the result.

J

6.2 Estimates of F', G, H
Proposition 6.5. Assume F', G, H are given by (3.9), (3.14), (3.10). Then we have

| F (u, p, T])||L2(O7T;[L2(Q)]3) < ORTI/Ga
HH(UW)HH(O,T;L?(M)) < CRT1/47

||G(u7n)||L2(O7T;H1/2(8Q)) + ||G(ua77)||H1/4(0,T;L2(BQ)) < CrTYS.

Proof. Using (6.14]), (6.15]), we obtain

Y, . OY) 0?uy,

X)—(X) — ikOmi0il) ———

(air(X) < CrT*,

L2(0,T;L2(Q))

I (Gin = 0k ()t 2 o 2y < CTY,

and oY; 5
‘ (i — = (X)) 2L < CrTY4,
Dy Y L2(0,T;L2(Q))
Using (6.15)) and ( -7 we obtain
aUk 1/4
aik(X)0 Y1 (X) 5 — < CrT0Y (X))l o, 1,0 ) 16l oo 0,731 (22
oy L2(0,T;L2(Q))

Using (6.15)) and ( -7 we get

() 20 (x0) [ErCateteob
i 2
8xj oy, L2(0.712() Ox; O0x; dyy L2(0,T512(9))
6afzk: a2Yl
< Cr H 3 X) ‘M(X) lull L2 0,7 pm2 ) <
Yj L>(0,T;L*(Q2)) J Lo (0,T;L4(2))

From (6.19) and (6.6), it follows that

19 @ik (X )url 120,122 (2y) < N10eain (X 1o 0.2 () 11kl L3 (0.7 0w 02y < CRTY.
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< CrTY*.

< CrTY™,

ULYS'e ) are of the form (6.24). Combining the above

O

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)



From and .

|' D?ayy,

2
O aix O aix
2
3xj

2
axj

< T1/6

L2(0,T5L3(Q2))

(X)Uk (X) ||ukHL3(O,T;Loo(Q)) < CRTI/G.

L>(0,T;L2(2))

Using standard estimates on the nonlinear terms (see, for instance, [3| p.48]), we have

auj

< CTY*R?. (6.38)
8ym L2(0,T;L2(Q))
Combining this with (6.14]) yields
Yo
H <5ij5k15km — akl(X)aij(X)a(X)> w Ou; < CrTY2. (6.39)
Dy, 83/m L2(0,T;L2(Q))
Using (6.16)), we have also
da;;(X) Haa--
ap (X)—2 U <C (X U || 00 (0.7 Uj Lo
a(X) dxy Y roma@) 3=’vk( ) L0 (0,T;L4(2)) Iitlom o ziency Wslooo s

< CRrTY*. (6.40)

Hence, F(u,p,n) is L*(0,T;[L*(Q)]?) and using (6.33)), (6.34), (6.35), (6.39), (6.37) and (6.40), we get

| F'(u, p, 7])||L2(07T;[L2(Q)]3) < CrTVY/S.

We estimate now G(u,7) in W40, T; [HY2(09Q)]3, [L*(8Q)]%). We recall that the formula (3.14) for G
involves 7%, W, V* (see (3.11)), (3.12)), (3.13)). First we write for i = 1,2

Vi = 2uD(u)ng + B(u — TOm)) - (16 — ) + [2vD(u)ng + B(u — TOn) — W] -7, (6.41)
with
ouy, ouy,
[21/D( )nO + ﬂ(u - Tatn k =V Z 77,0 <5km 5qj + 5jm 6qk)
3mag 9yq 0yq

T (0 (30 G G003 03 () 522 20 () )

IJZn] (8“’”" Uy + aan:L (X)um> + 52(% —ani(X))uj, k=1,2,3. (6.42)

From ([6.4) and trace results, we have

Ouy,

lull 20,7 pm3/2002))2) T Hayq

L2(0,T;[H'/2(09)]%)
Combining this with (6.25) and (6.26]), we deduce
CRT1/4

V'l 20 2072 0y <

and thus from (3.14)), we finally obtain

HG(U, n)HL2(0,T;[H1/2(8Q)]3) < CRT1/4.
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For the estimate in H'/4(0,T; L?(99)), we use (A.5): for instance,

ou,, 0Y,
e () = ) 512 103 |
Yq 0T H1/4(0,T;L2(89))
oY, O,
<orY/s nj(akm(X)—(Skm)q(X)‘ ‘ Y H < CRrTY3, (6.43)
O HT7/8(0,T;L2(8)) dyq HY/4(0,T;L2(89))

The last inequality is obtained by using both (6.25)), (6.27) and (6.6).
The other kind of terms that has to be estimated are of the form

0 0
H hm (X)um‘ < OTV3 || R () H [t /40,7525 (602)) < CrRT i
Ox; HY/4(0,T;L2(99)) 5% H7/8(0,T;L8/3(8))
where we have used (A.5)) and
aakm
X)=0 att=0.
Te(X)=0
All the other terms are estimated similarly so that we finally deduce (6.32)). The estimate (6.31)) on H can be
done similarly as the estimate (6.32)) for G. O

6.3 Proof of Theorem [6.1]
We are now in position to prove Theorem

Proof of Theorem[6.1 First let us prove the local in time existence. We recall that @ is given by (6.5), with Vr
given by (6.1). From (6.30), (6.32), (6.31), we obtain

||(I)(f7 57 h)HyT < CRT1/8~

Thus, for T' small enough, we obtain that ®(Br,r) C Br g, where By g is defined by . With computations
similar as the ones done in the two previous subsections, we also obtain that for 7" small enough, ®|5,  is a
contraction. Using the Banach fixed-point theorem, we deduce the existence and uniqueness of (u, p, ) solution
of the system (3.5)), and provided that T is small enough.

For the second part of Theorem the application ® is defined in a similar way as but with T" = oo
and

Voo = L2(0, 00 [L*(Q)]%) x W2/*(0, 003 [H/2(0Q)]?, [L*(0))*) x L2(0, 00; L* (w)). (6.44)

Here v € [0,70], where vy is given by Theorem In that case, we show that for R small enough ®(B r) C
Boo,r and that 5  is a strict contraction. The estimates are similar to the previous case, but are simpler:
for instance, Lemma [6.2] is replaced by the following estimates:

2
||77||Lg°(0,oo;L°°(w)) + HaSjnHLgo(O)oo;Loo(w)) + ‘ asjskn ‘L‘X’(O oo L4(w)) ||77HL°°(0 oo H3(w)) SCR <645)

In particular, there exists Ry > 0 so that, if R < Ry, then

<C. (6.46)
L>°(0,T5L°° (w))

H1+77

We can then define the changes of variables X and Y by 7 and obtain similar estimates as in Lemma
Lemma and Proposition
This yields
1@ (£.3.1)_ < CR2, (6.47)
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and

H‘I’(f(l)’g(l)’h(l))_‘I’(f@)’gm’h@))Hy <CRH(f(l)’g(l)’h(l))_(f(2)7§(2)’h(2))Hy _ (6.48)

for (f,q,h), (]‘(i),ﬁ(i)7 h(i)) € By, r. Then, we use the Banach fixed point by taking R small enough and we
deduce the global existence and uniqueness of a strong solution (u,p,n) € X5  for the system (3.5), (3.6) and
(13.7) provided that R is small enough. O

A Technical results

In this section, we give some technical estimates that have been elaborated in [6]. Given a function &, we define
for t* € [0,1], £*(t*) = &£(¢t*T). Assume X is a Banach space. If £ € H*(0,T; X), then £ € H*(0,1;X) and

1€ ]s,2,00),%x = T(2s=1)/2 L€]s.2,00,1),%- (A.1)

Assume oy € (1/2,1] and o7 € [0,02]. Using the above result, there exists a constant independent of T' such
that for any £ € H?2(0,T;X) and £(0) = 0, then

1€l v 0,7,%) < CT7* "7 [|€ll o 0,7,3) - (A.2)

We also recall the following result on the interpolation estimates (with constants independent of T'), see [6]
Lemma A.5]: assume o € [0,1], p1 > 0, g2 > 0 and g = opy + (1 — o)pe. Then there exists a constant C
independent of 7" such that for any function u € H*(0,T; H* () N L*(0,T; H"2(R)), we have

o 1-0o
[ull tre 0,110 2y < Clullir o701 0y 1l 20,7102 (2 - (A.3)
1 1-—
On the other hand, for p, ¢ € [1,+00] and — = 74 ( 0)7 we have
r p
o 1—0o
HUHLT(O,T;HM(Q)) <C ||UHLP(0,T;Hm(Q)) ||U||Lq(o,T;Huz(Q)) ) (A.4)

for w € LP(0,T; H* (Q2)) N L9(0,T; H*2(§2)).
We give also a useful formula (see [0, Lemma A.7]) for the product of functions: assume that X;, X2 and X3
are Banach spaces such that

1f9llx, < CNflx, lgllx,, VFe€ X, VgeXs

Let us assume o € (1/2,1], s € [0,1/2], Ty > 0. Then there exists a constant C such that for any T' < Ty we

have

lurtezl o2y < CTe—eie [uill e 0,m3200) 102l 1o 0,720 + w202, Mluall e 0,72, » (A-5)

for all u; € H*(0,T;%;) and ug € H?(0,T; X2).
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