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Abstract

We consider a fluid-structure interaction system composed by a three-dimensional viscous incompressible
fluid and an elastic plate located on the upper part of the fluid boundary. The fluid motion is governed
by the Navier-Stokes system whereas we add a damping in the plate equation. We use here Navier-slip
boundary conditions instead of the standard no-slip boundary conditions. The main results are the local
in time existence and uniqueness of strong solutions of the corresponding system and the global in time
existence and uniqueness of strong solutions for small data and if we assume the presence of frictions in the
boundary conditions.
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1 Introduction
The aim of this work is to analyze the interaction between a viscous incompressible fluid and a viscous elastic
plate. Let us start by presenting the corresponding model. We denote by ω the rectangular torus

x1

x2

x3

Γ(η)

Γ0L1

L2

Figure 1: Configuration of the domain at time t.

ω = (R/L1Z)× (R/L2Z) L1 > 0, L2 > 0. (1.1)

For any function η : ω → (−1,∞), we define (see Figure 1)

Ω(η) = {(x1, x2, x3) ∈ ω × R | 0 < x3 < 1 + η(x1, x2)} ,
Γ(η) = {(x1, x2, x3) ∈ ω × R | x3 = 1 + η(x1, x2)} ,

Γ0 = ω × {0}.

In particular
∂Ω(η) = Γ(η) ∪ Γ0. (1.2)

We consider the following system describing the evolution of the fluid governed by the incompressible Navier-
Stokes equations, and the movement of the elastic plate

∂tU + (U · ∇)U −∇ · T(U,P ) = 0 t > 0, x ∈ Ω(η(t, ·)),
∇ · U = 0 t > 0, x ∈ Ω(η(t, ·)),

∂ttη + α∆2η − κ∆η + ση − δ∆∂tη = H̃η(U,P ) t > 0, s ∈ ω.
(1.3)

In the above system, we have denoted by U the fluid velocity, P the fluid pressure and η the transversal plate
displacement.

The Cauchy stress tensor T(U,P ) is defined by

T(U,P ) = −PI3 + 2νD(U), D(U)i,j =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
.

The function H̃η is the fluid strain on the structure and is defined by

H̃η(U,P ) = −
√

1 + |∇η|2 (T(U,P )n · e3) .

We assume

ν > 0, α > 0, σ > 0, κ > 0 and δ > 0. (1.4)

2



These constants correspond respectively to the rigidity (α), the stretching (κ), the damping on the structure
(δ) and the viscosity (ν).

We have denoted by n the unitary exterior normal of ∂Ω(η):

n = −e3 on Γ0,

and on Γ(η):

n(s, 1 + η(s)) =
N(s, 1 + η(s))

|N(s, 1 + η(s))|
, where N(s, 1 + η(s)) =

−∂s1η(s)
−∂s2η(s)

1

 , s ∈ ω. (1.5)

Here and in what follows, | · | denotes the Euclidian norm of Rk, k > 1.
We complete (1.3) by the Navier slip boundary conditions. In order to write these boundary conditions, we

need to introduce some notations. We denote by an and aτ the normal and the tangential parts of a ∈ R3:

an = (a · n)n, aτ = a− an = −n× (n× a) . (1.6)

Then, our boundary conditions write as follows
Un = 0 t > 0, x ∈ Γ0,

[2D(U)n]τ + β1Uτ = 0 t > 0, x ∈ Γ0,
(U(t, s, 1 + η(t, s))− ∂tη(t, s)e3)n = 0 t > 0, s ∈ ω,

[2D(U)n]τ (t, s, 1 + η(t, s)) + β2(U(t, s, 1 + η(t, s)− ∂tη(t, s)e3)τ = 0 t > 0, s ∈ ω.

(1.7)

In what follows, we write the above equations in the following more compact way
Un = 0 t > 0, x ∈ Γ0,

[2νD(U)n+ β1U ]τ = 0 t > 0, x ∈ Γ0,
(U − ∂tηe3)n = 0 t > 0, x ∈ Γ(η),

[2νD(U)n+ β2 (U − ∂tηe3)]τ = 0 t > 0, x ∈ Γ(η).

(1.8)

We assume that the friction coefficients β1 and β2 are constants satisfying

β1 > 0, β2 > 0.

These boundary conditions can be compared with the standard no-slip boundary conditions usually considered
with the Navier-Stokes system. In our case, these conditions would write as{

U = 0 t > 0, x ∈ Γ0,
U = ∂tηe3 t > 0, x ∈ Γ(η).

(1.9)

The Navier slip boundary condition was proposed by Navier in 1823 [28] and is relevant in several physical
contexts, see for instance [24, 35, 22].

To complete the system (1.3),(1.8), we add the following initial conditions
η(0, ·) = η0 in ω,

∂tη(0, ·) = η1 in ω,
U(0, ·) = U0 in Ω(η0).

(1.10)

Let us remark that we don’t need to consider boundary conditions on the “lateral” boundaries since we work
with the torus ω (see (1.1) and (1.2)). This means that we are considering periodic boundary conditions for U ,
P and η:

U(t, x1 + L1, x2, x3) = U(t, x1, x2, x3), U(t, x1, x2 + L2, x3) = U(t, x1, x2, x3),

η(t, s1 + L1, s2) = η(t, s1, s2), η(t, s1, s2 + L2) = η(t, s1, s2),
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and a similar relations for P .
Several works have been devoted to the study of the system (1.3), (1.10) with the Dirichlet boundary

conditions (1.9): existence of strong solutions ([3], [23]), feedback stabilization ([30], [2]), global existence of
strong solutions ([15]). Let us point out that in this latter work, the authors manage to obtain in particular that
there is no contact between the plate and the bottom of the domain in finite time for the system (1.3),(1.9),(1.10).
This result, as previous works on fluid-structure interaction systems, shows that the standard no-slip boundary
conditions may lead to some paradoxal results as the distance between two structures is going to 0: in the case
of rigid bodies immersed into a viscous incompressible fluid, it is shown that in particular geometries there is
no contact in finite time of two structures ([18], [19]) and in general, if there is contact, then it occurs with null
relative velocity and null relative acceleration ([31]). In [9] and [10], the author considered boundary conditions
involving the pressure. Here, our aim is to analyze the same system (1.3) with the Navier-slip boundary
conditions (1.8) instead of the Dirichlet boundary conditions. Such a system was already considered in [17] and
[27] where the existence of weak solutions is proved in dimension 2 (global existence as long as the deformable
structure does not touch the fixed bottom). The uniqueness of weak solutions for this system has been obtained
in [16].

Our objective is to prove the existence and uniqueness of strong solutions for small time or for small data.
This is the first work on strong solutions for such a system in the case of Navier-slip boundary conditions and
to our knowledge, it is also the first work on strong solutions for this kind of systems in the 3D case.

In the case where the structures are rigid bodies immersed into a viscous incompressible fluid, several authors
have already considered the Navier-slip boundary conditions: existence of weak solutions [29] and [12], existence
of contact in finite time [13], existence of strong solutions and study of contacts in finite time [36], uniqueness
of weak solutions [7]. Let us also mention the work of [8] where they consider a nonlinear boundary condition
of Tresca’s type.

The main result of this article is

Theorem 1.1.

1. Assume βi > 0 for i = 1, 2 and (1.4). Suppose η0 ∈ H3(ω), η1 ∈ H1(ω) and U0 ∈ [H1(Ω(η0))]3 such that

1 + η0 > 0, ∇ · U0 = 0 in Ω(η0), (U0 − η1e3)n = 0 on Γ(η0), U0
n = 0 on Γ0.

There exists a time T0 such that the system (1.3),(1.8), (1.10) admits a unique strong solution (U,P, η)
on (0, T0):

η ∈ L2(0, T0;H4(ω)) ∩ C0([0, T0];H3(ω)) ∩H1(0, T0;H2(ω)) ∩ C1([0, T0];H1(ω)) ∩H2(0, T0;L2(ω)),

U ∈ L2(0, T0; [H2(Ω(η(t))]3) ∩ C0([0, T0]; [H1(Ω(η(t)))]3) ∩H1(0, T0; [L2(Ω(η(t)))]3),

∇P ∈ L2(0, T0; [L2(Ω(η(t)))]3).

2. Assume βi > 0 for i = 1, 2 with β1 + β2 > 0 and (1.4). There exist γ0 > 0 and R0 > 0 such that if
η0 ∈ H3(ω), η1 ∈ H1(ω) and U0 ∈ [H1(Ω(η0))]3 satisfy

1 + η0 > 0, ∇ · U0 = 0 in Ω(η0), (U0 − η1e3)n = 0 on Γ(η0), U0
n = 0 on Γ0.

and ∥∥U0
∥∥

[H1(Ω)]3
+
∥∥η0
∥∥
H3(ω)

+
∥∥η1
∥∥
H1(ω)

6 R0,

then the system (1.3),(1.8), (1.10) admits a unique strong solution (U,P, η) on (0,∞):

η ∈ L2
γ(0,∞;H4(ω)) ∩BC0

γ([0,∞];H3(ω)) ∩H1
γ(0,∞;H2(ω)) ∩BC1

γ([0,∞];H1(ω)) ∩H2
γ(0,∞;L2(ω)),

U ∈ L2
γ(0,∞; [H2(Ω(η(t))]3) ∩BC0

γ([0,∞]; [H1(Ω(η(t)))]3) ∩H1
γ(0,∞; [L2(Ω(η(t)))]3),

∇P ∈ L2
γ(0,∞; [L2(Ω(η(t)))]3),

for γ ∈ [0, γ0].
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In the above statement, the spaces Lp, Hs are the classical Lebesgue, Sobolev spaces. We use the notation
BC0 = C0 ∩ L∞ and BC1 = C1 ∩W 1,∞. The notation ·γ is explained below in (2.2), (2.3) and corresponds
to an exponential decay of order γ. Finally, the notation L2(0, T ;H1(Ω(η(t)))) corresponds to the fact that
the fluid velocity and pressure are written in a moving domain depending on η. To obtain our result, we thus
need to use a change of variables for U and P and the fluid velocity and pressure after change of variables are
obtained in spaces of the form L2(0, T ;H1(Ω)) with a fixed Ω. The precise definition of strong solutions is given
in Section 3 (Definition 3.1) and we reformulate the above result in a more precise way in Theorem 6.1.

Remark 1.2. We can write a bi-dimensional version of the system (1.3),(1.8), (1.10) and for such a system,
one can prove a similar result as Theorem 1.1. In fact, in that case, one could obtain a global in time existence
of strong solutions up to a possible contact between the beam and the bottom of the domain by following the
arguments in [15].

Remark 1.3. For the sake of simplicity in the proof of Theorem 1.1 and in the remaining part of this article,
we assume κ = σ = 0 since these constants do not play any role in the analysis.

The plan of this paper is as follows: In Section 2, we give some notation. In Section 3, we remap the problem
into a fixed domain using a change of variables like it was introduced in [21], and we restate Theorem 1.1. We
obtain some regularity properties of the Stokes system in domains of class H3 in Section 4. In Section 5, we
study the linearized problem by writing it as an evolution equation. We prove in particular that the associated
semigroup is analytic and in Section 6, we prove the main result using a fixed-point argument.

2 Notation
During the course of our analysis, we will use some functional spaces that we introduce in this section.

First, let us note that due to the incompressibility of the fluid and to the boundary conditions (1.8)1 and
(1.8)3, we have

d

dt

∫
ω

η ds = 0.

For simplicity, we assume throughout the paper that∫
ω

η0ds = 0

so that ∫
ω

η(t, ·)ds = 0 (t > 0).

It yields to consider the following space

L2
0(ω) =

{
ξ ∈ L2(ω) |

∫
ω

ξds = 0

}
,

and the orthogonal projection M : L2(ω)→ L2
0(ω). Applying M on the plate equation (1.3)3, we find

∂ttη +A1η +A2∂tη = Hη(U,P ),

where

A1η = α∆2η, D(A1) = H4(ω) ∩ L2
0(ω),

A2η = −δ∆η, D(A2) = H2(ω) ∩ L2
0(ω),

and
Hη(U,P ) = M(H̃η(U,P )).
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The projection of (1.3)3 onto L2
0(ω)⊥ leads to impose the choice of the constant normalizing the pressure, see

for instance [15].
We denote by Hs(0, T ;X) the usual Sobolev spaces with values in a Banach space X. For s > 0, s /∈ N, the

norm of these spaces can be defined by using

bξcs,2,(0,T ),X =

(∫
(0,T )×(0,T )

‖ξ(t)− ξ(t′)‖2X
|t− t′|2s+1

dtdt′

)1/2

.

More precisely, the norm ‖.‖Hs(0,T ;X) for s ∈ (0, 1) is given by

‖ξ‖Hs(0,T ;X) =
(
‖ξ‖2L2(0,T ;X) + bξc2s,2,(0,T ),X

)1/2

. (2.1)

We recall (see [6]) that if s ∈
(

1

2
, 1

)
, then the norm b·cs,2,(0,T ),X is equivalent to the norm defined in (2.1) in

the space {ξ ∈ Hs(0, T ;X) | ξ(0) = 0}.
Let X1, X2 be two Banach spaces endowed with the norm ‖.‖X1

respectively ‖.‖X2
. For s > 0, we define the

following space
W s(0, T ;X1,X2) =

{
v ∈ L2(0, T ;X1) | v ∈ Hs(0, T ;X2)

}
,

endowed with norm
‖.‖W s(0,T ;X1,X2) = ‖.‖L2(0,T ;X1) + ‖.‖Hs(0,T ;X2) .

For s = 1, we will denote W 1(0, T ;X1,X2) by W (0, T ;X1,X2).
For γ > 0, we also consider the spaces

Lpγ(0,∞;X1) = {v ∈ Lp(0,∞;X1) ; t 7→ vγ(t) = eγtv(t) ∈ Lp(0,∞;X1)}, p ∈ [1,+∞], (2.2)

and
W s
γ (0,∞;X1,X2) = {v ∈W s(0,∞;X1,X2) ; t 7→ vγ(t) = eγtv(t) ∈W s(0,∞;X1,X2)}. (2.3)

For these spaces, we use the norms defined by

‖v‖Lpγ(0,∞;X1) = ‖vγ‖Lp(0,∞;X1) ,

‖v‖W s
γ (0,∞;X1,X2) = ‖vγ‖W s(0,∞;X1,X2) .

In what follows, we set
Ω = Ω(η0), (2.4)

for the local existence and
Ω = Ω(0), (2.5)

for the global existence.
In order to differentiate the normal or the normal and tangential component of a vector v in Ω and in Ω(t),

we use the notation n0, vn0 and vτ0 for the configuration Ω.
We denote by

Dσ(Ω) = {φ ∈ [C∞0 (Ω)]3,div φ = 0}.

the space of infinitely differentiable functions with free divergence in Ω with compact support .
Let us also define the following space

XT = W (0, T ; [H2(Ω)]3, [L2(Ω)]3)× L2(0, T ;H1(Ω)/R)×W 2(0, T ;D(A1), L2
0(ω)), (2.6)
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endowed with the norm

‖(u, p, η)‖XT = ‖u‖W (0,T ;[H2(Ω)]3,[L2(Ω)]3) + ‖u‖L∞(0,T ;[H1(Ω)]3) + ‖∇p‖L2(0,T,[L2(Ω)]3)

+ ‖η‖W 2(0,T ;D(A1),L2
0(ω)) + ‖η‖L∞(0,T ;H3(ω)) + ‖∂tη‖L∞(0,T ;H1(ω)) . (2.7)

If T = +∞ and γ > 0, we will write

X∞,γ = Wγ(0,∞; [H2(Ω)]3, [L2(Ω)]3)× L2
γ(0,∞;H1(Ω)/R)×W 2

γ (0,∞;D(A1), L2
0(ω)), (2.8)

endowed with the norm

‖(u, p, η)‖X∞,γ = ‖u‖Wγ(0,∞;[H2(Ω)]3,[L2(Ω)]3) + ‖u‖L∞γ (0,∞;[H1(Ω)]3) + ‖∇p‖L2
γ(0,∞,[L2(Ω)]3)

+ ‖η‖W 2
γ (0,∞;D(A1),L2

0(ω)) + ‖η‖L∞γ (0,∞;H3(ω)) + ‖∂tη‖L∞γ (0,∞;H1(ω)) . (2.9)

To write the boundary conditions, we also introduce the operator T defined as follows (see [2]):

Tη0ξ(y) =

{
0 if y ∈ Γ0,

ξ(s)e3 if y = (s, 1 + η0(s)) ∈ Γ(η0).

We can verify that Tη0 ∈ L(L2(ω); [L2(∂Ω)]3) and that

T ∗η0ζ =
√

1 + |∇η0|2ζ · e3, ∀ζ ∈ [L2(∂Ω)]3.

We set
T = Tη0M.

We also define
β =

{
β1 if y ∈ Γ0,
β2 if y ∈ Γ(η0).

3 Change of variables
For η1, η2 ∈ H3(ω) with

η1, η2 > −1 in ω,

we can consider the change of variables Xη1,η2 defined below

Xη1,η2 : Ω(η1) −→ Ω(η2),

y1

y2

y3

 7−→


y1

y2

1 + η2(y1, y2)

1 + η1(y1, y2)
y3

 . (3.1)

The mapping Xη1,η2 is invertible of inverse Xη2,η1 . Moreover, using the Sobolev embedding H3(ω) ↪→ C1(ω)
and that

det(∇Xη1,η2) =
1 + η2

1 + η1
,

we deduce that Xη1,η2 is a C1-diffeomorphism from Ω(η1) onto Ω(η2).
In the case Ω = Ω(η0) (see (2.4)), we set

X(t, ·) = Xη0,η(t,·), Y (t, ·) = Xη(t,·),η0 (3.2)

and in the case Ω = Ω(0) (see (2.5)), we set

X(t, ·) = X0,η(t,·), Y (t, ·) = Xη(t,·),0 (3.3)
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We have in both cases that Y (t, ·) = [X(t, ·)]−1.
We consider the following transformation of u and p:

u(t, y) = (Cof∇X(t, y))∗U(t,X(t, y)), p(t, y) = P (t,X(t, y)) (t > 0, y ∈ Ω). (3.4)

Here, (Cof∇X(t, y))∗ denotes the transpose of (Cof∇X(t, y)). After some standard calculations (see, for
instance, [21]), the system (1.3), (1.8), (1.10) can be written as ∂tu−∇ · T(u, p) = F (u, p, η) t > 0, y ∈ Ω,

∇ · u = 0 t > 0, y ∈ Ω,
∂ttη +A1η +A2∂tη = Hη0(u, p) +H(u, η) t > 0,

(3.5)

with the boundary conditions{
[u− T ∂tη]n0

= 0 t > 0, y ∈ ∂Ω,
[2νD(u)n0 + β(u− T ∂tη)]τ0 = G(u, η) t > 0, y ∈ ∂Ω,

(3.6)

and with the initial conditions 
u(0, ·) = u0 = U0 in Ω,

η(0, ·) = η0 in ω,
∂tη(0, ·) = η1 in ω.

(3.7)

In order to write the nonlinearities F , H, G, we first set

(Cof∇Y )∗ = (aik)ik . (3.8)

Then

Fi(u, p, η) =
∑
k

(δik − aik(X))∂tuk −
∑
l,k

aik(X)
∂uk
∂yl

(X)∂tYl(X)−
∑
k

∂taik(X)uk

+ ν
∑
j,k,l,m

(
aik(X)

∂Ym
∂xj

(X)
∂Yl
∂xj

(X)− δikδmjδjl
)

∂2uk
∂yl∂ym

+ ν
∑
j,k,l

(
2
∂aik
∂xj

(X)
∂Yl
∂xj

(X) + aik(X)
∂2Yl
∂x2

j

(X)

)
∂uk
∂yl

+ ν
∑
k

∂2aik
∂x2

j

(X)uk

+
∑
k

(δki −
∂Yk
∂xi

(X))
∂p

∂yk
−
∑
k,l,j

akl(X)
∂aij(X)

∂xk
uluj

+
∑
k,l,j,m

(
δijδklδkm − akl(X)aij(X)

∂Ym
∂xk

(X)

)
ul
∂uj
∂ym

, i = 1, 2, 3, (3.9)

and

H(u, η) = νM

[
−
∑
j,k

(
∂a3k

∂xj
(X) +

∂ajk
∂x3

(X)

)
ukNj +

∑
j,k,l

(
δ3kδjl(N0)j − a3k(X)

∂Yl
∂xj

(X)Nj

)
∂uk
∂yl

+

(
δ3lδjk(N0)j − ajk(X)

∂Yl
∂x3

(X)Nj

)
∂uk
∂yl

]
. (3.10)

To define G, we introduce the following notations.

τ1 =

 1
0

∂s1η

 , τ2 =

 0
1

∂s2η

 , (3.11)
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Wk = ν
∑
j,m

nj

(
∂akm
∂xj

(X)um +
∂ajm
∂xk

(X)um

)
+ β

∑
j

akj(X)uj − T ∂tη · ek


+ ν

∑
j,m,q

nj

(
akm(X)

∂um
∂yq

∂Yq
∂xj

(X) + ajm(X)
∂um
∂yq

∂Yq
∂xk

(X)

)
, k = 1, 2, 3, (3.12)

and
Vi = (2νD(u)n0 + β(u− T ∂tη)) · τ i0 −W · τ i, i = 1, 2. (3.13)

Then G(u, η) is given by

G1(u, η) =
V1((∂s2η

0)2 + 1)− V2(∂s1η
0∂s2η

0)

|N0|2
,

G2(u, η) =
V2((∂s1η

0)2 + 1)− V1(∂s1η
0∂s2η

0)

|N0|2
,

G3(u, η) =
∂s1η

0V1 + ∂s2η
0V2

|N0|2
.

(3.14)

More precisely, let us note that

[2νD(U)n+ β(U − T ∂η)]τ = 0 t > 0, x ∈ ∂Ω(η) (3.15)

writes as
(2νD(u)n0 + β(u− T ∂tη)) · τ i0 = Vi, i = 1, 2. (3.16)

The formula (3.14) for G is such that

G · τ i0 = Vi, i = 1, 2, G · n0 = 0

so that (3.16) is equivalent to the second condition of (3.6), with G tangential.
Using the above transformation, we can now introduce our definition of strong solutions for system (1.3),(1.8),

(1.10)

Definition 3.1. The triplet (U,P, η) is a strong solution of (1.3),(1.8), (1.10) if the following conditions are
satisfied

η ∈W 2(0, T ;D(A1), L2
0(ω)), (D1)

1 + η > 0 in [0, T ], (D2)

X and Y are given by (3.2) and (u, p) are given by (3.4), (D3)

(u, p) ∈W (0, T ; [H2(Ω)]3, [L2(Ω)]3)× L2(0, T ;H1(Ω)/R), (D4)

(u, p, η) satisfies the system (3.5),(3.6), (3.7). (D5)

Following this definition, in order to prove Theorem 1.1, we have to prove the existence and uniqueness of

(u, p, η) ∈W (0, T ; [H2(Ω)]3, [L2(Ω)]3)× L2(0, T ;H1(Ω)/R)×W 2(0, T ;D(A1), L2
0(ω))

solution of the system (3.5),(3.6), (3.7) and satisfying (D2).

9



4 Regularity properties of the Stokes system
In this section, we obtain some results on the stationary system in Ω(η) for η = η0 (see (2.4)) or for η = 0 (see
(2.5)): 

αu− ν∆u+∇p = f in Ω(η),
∇ · u = g in Ω(η),
un = a on ∂Ω(η),

[2νD(u)n+ βu]τ = b on ∂Ω(η).

(4.1)

Let define the following space

H1
τ = {φ ∈ [H1(Ω(η))]3 | φn = 0 on ∂Ω(η)}.

We give the definition of a weak solution of the system (4.1).

Definition 4.1. We say that (u, p) is a weak solution of (4.1) if (u, p) ∈ [H1(Ω(η))]3 × L2(Ω(η))/R and the
following variational equation is satisfied:

α

∫
Ω(η)

u · φ dy + 2ν

∫
Ω(η)

D(u) : D(φ) dy −
∫

Ω(η)

p∇ · φdy +

∫
∂Ω(η)

βv · φdΓ =

∫
Ω(η)

f · φdy +

∫
∂Ω(η)

b · φdΓ,

for all φ1 ∈ H1
τ .

We have the following result

Theorem 4.2. Assume β > 0 and α > 0 with β1 + β2 > 0 or α > 0. Let η ∈ H3(Ω(η)) and δ0 > 0 such that
1 + η > δ0 on ω. For any

f ∈ (H1
τ )′, g ∈ L2(Ω(η)), a ∈ [H1/2(∂Ω(η))]3, b ∈ [H−1/2(∂Ω(η))]3,

such that ∫
Ω(η)

gdy =

∫
∂Ω(η)

a · ndΓ, b · n = 0, (4.2)

there exists a unique weak solution (u, p) ∈ [H1(Ω(η))]3 × L2
0(Ω(η)) to the Stokes system (4.1). Moreover, we

have the following estimates:

‖u‖[H1(Ω(η))]3 + ‖∇p‖[H−1(Ω(η))]3 6 C
(∥∥f∥∥

(H1
τ )′

+ ‖g‖L2(Ω(η)) + ‖a‖[H1/2(∂Ω(η))]3 +
∥∥b∥∥

[H−1/2(∂Ω(η))]3

)
, (4.3)

where C is a constant which depends on ‖η‖H3(ω) and δ0.
Moreover, if

f ∈ [L2(Ω(η))]3, g ∈ H1(Ω(η)), a ∈ [H3/2(∂Ω(η))]3, b ∈ [H1/2(∂Ω(η))]3,

such that (4.2) holds, then (u, p) ∈ [H2(Ω(η))]3 × (H1(Ω(η)) ∩ L2
0(Ω(η))) and we have the following estimates:

‖u‖[H2(Ω(η))]3 + ‖∇p‖[L2(Ω(η))]3 6 C
(∥∥f∥∥

[L2(Ω(η))]3
+ ‖g‖H1(Ω(η)) + ‖a‖[H3/2(∂Ω(η))]3 +

∥∥b∥∥
[H1/2(∂Ω(η))]3

)
,

(4.4)
where C is a constant which depends on ‖η‖H3(ω) and δ0.

In the case where η ∈ C1,1(ω) such a result is already known, see [1] (see also [4]). Here, we manage to
obtain the result for η ∈ H3(ω) by following an idea of [14] and [15].
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Proof of Theorem 4.2. The proof follows closely the proof of Lemma 6 in [15]. We assume here β1 +β2 > 0, the
proof is similar with α > 0.

First, we write the system (4.1) in the domain

Ω = Ω(0)

by using the change of variables X0,η defined by (3.1). Then we set

Bη = Cof(∇X0,η), Aη =
1

det(∇X0,η)
B∗ηBη,

and we define

u = u ◦X0,η, p = p ◦X0,η, (4.5)

f = det(∇X0,η)f ◦X0,η, g = det(∇X0,η)g ◦X0,η,

a = a ◦X0,η, bi = B−1
η (bi ◦X0,η) · ei, i = 1, 2.

Then system (4.1) is transformed into the following system
−∇ · (∇uAη) +Bη∇p = f in Ω,

∇ · (B∗ηu) = g in Ω,
(B∗ηu) · n0 = (B∗ηa) · n0 on ∂Ω,[

ν

|N |

(
(B−1

η ∇uAη)n0 +
1

det(∇X0,η)
((∇u)∗Bη)n0

)
+ βB−1

η u

]
· ei = bi, i = 1, 2 on ∂Ω,

(4.6)

where N is defined by (1.5) and n0 is the unit exterior normal to Ω (that is ±e3).
Since η ∈ H3(ω), we deduce that

Bη, Aη ∈ H2(ω;Hs(0, 1)),

for all s > 0 and the corresponding norms depend on ‖η‖H3(ω) and δ0. Moreover, using the embeddings
H1(ω) ↪→ Lp(ω) for all p > 1 and H2(ω) ↪→ L∞(ω), we deduce that it is sufficient to prove that the solution of
(4.6) satisfies

‖u‖[H2(Ω)]3 + ‖∇p‖[L2(Ω)]3 6 C
(
‖f‖[L2(Ω)]3 + ‖g‖H1(Ω) + ‖a‖[H3/2(∂Ω)]3 + ‖b‖[H1/2(∂Ω)]3

)
. (4.7)

Step 1: Weak solutions. Let note that the solution of (4.6) verifies

∇ ·
(

1

det(∇X0,η)
Bη(∇u)∗Bη

)
= Bη∇

( ∇ · (B∗ηu)

det(∇X0,η)

)
= Bη∇

(
g

det(∇X0,η)

)
.

Let λ > 0 and consider the following system

−∇ · (∇uAη +
1

det(∇X0,η)
Bη(∇u)∗Bη) +Bη∇p = f̃ in Ω,

λp+∇ · (B∗ηu) = g in Ω,
(B∗ηu) · n0 = (B∗ηa) · n0 on ∂Ω,[

ν

|N |

(
(B−1

η ∇uAη)n0 +
1

det(∇X0,η)
((∇u)∗Bη)n0

)
+ βB−1

η u

]
· ei = bi, i = 1, 2 on ∂Ω,

(4.8)

with
f̃ = f −Bη∇

(
g

det(∇X0,η)

)
.
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To simplify the notations, we set

Dη(u) = ∇uAη +
1

det(∇X0,η)
Bη(∇u)∗Bη.

We define
V = {v ∈ [H1(Ω)]3 | (B∗ηv) · n0 = 0 on ∂Ω}.

We look for weak solutions to the system (4.8). Let f ∈ V ′, g ∈ L2(Ω), a ∈ [H1/2(∂Ω)]3 and b ∈ [H−1/2(∂Ω)]3.

We have Bη∇
(

g

det(∇X0,η)

)
∈ V ′:

〈
Bη∇

(
g

det(∇X0,η)

)
, v

〉
V ′,V

= −
∫

Ω

g

det(∇X0,η)
∇ · (B∗ηv) dy.

Therefore f̃ ∈ V ′ and we multiply the first equation of (4.8) by v ∈ V and the second equation of (4.8) by
ψ ∈ L2(Ω) to obtain∫

Ω

Dη(u) : ∇v dy −
∫

Ω

p∇ · (B∗ηv)dy + λ

∫
Ω

p · ψ + (∇ · (B∗ηu)) · ψdy +

∫
∂Ω

|N |
ν
βu · v dΓ

= 〈f̃ , v〉V ′,V +

∫
Ω

g · ψdy +

〈
b,
|N |(det(∇X0,η)

ν
v

〉
H−1/2,H1/2

. (4.9)

We consider a lifting w satisfying {
∇ · (B∗ηw) = g in Ω,

(B∗ηw) · n0 = (B∗ηa) · n0 on ∂Ω.
(4.10)

In order to this, we use [4, Corollary 8.2] and (4.2) to deduce the existence of w ∈ [H1(Ω)]3 such that{
∇ · w = g in Ω,

w · n0 = (B∗ηa) · n0 on ∂Ω.

Then w = (B∗η)−1w satisfies (4.10) and the estimate

‖w‖[H1(Ω)]3 6 C(‖g‖L2(Ω) + ‖a‖[H1/2(∂Ω)]3). (4.11)

We set u = û + w. Then, a couple (u, p) is a weak solution of the system (4.8) if and only if (û, p) verifies the
following variational formulation∫

Ω

Dη(û) : ∇v dy −
∫

Ω

p∇ · (B∗ηv) dy + λ

∫
Ω

p · ψ + (∇ · (B∗η û)) · ψ dy +

∫
∂Ω

|N |
ν
βû · v dΓ

= −
∫

Ω

Dη(w) : ∇v dy + 〈f̃ , v〉V ′,V +

〈
b,
|N |(det(∇X0,η)

ν
v

〉
H−1/2,H1/2

−
∫
∂Ω

|N |
ν
βw · v dΓ (v ∈ V, ψ ∈ L2(Ω)). (4.12)

We have that ∫
Ω

Dη(v) : ∇v dy =

∫
Ω

∣∣∇vB∗η +Bη(∇v)∗
∣∣2

det(∇X0,η)
dy, (4.13)

and writing
v = v ◦Xη,0,
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we deduce ∫
Ω

∣∣∇vB∗η +Bη(∇v)∗
∣∣2

det(∇X0,η)
dy =

∫
Ω(η)

|D(v)|2 dx, ∀v ∈ V,

with v · n = 0 on ∂Ω(η). Applying a Korn inequality (see Proposition 4.5 below):∫
Ω

Dη(v) : ∇v dy +

∫
∂Ω

|N |
ν
β |v|2 dΓ > C‖v‖H1(Ω) (v ∈ V ). (4.14)

Hence, we can apply the Lax-Milgram theorem and using (4.11), we deduce the existence of a unique solution
of (u, p) = (uλ, pλ) ∈ [H1(Ω)]3 × L2(Ω) for (4.8) which verifies the estimates

‖u‖[H1(Ω)]3 + λ ‖p‖L2(Ω) 6 C
(
‖f‖V ′ + ‖b‖[H−1/2(∂Ω)]3 + ‖g‖L2(Ω) + ‖a‖[H1/2(∂Ω)]3

)
. (4.15)

Taking ψ = 0 and v ∈ [H1
0 (Ω)]3 in (4.9), we obtain∫

Ω

Dη(u) : ∇v dy +

∫
Ω

∇p · (B∗ηv) dy = 〈f̃ , v〉V ′,V .

This shows that ∇p ∈ [H−1(Ω)]3 and using standard result (see, for instance [4, Proposition 1.1]), we deduce

‖p‖L2(Ω)/R 6 C
(
‖f‖V ′ + ‖v‖[H1(Ω)]3 + ‖w‖[H1(Ω)]3

)
. (4.16)

Then, combining (4.15), (4.16) and (4.11), we obtain the estimate independent of λ:

‖u‖[H1(Ω)]3 + ‖p‖L2(Ω)/R 6 C
(
‖f‖V ′ + ‖b‖[H−1/2(∂Ω)]3 + ‖g‖L2(Ω) + ‖a‖[H1/2(∂Ω)]3

)
. (4.17)

We can thus pass to the limit as λ → 0 in (4.8) to obtain a weak solution (u, p) of (4.6). Using the above
coercivity argument we also deduce the uniqueness of the weak solution of (4.6).

Step 2: Strong solutions. We use an argument developed in [14] and [15]: if we approximate η by ηε ∈
C1,1(ω), and the corresponding uε, pε are H2 and H1. We show below that their norms depend only on the H3

norm of ηε so that we can pass to the limit. To simplify, we do not write any ε below.
We first differentiate system (4.6) with respect to y1 and y2 to obtain a similar problem as (4.6) with source

and boundary terms corresponding to the differentiates of f , g, a and b and to terms coming from the Aη and
Bη. We only need to estimate these terms, that is

‖∇ · (∇u∂yiAη)− ∂yiBη∇p‖V ′ , ‖∇ · (∂yiB∗ηu)‖L2(Ω), ‖B−1
η ∂yiB

∗
ηu‖[H1/2(∂Ω)]3 ,

‖∂yiB−1
η ∇uAη‖[H−1/2(∂Ω)]9 , ‖B−1

η ∇u∂yiAη‖[H−1/2(∂Ω)]9 ,∥∥∥∥∂yi 1

det(∇X0,η)
(∇u)∗Bη

∥∥∥∥
[H−1/2(∂Ω)]9

,

∥∥∥∥ 1

det(∇X0,η)
(∇u)∗∂yiBη

∥∥∥∥
H[−1/2(∂Ω)]9

.

Here we use a nice idea proposed in [14] and [15]: we estimate the above terms by using the H2 regularity of u
and the H1 regularity of p. More precisely, using the embeddings H1/2(ω) ⊂ L4(ω) and H1/4(ω) ⊂ L8/3(ω), we
deduce that the above terms are estimated by

‖η‖H3(ω)

(
‖u‖1/4[H1(Ω)]3 ‖u‖

3/4
[H2(Ω)]3 + ‖p‖1/4L2(Ω) ‖p‖

3/4
H1(Ω)

)
. (4.18)

Using the first part of this proof and in particular (4.17), we obtain for i = 1, 2

‖∂yiu‖[H1(Ω)]3 + ‖∂yip‖L2
0(Ω) 6 C

(
‖f‖[L2(Ω)]3 + ‖b‖[H1/2(∂Ω)]3 + ‖g‖H1(Ω) + ‖a‖[H3/2(∂Ω)]3

)
+ C‖η‖H3(ω)

(
‖u‖1/4[H1(Ω)]3 ‖u‖

3/4
[H2(Ω)]3 + ‖p‖1/4L2(Ω) ‖p‖

3/4
H1(Ω)

)
. (4.19)
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We differentiate (4.6)2 with respect to y3, we obtain

∥∥−y3∂y1η∂
2
y3u1 − y3∂y2η∂

2
y3u2 + ∂2

y3u3

∥∥
L2(Ω)

6 C
(
‖f‖[L2(Ω)]3 + ‖b‖[H1/2(∂Ω)]3 + ‖g‖H1(Ω) + ‖a‖[H3/2(∂Ω)]3

)
+ C‖η‖H3(ω)

(
‖u‖1/4[H1(Ω)]3 ‖u‖

3/4
[H2(Ω)]3 + ‖p‖1/4L2(Ω) ‖p‖

3/4
H1(Ω)

)
. (4.20)

Then, going back to (4.6)1, we also obtain∥∥A33∂
2
y3u1 − y3∂y1η∂y3p

∥∥
L2(Ω)

+
∥∥A33∂

2
y3u2 − y3∂y2η∂y3p

∥∥
L2(Ω)

+
∥∥A33∂

2
y3u3 + ∂y3p

∥∥
L2(Ω)

6 C
(
‖f‖[L2(Ω)]3 + ‖b‖[H1/2(∂Ω)]3 + ‖g‖H1(Ω) + ‖a‖[H3/2(∂Ω)]3

)
+ C‖η‖H3(ω)

(
‖u‖1/4[H1(Ω)]3 ‖u‖

3/4
[H2(Ω)]3 + ‖p‖1/4L2(Ω) ‖p‖

3/4
H1(Ω)

)
. (4.21)

Since A33 =
1

1 + η
(1 + (y3∂y1η)2 + (y3∂y2η)2) > 0, we deduce

∥∥∂2
y3u
∥∥
L2(Ω)3

+ ‖∂y3p‖L2(Ω) 6 C
(
‖f‖[L2(Ω)]3 + ‖b‖[H1/2(∂Ω)]3 + ‖g‖H1(Ω) + ‖a‖[H3/2(∂Ω)]3

)
+ C‖η‖H3(ω)

(
‖u‖1/4[H1(Ω)]3 ‖u‖

3/4
[H2(Ω)]3 + ‖p‖1/4L2(Ω) ‖p‖

3/4
H1(Ω)

)
.

Combining this with (4.19), we deduce the result.

We also need the following theorem which is proved in [32].

Theorem 4.3. Assume β > 0 with β1 + β2 > 0. Let η ∈ H3(ω) and δ0 > 0 such that 1 + η > δ0 on ω. Let us
consider the following non stationary Stokes system:

∂tv −∇ · T(v, π) = 0 t > 0, y ∈ Ω,
∇ · v = 0 t > 0, y ∈ Ω,
vn0 = 0 t > 0, y ∈ ∂Ω,

[2νD(v)n0 + βv]τ0 = g̃ t > 0, y ∈ ∂Ω,
v(0, ·) = 0 y ∈ Ω.

(4.22)

There exists γ0 > 0 such that if

g̃ ∈W 1/4
γ (0,∞; [H1/2(∂Ω)]3, [L2(∂Ω)]3), g̃n0

= 0. (4.23)

for some γ ∈ [0, γ0]. Then the problem (4.22) admits a unique solution which satisfies the estimate

‖v‖2Wγ(0,∞,[H2(Ω)]3,[L2(Ω)]3) + ‖∇π‖2L2
γ(0,∞;[L2(Ω)]3) 6 C ‖g̃‖2

W
1/4
γ (0,∞;[H1/2(∂Ω)]3,[L2(∂Ω)]3)

(4.24)

where C is a positive constant.

We recall that the spaces W s
γ (0,∞;X1, X2) and L2

γ(0,∞;L2(Ω)) are defined by (2.3), (2.2).

Remark 4.4. In [32], the author assumes that η is more regular but such an assumption is only used to obtain
a lift of the boundary condition by taking a stationary Stokes system of the form (4.1), see relation (75) in [32].

Note also that in [32], the condition (4.23) is replaced by the equivalent condition

g̃ ∈W 1/2
γ (0,∞; [H1(Ω)]3, [L2(Ω)]3), g̃n0

= 0.

Such an equivalence can be obtained by using the surjectivity of the trace operator (see [25, p.21, Theorem 2.3]).

We end this section by proving a Korn’s type inequality (that we used in the above proof).
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Proposition 4.5. Assume η ∈ W 1,∞(ω). Assume that β1 + β2 6= 0. There exists a positive constant C > 0,
such that

‖u‖[H1(Ω(η))]3 6 C

(
‖D(u)‖[L2(Ω(η))]9 +

∥∥∥√βu∥∥∥
[L2(∂Ω(η))]3

)
, (4.25)

for all u ∈ [H1(Ω(η))]3.

Proof. We first show by contradiction that

‖u‖[L2(Ω(η))]3 6 C

(
‖D(u)‖[L2(Ω(η))]9 +

∥∥∥√βu∥∥∥
[L2(∂Ω(η))]3

)
. (4.26)

Assume uk ∈ [H1(Ω(η))]3 with
‖uk‖[L2(Ω(η))]3 = 1, (4.27)

and
‖D(uk)‖[L2(Ω(η))]9 +

∥∥∥√βuk∥∥∥
[L2(∂Ω(η))]3

→ 0.

Using the classical Korn inequality (see, for instance, [20]), the above relations imply that (uk)k converges
weakly to some u ∈ [H1(Ω(η))]3 with D(u) = 0 and

√
βu = 0 on ∂Ω(η). In particular, see [34, Lemma 1.1

p.18], there exist a, b ∈ R3, such that for any y ∈ Ω(η), u(y) = a+ b ∧ y. Using that

u(y + L1e1) = u(y), u(y + L2e2) = u(y), (y ∈ Ω(η)),

we deduce that b = 0, then u = a in Ω(η). Since
√
βu = 0 on ∂Ω(η), we obtain that u = 0 in Ω(η). Up to

a subsequence uk → u strongly in [L2(Ω(η))]3 and thus from (4.27), we get ‖u‖[L2(Ω(η))]3 = 1 which leads to a
contradiction. In order to prove (4.25), we combine (4.26) and the classical Korn inequality (using that Ω(η) is
Lipschitz continuous).

5 Linear System
Let us consider a linearized system of (3.5), (3.6), (3.7): ∂tu−∇ · T(u, p) = f t > 0, y ∈ Ω,

∇ · u = 0 t > 0, y ∈ Ω,
∂ttη +A1η +A2∂tη = −T ∗(T(u, p)n0) + h t > 0,

(5.1)

with the boundary conditions{
[u− T ∂tη]n0

= 0 t > 0, y ∈ ∂Ω,
[2νD(u)n0 + β(u− T ∂tη)]τ0 = g̃ t > 0, y ∈ ∂Ω,

(5.2)

and with the initial conditions 
u(0, ·) = u0 in Ω,
η(0, ·) = η0 in ω,

∂tη(0, ·) = η1 in ω.
(5.3)

Let us consider (v, π) the solution of (4.22) associated with g̃. Then w = u− v and q = p− π satisfy ∂tw −∇ · T(w, q) = f t > 0, y ∈ Ω,
∇ · w = 0 t > 0, y ∈ Ω,

∂ttη +A1η +A2∂tη = −T ∗(T(w, q)n0)− T ∗(T(v, π)n0) + h t > 0,
(5.4)

with the boundary conditions{
[w − T ∂tη]n0

= 0 t > 0, y ∈ ∂Ω,
[2νD(w)n0 + β(w − T ∂tη)]τ0 = 0 t > 0, y ∈ ∂Ω,

(5.5)
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and with the initial conditions 
w(0, ·) = u0 in Ω,
η(0, ·) = η0 in ω,

∂tη(0, ·) = η1 in ω.
(5.6)

To solve (5.4)-(5.6), we use a semigroup approach. We endow the space [L2(Ω)]3 × D(A
1/2
1 ) × L2

0(ω) with
the scalar product〈wη1

η2

 ,

 v
ξ1
ξ2

〉 = 〈w, v〉[L2(Ω)]3 +
〈
A

1/2
1 η1, A

1/2
1 ξ1

〉
L2(ω)

+ 〈η2, ξ2〉L2(ω) .

We consider the following functional spaces

H =
{

(w, η1, η2) ∈ [L2(Ω)]3 ×D(A
1/2
1 )× L2

0(ω) | ∇ · w = 0 in Ω, [w − T η2]n0
= 0 on ∂Ω

}
,

V =
(

[H1(Ω)]3 ×D(A
3/4
1 )×D(A

1/4
1 )

)
∩H. (5.7)

We also denote by P the orthogonal projector

P : [L2(Ω)]3 ×D(A
1/2
1 )× L2

0(ω) −→ H.

Finally, we define

D(A) =
{

(w, η1, η2) ∈
(

[H2(Ω)]3 ×D(A1)×D(A
1/2
1 )

)
∩ V | [2νD(w)n0 + β(w − T η2)]τ0 = 0 on ∂Ω

}
, (5.8)

A

wη1

η2

 =

 −ν∆w
−η2

A1η1 +A2η2 + T ∗(2νD(w)n0)

 , (5.9)

and
D(A) = D(A), A = PA. (5.10)

Using the above definition, we can write (5.4)–(5.6) as

W ′ +AW = PF, W (0) = W 0, (5.11)

with

W =

 w
η
∂tη

 , F =

f0
h

 .

Proposition 5.1. Assume that β1+β2 6= 0. The operator A defined by (5.8)–(5.10) is the infinitesimal generator
of a strongly continuous semigroup of contraction on H.

Proof. First we show that the operator A is dissipative: assume W =

wη1

η2

 ∈ D(A). Then, by integration by

parts, we obtain:

〈AW,W 〉 = 〈AW,W 〉 = 2ν

∫
Ω

|D(w)|2 dy −
∫
∂Ω

2νD(w)n0 · [w − T (η2)] dΓ +

∫
ω

∣∣∣A1/2
2 η2

∣∣∣2 ds.

We write

−
∫
∂Ω

2νD(w)n0 · [w − T (η2)] dΓ = −
∫
∂Ω

2ν[D(w)n0]τ0 · [w − T (η2)]τ0 dΓ =

∫
∂Ω

β |[w − T (η2)]τ0 |
2
dΓ,
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and we deduce

〈AW,W 〉 = 2ν

∫
Ω

|D(w)|2 dy +

∫
ω

∣∣∣A1/2
2 η2

∣∣∣2 ds+

∫
∂Ω

β|[w − T (η2)]τ0 |2 dΓ > 0.

Second, we show that the operator A is m-dissipative: we prove that for some λ > 0 the operator λI +A is

onto. Let F =

fg
h

 ∈ H. The problem is to find

wη1

η2

 ∈ D(A) solution of the equation

(λI +A)

wη1

η2

 = F, (5.12)

which is equivalent to the system

λw −∇ · T(w, q) = f in Ω, (5.13a)
∇ · w = 0 in Ω, (5.13b)

λη1 − η2 = g on ω, (5.13c)
λη2 +A1η1 +A2η2 = −T ∗(T(w, q)n0) + h on ω, (5.13d)

[w − T η2]n0 = 0 on ∂Ω, (5.13e)
[2νD(w)n0 + β(w − T η2)]τ0 = 0 on ∂Ω. (5.13f)

To solve the above system, we use that η1 =
1

λ
(g+ η2) to obtain a system in (u, η2) and we introduce the space

V =
{

(φ, ξ) ∈ [H1(Ω)]3 ×D(A
1/2
1 ) | ∇ · φ = 0 in Ω, [φ− T ξ]n0

= 0 on ∂Ω
}
.

We can thus write the equation (5.12) in a variational form: find (w, η2) ∈ V such that

a

((
w
η2

)
,

(
φ
ξ

))
= L

(
φ
ξ

) ((
φ
ξ

)
∈ V

)
, (5.14)

with a : V × V −→ R given by

a

((
w
η2

)
,

(
φ
ξ

))
= λ

∫
Ω

w · φ dy + 2ν

∫
Ω

D(w) : D(φ) dy + λ

∫
ω

η2 · ξ ds+

∫
ω

(A2η2) · ξ ds

+
1

λ

∫
ω

(A
1/2
1 η2) · (A1/2

1 ξ) ds+

∫
∂Ω

β[w − T (η2)]τ0 · [φ− T (ξ)]τ0 dΓ,

and L : V −→ R given by

L

(
φ
ξ

)
=

∫
Ω

f · φ dy +

∫
ω

h · ξ ds− 1

λ

∫
ω

(A
1/2
1 g) · (A1/2

1 ξ) ds.

The bilinear form a is continuous and coercive on V thanks to the classical Korn inequality. We can also check
that L is linear and continuous on V. By the Lax-Milgram theorem, there exists a unique (u, η2) ∈ V solution
of (5.14).

Now, taking ξ = 0 and φ ∈ Dσ(Ω), the equation (5.14) becomes

λ

∫
Ω

w · φ dy + 2ν

∫
Ω

D(w) : D(φ) dy =

∫
Ω

f · φ dy,

which is equivalent to
〈λw − ν∆w − f, φ〉 = 0, ∀φ ∈ Dσ(Ω).
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Using the De Rham theorem [33, Proposition 1.2, p.14] , we deduce the existence of a unique q ∈ L2(Ω)/R such
that (5.13a) holds. In particular, we have ∇ · T(w, q) ∈ [L2(Ω)]3 and T(w, q) ∈ [L2(Ω)]9. Therefore, we deduce
that T(w, q)n0 ∈ [H−1/2(∂Ω)]3 and∫

Ω

T(w, q) : D(φ)dy − 〈T(w, q)n0, φ〉H−1/2,H1/2 =

∫
Ω

(f − λw) · φdy, (5.15)

for all φ ∈ [H1(Ω)]3, ∇ · φ = 0, φn0
= 0. On the other hand, taking ξ = 0 in (5.14) yields

λ

∫
Ω

w · φ dy + 2ν

∫
Ω

D(w) : D(φ) dy + 〈β[w − T (η2)]τ0 , φ 〉H−1/2,H1/2 =

∫
Ω

f · φ dy, (5.16)

for all φ ∈ [H1(Ω)]3, ∇ · φ = 0, φn0 = 0. Comparing (5.15) and (5.16) and taking into account that∫
Ω

T(w, q) : D(φ)dy = 2ν

∫
Ω

D(w) : D(φ)dy, ∀φ ∈ [H1(Ω)]3, ∇ · φ = 0, φn0 = 0,

we obtain

− 〈T(w, q)n0, φ〉H−1/2,H1/2 = 〈[β(w − T η2)]τ0 , φ〉H−1/2,H1/2 = 0, ∀φ ∈ [H1(Ω)]3, ∇ · φ = 0, φn0
= 0. (5.17)

Let φ ∈ [H1/2(∂Ω)]3 such that φn0 = 0, and let consider the system −∇ · T(ĝ, q̂) = 0 in Ω,
∇ · ĝ = 0 in Ω,

ĝ = φ on ∂Ω.

The above system admits a unique solution (ĝ, q̂) ∈ [H1(Ω)]3 × L2
0(Ω) such that ∇ · ĝ = 0 and ĝ|∂Ω = φ. This

implies that (5.17) holds for all φ ∈ [H1(Ω)]3, φn0 = 0. Inserting (5.17) in (5.15) we get∫
Ω

2νD(w) : D(φ)dy −
∫

Ω

q∇ · φdy + 〈β(w − T η2)τ0 , φτ0〉H−1/2,H1/2 =

∫
Ω

(f − λw) · φdy, (5.18)

for all φ ∈ [H1(Ω)]3, φn0
= 0 .

Thus, we deduce that (w, q) is a weak solution of (5.13a), (5.13b), (5.13e) and (5.13f) in the sense of Definition
4.1. Since η2 ∈ H2(ω), T η2 ∈ [H2(∂Ω)]3 we can apply Theorem 4.2 and obtain (w, q) ∈ [H2(Ω)]3 ×H1(Ω)/R.

Going back to the variational formulation (5.14), we deduce∫
ω

(A
1/2
1 η1) · (A1/2

1 ξ) ds = −λ
∫
ω

η2 · ξ ds−
∫
ω

(A2η2) · ξ ds−
∫
ω

T ∗(T(u, q)n0) · ξ ds+

∫
ω

h · ξ ds,

for any ξ ∈ D(A
1/2
1 ) and where η1 =

1

λ
(g + η2). We have T(w, q)n0 ∈ [H1/2(∂Ω)]3 and thus T ∗(T(w, q)n0) ∈

L2
0(ω). Moreover since η2 ∈ H2(ω), we deduce that η2 ∈ D(A2). Thus A1η1 ∈ L2

0(ω).
Applying Lumer-Phillips theorem, we conclude that (e−tA)t>0 is a semigroup of contractions on H.

In order to prove that (e−tA)t>0 is an analytical semigroup, we use Lemma 3.10 in [2]. We first need to show
that (e−tA)t>0 is exponentially stable.

Proposition 5.2. Assume that β1 + β2 6= 0. The semigroup (e−tA)t>0 is exponentially stable.

Proof. Since (e−tA)t>0 is a semigroup of contraction, we apply the classical result of Huang-Gearhart (see for
instance [26, Theorem 1.3.2, p.4]). We have to show that

iR ⊂ ρ(A) and sup
λ∈R

∥∥(iλI +A)−1
∥∥ <∞.
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Using the proof of [2, Proposition 3.5], we only need to prove the existence of C > 0 such that

∀λ ∈ C, Reλ ∈ (0, 1),
∥∥(λI +A)−1

∥∥
H 6 C.

Let us consider λ ∈ C, with Reλ ∈ (0, 1), F =

fg
h

 ∈ H and

wη1

η2

 ∈ D(A) such that

(λI +A)

wη1

η2

 = F. (5.19)

We can write the above relation as the system (5.13). We multiply (5.13a) by w, (5.13d) by η2 and we perfom
integrations by parts to deduce

Reλ

(
‖w‖2[L2(Ω)]3 + ‖η2‖2L2(ω) +

∥∥∥A1/2
1 η1

∥∥∥2

L2(ω)

)
+ 2ν ‖Dw‖2[L2(Ω)]9 +

∫
∂Ω

β|(w − T η2)τ0 |2dΓ

+
∥∥∥A1/2

2 η2

∥∥∥2

L2(ω)
6 C ‖F‖H ‖(w, η1, η2)‖H . (5.20)

We have
‖η2‖2L2

0(ω) 6 C
∥∥∥A1/2

2 η2

∥∥∥2

L2
0(ω)

6 C ‖F‖H ‖(w, η1, η2)‖H . (5.21)

On the other hand, we have

‖w‖2[L2(∂Ω)]3 6 C(‖β(w − T η2)‖2[L2(∂Ω)]3 + ‖T η2‖2[L2(∂Ω)]3).

Using (4.25), (5.21) and the fact that T ∈ L(L2(ω), [L2(∂Ω)]3), we obtain

‖w‖2[H1(Ω)]3 6 C ‖F‖H ‖W‖H . (5.22)

Following the proof of Proposition 3.5 in [2], we have∥∥∥A1/2
1 η1

∥∥∥2

L2
0(ω)

6 C
(
‖w‖2H1(Ω) + ‖F‖2H + ‖F‖H ‖(w, η1, η2)‖H

)
.

Gathering the above inequality with (5.22) and (5.21), we obtain

‖(w, η1, η2)‖H 6 C ‖F‖H ,

for some positive constant C. This concludes the proof.

Proposition 5.3. Suppose that β1 + β2 6= 0. The operator A is the infinitesimal generator of an analytic
semigroup on H.

Proof. We apply Lemma 3.10 in [2]: since (e−tA)t>0 is exponentially stable, it sufficient to show

∥∥(λI +A)−1F
∥∥
H 6

C

|λ|
‖F‖H (F ∈ H, λ ∈ iR∗). (5.23)

Assume λ ∈ iR∗, F =

fg
h

 ∈ H and let us consider W = (λI+A)−1F . We write W =

wη1

η2

 so that (5.13)

holds. We now proceed as in [2, Proposition 3.11]: we multiply (5.13a) by u and (5.13d) by η2 and we integrate
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by parts

λ

(∫
Ω

|w|2dy + ‖η2‖2L2(ω) −
∥∥∥A1/2

1 η1

∥∥∥2

L2(ω)

)
+ 2ν

∫
Ω

|Dw|2 dy +
∥∥∥A1/2

2 η2

∥∥∥2

L2(ω)

+

∫
∂Ω

β|(w − T η2)τ0 |2 dΓ = 〈F,W 〉. (5.24)

Multiplying by λ and taking the real part, we find

|λ|2 ‖W‖2H = 2|λ|2
∥∥∥A1/2

1 η1

∥∥∥2

L2(ω)
+ Re 〈F ;λW 〉 .

Using the Cauchy-Schwarz inequality, we obtain

|λ|2 ‖W‖2H 6 4|λ|2
∥∥∥A1/2

1 η1

∥∥∥2

L2
+ ‖F‖2H . (5.25)

Since A1 and A2 are self-adjoint positive operators and D(A
1/4
1 ) = D(A

1/2
2 ), we apply [11, Theorem 1.1] to

deduce that
A =

[
0 I
A1 A2

]
is the infinitesimal generator of an analytical semigroup on D(A

1/2
1 )× L2

0(ω). We have in particular

|λ|
∥∥(λI + A)−1Z

∥∥
D(A

1/2
1 )×L2

0(ω)
6 C ‖Z‖D(A

1/2
1 )×L2

0(ω)
(λ ∈ iR∗, Z ∈ D(A

1/2
1 )× L2

0(ω)).

Applying this estimate on (5.13c)-(5.13d), we deduce

|λ|
(∥∥∥A1/2

1 η1

∥∥∥
L2(ω)

+ ‖η2‖L2(ω)

)
6 C

(
‖T ∗(T(w, q)n0)‖L2(ω) +

∥∥∥A1/2
1 g

∥∥∥
L2(ω)

+ ‖h‖L2(ω)

)
. (5.26)

We use the fact T ∗ ∈ L([L2(∂Ω)]3, L2
0(ω)) and we combine (5.26) and (5.25) to find

|λ| ‖W‖H 6 C
(
‖T(w, q)n0)‖[L2(∂Ω)]3 + ‖F‖H

)
. (5.27)

Combining Theorem 4.2 and an interpolation argument, we get for ε < 1/4

‖T(w, q)n0‖[L2(∂Ω)]3 6 C
(
‖(∇ · (T(w, q)))‖[H−2ε(Ω)]3 + ‖T η2‖[H2−2ε(∂Ω)]3

)
. (5.28)

The rest of the proof is similar to the proof of [2, Proposition 3.11].

We recall that X∞,γ is the space given in (2.8). We are now in position to give the following theorem.

Theorem 5.4. Suppose that β1 + β2 6= 0. There exists γ0 > 0 such that if

(u0, η0, η1) ∈ V, f ∈ L2
γ(0,+∞; [L2(Ω)]3), h ∈ L2

γ(0,+∞;L2
0(ω)),

and
g̃ ∈W 1/4

γ (0,+∞; [H1/2(∂Ω)]3, [L2(∂Ω)]3) with g̃n0
= 0,

for γ ∈ [0, γ0], then there exists a unique solution (u, p, η) ∈ X∞,γ on (0,+∞) of the system (5.1)-(5.3). Moreover
there exists a positive constant C such that

‖(u, p, η)‖X∞,γ 6 C
(∥∥(u0, η0, η1)

∥∥
V + ‖f‖L2

γ(0,+∞;[L2(Ω)]3) + ‖g̃‖
W

1/4
γ (0,+∞;[H1/2(∂Ω)]3,[L2(∂Ω)]3)

+ ‖h‖L2
γ(0,+∞;L2(ω))

)
. (5.29)
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Proof. Since A generates an analytical and exponentially stable semigroup, from [5, Theorem 3.1, p.143], the
evolution equation (5.11) admits a unique strong solution and verifies the estimates

‖(w, η1, η2)‖L2
γ(0,+∞;D(A)) + ‖(w, η1, η2)‖L∞γ (0,+∞;V) + ‖(w, η1, η2)‖H1

γ(0,+∞;H)

6 C
(∥∥(u0, η0, η1)

∥∥
V + ‖f‖L2

γ(0,+∞;[L2(Ω)]3) + ‖h‖L2
γ(0,+∞;L2(ω))

)
. (5.30)

Applying the De Rham theorem [33, Proposition 1.2, p.14], we deduce the existence of q ∈ L2
γ(0,∞;H1(Ω)/R)

such that (w, η, q) is the solution of (5.4)-(5.6). Setting u = w + v, p = q + π where (v, π) is the solution of
(4.22) associated with g̃, we obtain the result.

Corollary 5.5. Suppose that β1 + β2 6= 0. Assume T > 0 and

(u0, η0, η1) ∈ V, f ∈ L2(0, T ; [L2(Ω)]3), h ∈ L2(0, T ;L2
0(ω)),

g̃ ∈W 1/4(0, T ; [H1/2(∂Ω)]3, [L2(∂Ω)]3) with g̃n0
= 0.

Then there exists a unique solution (u, p, η) ∈ XT on (0, T ) of the system (5.1)-(5.3). Moreover, there exists a
positive constant independent of T such that

‖(u, p, η)‖XT 6 C
(∥∥(u0, η0, η1)

∥∥
V + ‖f‖L2(0,T ;[L2(Ω)]3) + ‖g̃‖W 1/4(0,T ;[H1/2(∂Ω)]3,[L2(∂Ω)]3)

+ ‖h‖L2(0,T ;L2(ω))

)
. (5.31)

Proof. We extend f , g̃, h by 0 in (T,∞) and apply Theorem 5.4.

We can now deal with the case βi = 0 for i = 1, 2

Theorem 5.6. Suppose that β1 = β2 = 0. Assume T > 0 and

(u0, η0, η1) ∈ V, f ∈ L2(0, T ; [L2(Ω)]3), h ∈ L2(0, T ;L2
0(ω)),

g̃ ∈W 1/4(0, T ; [H1/2(∂Ω)]3, [L2(∂Ω)]3) with g̃n0
= 0.

Then there exists a unique solution (u, p, η) ∈ XT on (0, T ) of the system (5.1)-(5.3). Moreover, there exists a
positive constant (non decreasing with respect to T ) such that

‖(u, p, η)‖XT 6 C
(∥∥(u0, η0, η1)

∥∥
V + ‖f‖L2(0,T ;[L2(Ω)]3) + ‖g̃‖W 1/4(0,T ;[H1/2(∂Ω)]3,[L2(∂Ω)]3)

+ ‖h‖L2(0,T ;L2(ω))

)
. (5.32)

Proof. Let introduce the space

X = W 1/4(0, T ; [H1/2(∂Ω)]3, [L2(∂Ω)]3)×W 1/4(0, T ;H1/2(ω), L2(ω)).

Let (ũ, η̃2) ∈ X. From Corollary 5.5 (with β1 = β2 = 1), there exists a unique strong solution (u, p, η) ∈ XT to
the system (5.1), (5.3) with the boundary conditions{

[u− T ∂tη]n0
= 0 t ∈ (0, T ), y ∈ ∂Ω,

[2νD(u)n0]τ0 + [u− T ∂tη]τ0 = g̃ + [ũ− T η̃2]τ0 t ∈ (0, T ), y ∈ ∂Ω.
(5.33)

Using the trace theorems and the definition (2.6) of XT we can thus define the mapping

F : X −→ X,
(
ũ
η̃2

)
7−→

(
u
∂tη

)
.
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Let us prove that the mapping F is a contraction for T small enough: assume (ũi, η̃i2) ∈ X, i = 1, 2 and let
(ui, pi, ηi) ∈ XT i = 1, 2 be the corresponding solutions of the system (5.1), (5.3), (5.33). We write

u = u1 − u2, p = p1 − p2, η = η1 − η2, ũ = ũ1 − ũ2, η̃2 = η̃1
2 − η̃2

2

so that  ∂tu−∇ · T(u, p) = 0 t > 0, y ∈ Ω,
∇ · u = 0 t > 0, y ∈ Ω,

∂ttη +A1η +A2∂tη = −T ∗(T(u, p)n0) t > 0,
(5.34)

{
[u− T ∂tη]n0

= 0 t > 0, y ∈ ∂Ω,
[2νD(u)n0 + (u− T ∂tη)]τ0 = [(ũ− T η̃2)]τ0 t > 0, y ∈ ∂Ω,

(5.35) u(0, ·) = 0 in Ω,
η(0, ·) = 0 in ω,

∂tη(0, ·) = 0 in ω.
(5.36)

From (5.31) and the boundedness of T , we obtain

‖(u, p, η)‖XT 6 C ‖(ũ, η̃2)‖X . (5.37)

From (2.6), (2.7), the trace theorem and Lemma A.5 in [6], there exists a constant C independent of T such
that

‖∂tη‖H3/4(0,T ;H1/2(ω)) + ‖v‖H5/8(0,T ;[L2(∂Ω)]3) + ‖v‖L∞(0,T ;[H1/2(∂Ω)]3) 6 C ‖(u, p, η)‖XT . (5.38)

From Corollary A.3 in [6] and (5.36), we deduce

‖∂tη‖H1/4(0,T ;L2(ω)) + ‖v‖H1/4(0,T ;[L2(∂Ω)]3) 6 C(T 3/4 + T 3/8) ‖(u, p, η)‖XT (5.39)

and
‖∂tη‖L2(0,T ;H1/2(ω)) + ‖v‖L2(0,T ;[H1/2(∂Ω)]3) 6 CT 1/2 ‖(u, p, η)‖XT . (5.40)

Combining the estimates (5.38), (5.39), (5.40), we obtain∥∥F(ũ1, η̃1)− F(ũ2, η̃2)
∥∥
X 6 C(T 3/4 + T 3/8)

∥∥(ũ1, η̃1)− (ũ2, η̃2)
∥∥
X

This shows that F is a contraction for T small enough and using the Banach fixed-point theorem, we deduce the
existence and the uniqueness of a strong solution for the system (5.1)-(5.3) (with β1 = β2 = 0) and the estimate
(5.32). To deduce the result fo any T , we simply reiterate the above procedure on small intervals [kT0, (k+1)T0],
where T0 is such that F is a contraction.

6 Fixed point
In this section, we prove the main result Theorem 1.1. Using Definition 3.1, we first restate this result after
change of variables.

Theorem 6.1.

1. Let βi > 0, i = 1, 2. Assume that (u0, η0, η1) ∈ V with

1 + η0 > 0.

There exists a time T0 > 0 (depending only on ‖(u0, η0, η1)‖V) such that the system (3.5), (3.6) and (3.7)
admits a unique strong solution (u, p, η) ∈ XT for T < T0.
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2. Let βi > 0 with β1 + β2 > 0, i = 1, 2. There exists R0 > 0 such that for any (u0, η0, η1) ∈ V with

1 + η0 > 0 and with ‖(u0, η0, η1)‖V 6 R0,

then the system (3.5), (3.6) and (3.7) admits a unique strong solution (u, p, η) ∈ X∞,γ on (0,∞) for
γ ∈ [0, γ0].

We recall that V is defined by (5.7). The above result is obtained by using a fixed-point argument.
First let us show the local in time existence. We define for all T > 0 the space

YT = L2(0, T ; [L2(Ω)]3)×W 1/4(0, T ; [H1/2(∂Ω)]3, [L2(∂Ω)]3)× L2(0, T ;L2(ω)), (6.1)

and for R > 0, we define the set

BT,R = {(f, g̃, h) ∈ YT | ‖(f, g̃, h)‖YT 6 R}. (6.2)

In the sequel, we denote by C a quantity which does not depend on R and T . We first start by assuming∥∥(u0, η0, η1)
∥∥
V 6 R. (6.3)

Thus, applying Theorem 5.6, we know that for any (f, g̃, h) ∈ BT,R, there exists a unique solution (u, p, η) ∈ XT
of (5.1)-(5.3). Moreover, the estimate (5.29) yields

‖(u, p, η)‖XT 6 CR, (6.4)

for some positive constant C. For the local existence, the constant R is fixed. In the next section, we show that
for T small enough, we can define F,G,H by (3.9), (3.10) and (3.14) and thus consider the mapping Φ defined
as follows:

Φ : BT,R −→ YT , (f, g̃, h) 7−→ (F (u, p, η), G(u, η), H(u, η)). (6.5)

In what follows, we show that for T small enough, we have Φ(BT,R) ⊂ BT,R and that Φ|BT,R is a strict contraction.
First, we notice that (6.4) yields several other useful estimates. From (2.6), (2.7) and Lemma A.5 in [6],

there exists a constant C independent of T such that

‖η‖H1(0,T ;H2(ω)) + ‖η‖H3/4(0,T ;H5/2(ω)) + ‖∂tη‖L4(0,T ;H3/2(ω)) +
∥∥∂sjη∥∥H7/8(0,T ;H5/4(ω))

+
∥∥∥∂2

sjsk
η
∥∥∥
H7/8(0,T ;L8/3(ω))

+ ‖u‖L3(0,T ;[H5/3(Ω)]3)

+ ‖u‖H1/4(0,T ;[H1(∂Ω)]3) + ‖u‖H3/4(0,T ;[L2(∂Ω)]3) 6 CR. (6.6)

For simplicity, in all what follows, we assume

T 6 1. (6.7)

The above assumption simplifies the estimates in the sense that we only keep the smaller power of T . We also
denote by CR a constant that can depend on R in a nondecreasing way (typically the sum of CRm, m ∈ N,
C > 0). The value of these constants may change from one appearance to another.

6.1 Estimates on the change of variables
We first prove some useful estimates on η

Lemma 6.2. We have ∥∥η − η0
∥∥
L∞(0,T ;L∞(ω))

6 C
∥∥η − η0

∥∥
L∞(0,T ;H2(ω))

6 CRT
1/2. (6.8)
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In particular, there exists

T0 =
C

R2
> 0

such that if T 6 T0, then ∥∥∥∥ 1

1 + η

∥∥∥∥
L∞(0,T ;L∞(ω))

6 C. (6.9)

We also have the following estimates∥∥∂sjη − ∂sjη0
∥∥
L∞(0,T ;L∞(ω))

6 CRT
1/4, (6.10)

∥∥η − η0
∥∥
L∞(0,T ;H5/2(ω))

+
∥∥∥∂2

sjsk
η − ∂2

sjsk
η0
∥∥∥
L∞(0,T ;L4(ω))

6 CRT
1/4, (6.11)

‖∂tη‖L6(0,T ;H1(ω)) 6 CRT
1/6. (6.12)

Proof. In order to prove (6.8), we write

η(t, ·) = η0 +

∫ t

0

∂tη(t′, ·)dt′ (6.13)

and we combine it with (6.6) and with H2(ω) ↪→ L∞(ω).
Since

η0 ∈ D(A
3/4
1 ) = H3(ω) ↪→ C0(ω),

there exists ε > 0 such that 1 + η0 > 2ε. Using (6.8), we obtain (6.9) if T is small enough.
We set ξ = ∂sjη − ∂sjη

0 and ξ∗(t∗, ·) = ξ (t∗T, ·), t∗ ∈ [0, 1]. Then we combine (A.1), the embedding
H3/4(0, 1) ↪→ L∞(0, 1), Lemma A.1 in [6] and (6.6) to obtain

‖ξ‖L∞(0,T ;H3/2(ω)) = ‖ξ∗‖L∞(0,1;H3/2(ω)) 6 C ‖ξ∗‖H3/4(0,1;H3/2(ω)) 6 Cbξ∗c3/4,2,(0,1),H3/2(ω))

= CT 1/4bξc3/4,2,(0,T ),H3/2(ω)) 6 CT 1/4
∥∥∂sjη∥∥H3/4(0,T ;H3/2(ω))

6 CT 1/4R.

Then, we deduce (6.10) and (6.11) by using H3/2(ω) ↪→ L∞(ω) and H1/2(ω) ↪→ L4(ω).
Finally, (6.12) is a consequence of (6.6) and (2.7).

Now, we show some estimates on the changes of variables X and Y defined by (3.2). We recall that aik is
given by (3.8).

Lemma 6.3. Assume (6.7).

‖aik(X)− δik‖L∞(0,T ;L∞(Ω)) + ‖∇Y (X)− I3‖L∞(0,T ;[L∞(Ω)]9) 6 CRT
1/4. (6.14)

‖aik(X)‖L∞(0,T ;L∞(Ω)) + ‖∇Y (X)‖L∞(0,T ;[L∞(Ω)]9) 6 CR. (6.15)

∥∥∥∥∂aik∂yj
(X)

∥∥∥∥
L∞(0,T ;L4(Ω))

+

∥∥∥∥ ∂2Yi
∂xj∂xk

(X)

∥∥∥∥
L∞(0,T ;L4(Ω))

6 CRT
1/4. (6.16)

∥∥∥∥∥∂2aik
∂x2

j

(X)

∥∥∥∥∥
L∞(0,T ;L2(Ω))

6 CR. (6.17)

‖∂tY (X)‖L4(0,T ;[L∞(Ω)]3) 6 CR. (6.18)

‖∂taik(X)‖L6(0,T ;L2(Ω)) 6 CRT
1/6. (6.19)
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Proof. By definition (see (3.1) and (3.2)), we recall that

Y3(t, x) =
1 + η0(x1, x2)

1 + η(t, x1, x2)
x3, Yi(t, x) = xi, i = 1, 2.

As a consequence, the estimate on ∇Y (X)− I3 reduces to the estimate of the following terms∥∥∥∥∂Y3

∂xj
(X)

∥∥∥∥
L∞(0,T ;L∞(Ω))

, j = 1, 2 and
∥∥∥∥∂Y3

∂x3
(X)− 1

∥∥∥∥
L∞(0,T ;L∞(Ω))

. (6.20)

We have
∂Y3

∂x3
(X)− 1 =

η0 − η
1 + η

. (6.21)

By using (6.8) and (6.9), we deduce∥∥∥∥∂Y3

∂x3
(X)− 1

∥∥∥∥
L∞(0,T ;L∞(Ω))

6 CRT
1/2. (6.22)

On the other hand, for j = 1, 2, we have

∂Y3

∂xj
(X) = y3

(∂sjη
0 − ∂sjη)

1 + η0
+ y3∂sjη

(η − η0)

(1 + η)(1 + η0)
(6.23)

and thus, using (6.4), (6.3), (6.8) and (6.10),∥∥∥∥∂Y3

∂xj
(X)

∥∥∥∥
L∞(0,T ;L∞(Ω))

6 CT 1/4R+ CT 1/2R2 6 CRT
1/4.

Hence, we obtain (6.14) and thus (6.15).
We have for k, j ∈ {1, 2},

∂2Y3

∂xk∂xj
(X) = y3

(∂2
sjsk

η0 − ∂2
sjsk

η)

(1 + η0)
+ y3∂skη

(∂sjη − ∂sjη0)

(1 + η)(1 + η0)
+ y3∂sjη

(∂skη − ∂skη0)

(1 + η)(1 + η0)

+ y3(η − η0)

(
∂2
sksj

η

(1 + η0)(1 + η)
− 2

∂skη∂sjη

(1 + η0)(1 + η)2

)
. (6.24)

Then, we obtain∥∥∥∥ ∂2Y3

∂xk∂xj
(X)

∥∥∥∥
L∞(0,T ;L4(ω))

6 C

(∥∥∥∂2
sjsk

η − ∂2
sjsk

η0
∥∥∥
L∞(0,T ;L4(ω))

+R
∥∥∂sjη0 − ∂sjη

∥∥
L∞(0,T ;L∞(ω))

+
∥∥η0 − η

∥∥
L∞(0,T ;L∞(ω))

(∥∥∥∂2
sjsk

η
∥∥∥
L∞(0,T ;L4(ω))

+R2

))
.

Using (6.11), (6.10) and (6.8), we obtain (6.16). The other cases for k, j are easier to do and we skip them.

The third derivative
∂3Y

∂xj∂k∂xl
involves the following terms

y3

∂3
sjsksl

η0

1 + η0
, y3

∂slη∂
2
sjsk

η0

(1 + η)(1 + η0)
, y3

∂slη
0∂2
sjsk

η

(1 + η)(1 + η0)
, y3

∂3
sjsksl

η

1 + η
, y3

∂slη∂
2
sjsk

η

(1 + η)2
,

y3

∂sjη∂skη∂slη

(1 + η)3
, y3

∂sjη∂skη∂slη
0

(1 + η)2(1 + η0)
.
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Thus, using (6.4), (6.10), (6.11), (6.8) and (2.7), we obtain (6.17).
We have

∂tY (X) = −y3
∂tη

1 + η
e3

and thus
‖∂tY (X)‖L4(0,T ;[L∞(Ω)]3) 6 CR ‖∂tη‖L4(0,T ;L∞(ω)) .

Thus, using (6.3) and (6.6), we obtain (6.18).
The terms appearing in ∂taik(X) are of the form

y3

∂tη∂sjη

(1 + η)2
, y3

∂tη∂sjη
0

(1 + η)(1 + η0)
, y3

∂2
tsjη

(1 + η)
, − (1 + η0)∂tη

(1 + η)2
.

Consequently, using (6.8) and (6.10),

‖∂taik(X)‖L6(0,T ;L2(Ω)) 6 CR ‖∂tη‖L6(0,T ;H1(ω)) .

The above estimate and (6.12) yield (6.19).

Now, we need the following lemma to estimates the terms on the boundary.

Lemma 6.4. Assume (6.7). Then we have the following estimates

‖∇Y (X)− I3‖L∞(0,T ;[H3/2(∂Ω)]9) + ‖aik(X)− δik‖L∞(0,T ;H3/2(∂Ω))

+ ‖n0 − n‖L∞(0,T ;[H3/2(∂Ω)]3) +
∥∥τ i0 − τ i∥∥L∞(0,T ;[H3/2(∂Ω)]3)

6 CRT
1/4. (6.25)∥∥∥∥∂amk∂xj

(X)

∥∥∥∥
L∞(0,T ;H1/2(∂Ω))

6 CRT
1/4. (6.26)

‖∇Y (X)− I3‖H7/8(0,T ;[L∞(∂Ω)]9) + ‖aik(X)− δik‖H7/8(0,T ;L∞(∂Ω))

+ ‖n0 − n‖H7/8(0,T ;[L∞(∂Ω)]3) +
∥∥τ i0 − τ i∥∥H7/8(0,T ;[L∞(∂Ω)]3)

6 CR. (6.27)∥∥∥∥∂amk∂xj
(X)

∥∥∥∥
H7/8(0,T ;L8/3(∂Ω))

6 CR. (6.28)

Proof. Relation (6.25) is a consequence of (6.21), (6.23), (1.5) and (3.11) combined with (6.11). We obtain
(6.26) by using Lemma 6.2 with (3.8).

Using (6.6) and H5/4(ω) ↪→ L∞(ω), we obtain∥∥∂sjη0 − ∂sjη
∥∥
H7/8(0,T ;L∞(ω))

6 CR. (6.29)

For (α1, α2, α3) ∈ N3, we also deduce that

ηα1(∂sjη)α2

(1 + η)α3
(∂sjη

0 − ∂sjη) ∈ H7/8(0, T ;L∞(ω)).

Nevertheless, one has to take care about the dependence in T of the corresponding norm. In order to do this,
we notice that if

f, g ∈ H7/8(0, T ;L∞(ω)) ∩ L∞(0, T ;L∞(ω)),

then
fg ∈ H7/8(0, T ;L∞(ω)) ∩ L∞(0, T ;L∞(ω)),
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and

‖fg‖H7/8(0,T ;L∞(ω))∩L∞(0,T ;L∞(ω)) 6 C‖f‖H7/8(0,T ;L∞(ω))∩L∞(0,T ;L∞(ω))‖g‖H7/8(0,T ;L∞(ω))∩L∞(0,T ;L∞(ω)).

The last estimate is obtained by writing the definition (2.1) of the norm in H7/8(0, T ;L∞(ω)).
Then, combining (6.29) with (6.4), we obtain that∥∥∥∥ηα1(∂sjη)α2

(1 + η)α3
(∂sjη

0 − ∂sjη)

∥∥∥∥
H7/8(0,T ;L∞(ω))

6 CR.

From this estimate and (6.21), (6.23), (1.5) and (3.11), we obtain (6.27).

To prove (6.28), we use that the terms appearing in
∂amk
∂xj

(X) are of the form (6.24). Combining the above

arguments with (6.6) and (6.4), we deduce the result.

6.2 Estimates of F , G, H
Proposition 6.5. Assume F , G, H are given by (3.9), (3.14), (3.10). Then we have

‖F (u, p, η)‖L2(0,T ;[L2(Ω)]3) 6 CRT
1/6, (6.30)

‖H(u, η)‖L2(0,T ;L2(ω)) 6 CRT
1/4, (6.31)

‖G(u, η)‖L2(0,T ;H1/2(∂Ω)) + ‖G(u, η)‖H1/4(0,T ;L2(∂Ω)) 6 CRT
1/8. (6.32)

Proof. Using (6.14), (6.15), we obtain∥∥∥∥(aik(X)
∂Ym
∂xj

(X)
∂Yl
∂xj

(X)− δikδmjδjl)
∂2uk
∂yl∂ym

∥∥∥∥
L2(0,T ;L2(Ω))

6 CRT
1/4, (6.33)

‖(δik − aik(X))∂tuk‖L2(0,T ;L2(Ω) 6 CRT
1/4, (6.34)

and ∥∥∥∥(δki −
∂Yk
∂xi

(X))
∂p

∂yk

∥∥∥∥
L2(0,T ;L2(Ω))

6 CRT
1/4. (6.35)

Using (6.15) and (6.18), we obtain∥∥∥∥aik(X)∂tYl(X)
∂uk
∂yl

∥∥∥∥
L2(0,T ;L2(Ω))

6 CRT
1/4 ‖∂tY (X)‖L4(0,T ;[L∞(Ω)]3) ‖u‖L∞(0,T ;[H1(Ω)]3) 6 CRT

1/4.

Using (6.15) and (6.16), we get∥∥∥∥∥aik(X)
∂2Yl
∂x2

j

(X)
∂uk
∂yl

∥∥∥∥∥
L2(0,T ;L2(Ω))

+

∥∥∥∥∂aik∂xj
(X)

∂Yl
∂xj

(X)
∂uk
∂yl

∥∥∥∥
L2(0,T ;L2(Ω))

6 CR

∥∥∥∥∂aik∂yj
(X)

∥∥∥∥
L∞(0,T ;L4(Ω))

+

∥∥∥∥∥∂2Yl
∂x2

j

(X)

∥∥∥∥∥
L∞(0,T ;L4(Ω))

 ‖u‖L2(0,T ;[H2(Ω)]3) 6 CRT
1/4. (6.36)

From (6.19) and (6.6), it follows that

‖∂taik(X)uk‖L2(0,T ;L2(Ω)) 6 ‖∂taik(X)‖L6(0,T ;L2(Ω)) ‖uk‖L3(0,T ;L∞(Ω)) 6 CRT
1/6. (6.37)
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From (6.17) and (6.6)∥∥∥∥∥∂2aik
∂x2

j

(X)uk

∥∥∥∥∥
L2(0,T ;L2(Ω))

6 T 1/6

∥∥∥∥∥∂2aik
∂x2

j

(X)

∥∥∥∥∥
L∞(0,T ;L2(Ω))

‖uk‖L3(0,T ;L∞(Ω)) 6 CRT
1/6.

Using standard estimates on the nonlinear terms (see, for instance, [3, p.48]), we have∥∥∥∥ul ∂uj∂ym

∥∥∥∥
L2(0,T ;L2(Ω))

6 CT 1/4R2. (6.38)

Combining this with (6.14) yields∥∥∥∥(δijδklδkm − akl(X)aij(X)
∂Ym
∂xk

(X)

)
ul
∂uj
∂ym

∥∥∥∥
L2(0,T ;L2(Ω))

6 CRT
1/2. (6.39)

Using (6.16), we have also∥∥∥∥akl(X)
∂aij(X)

∂xk
uluj

∥∥∥∥
L2(0,T ;L2(Ω))

6 CR

∥∥∥∥∂aij∂xk
(X)

∥∥∥∥
L∞(0,T ;L4(Ω))

‖ul‖L∞(0,T ;L4(Ω)) ‖uj‖L2(0,T ;L∞(Ω))

6 CRT
1/4. (6.40)

Hence, F (u, p, η) is L2(0, T ; [L2(Ω)]3) and using (6.33), (6.34), (6.35), (6.39), (6.37) and (6.40), we get

‖F (u, p, η)‖L2(0,T ;[L2(Ω)]3) 6 CRT
1/6.

We estimate now G(u, η) in W 1/4(0, T ; [H1/2(∂Ω)]3, [L2(∂Ω)]3). We recall that the formula (3.14) for G
involves τ i, W, Vi (see (3.11), (3.12), (3.13)). First we write for i = 1, 2

Vi = (2νD(u)n0 + β(u− T ∂tη)) · (τ i0 − τ i) + [2νD(u)n0 + β(u− T ∂tη)−W] · τ i, (6.41)

with

[2νD(u)n0 + β(u− T ∂tη)−W]k = ν
∑
j,m,q

(n0)j

(
δkm

∂um
∂yq

δqj + δjm
∂um
∂yq

δqk

)

− ν
∑
j,m,q

nj

(
akm(X)

∂um
∂yq

∂Yq
∂xj

(X) + ajm(X)
∂um
∂yq

∂Yq
∂xk

(X)

)

− ν
∑
j,m

nj

(
∂akm
∂xj

(X)um +
∂ajm
∂xk

(X)um

)
+ β

∑
j

(δkj − akj(X))uj , k = 1, 2, 3. (6.42)

From (6.4) and trace results, we have

‖u‖L2(0,T ;[H3/2(∂Ω)]3) +

∥∥∥∥∂um∂yq

∥∥∥∥
L2(0,T ;[H1/2(∂Ω)]3)

6 CR.

Combining this with (6.25) and (6.26), we deduce∥∥Vi∥∥
L2(0,T ;H1/2(∂Ω))

6 CRT
1/4,

and thus from (3.14), we finally obtain

‖G(u, η)‖L2(0,T ;[H1/2(∂Ω)]3) 6 CRT
1/4.
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For the estimate in H1/4(0, T ;L2(∂Ω)), we use (A.5): for instance,∥∥∥∥nj(akm(X)− δkm)
∂um
∂yq

∂Yq
∂xj

(X)

∥∥∥∥
H1/4(0,T ;L2(∂Ω))

6 CT 1/8

∥∥∥∥nj(akm(X)− δkm)
∂Yq
∂xj

(X)

∥∥∥∥
H7/8(0,T ;L2(∂Ω))

∥∥∥∥∂um∂yq

∥∥∥∥
H1/4(0,T ;L2(∂Ω))

6 CRT
1/8, (6.43)

The last inequality is obtained by using both (6.25), (6.27) and (6.6).
The other kind of terms that has to be estimated are of the form∥∥∥∥∂akm∂xj

(X)um

∥∥∥∥
H1/4(0,T ;L2(∂Ω))

6 CT 1/8

∥∥∥∥∂akm∂xj
(X)

∥∥∥∥
H7/8(0,T ;L8/3(∂Ω))

‖um‖H1/4(0,T ;L8(∂Ω)) 6 CRT
1/8,

where we have used (A.5) and
∂akm
∂xj

(X) = 0 at t = 0.

All the other terms are estimated similarly so that we finally deduce (6.32). The estimate (6.31) on H can be
done similarly as the estimate (6.32) for G.

6.3 Proof of Theorem 6.1
We are now in position to prove Theorem 6.1.

Proof of Theorem 6.1. First let us prove the local in time existence. We recall that Φ is given by (6.5), with YT
given by (6.1). From (6.30), (6.32), (6.31), we obtain

‖Φ(f, g̃, h)‖YT 6 CRT
1/8.

Thus, for T small enough, we obtain that Φ(BT,R) ⊂ BT,R, where BT,R is defined by (6.2). With computations
similar as the ones done in the two previous subsections, we also obtain that for T small enough, Φ|BT,R is a
contraction. Using the Banach fixed-point theorem, we deduce the existence and uniqueness of (u, p, η) solution
of the system (3.5), (3.6) and (3.7) provided that T is small enough.

For the second part of Theorem 6.1, the application Φ is defined in a similar way as (6.5) but with T =∞
and

Y∞ = L2
γ(0,∞; [L2(Ω)]3)×W 1/4

γ (0,∞; [H1/2(∂Ω)]3, [L2(∂Ω)]3)× L2
γ(0,∞;L2(ω)). (6.44)

Here γ ∈ [0, γ0], where γ0 is given by Theorem 5.4. In that case, we show that for R small enough Φ(B∞,R) ⊂
B∞,R and that Φ|B∞,R is a strict contraction. The estimates are similar to the previous case, but are simpler:
for instance, Lemma 6.2 is replaced by the following estimates:

‖η‖L∞γ (0,∞;L∞(ω)) +
∥∥∂sjη∥∥L∞γ (0,∞;L∞(ω))

+
∥∥∥∂2

sjsk
η
∥∥∥
L∞γ (0,∞;L4(ω))

6 C ‖η‖L∞γ (0,∞;H3(ω)) 6 CR (6.45)

In particular, there exists R0 > 0 so that, if R 6 R0, then∥∥∥∥ 1

1 + η

∥∥∥∥
L∞(0,T ;L∞(ω))

6 C. (6.46)

We can then define the changes of variables X and Y by (3.3), and obtain similar estimates as in Lemma 6.3,
Lemma 6.4 and Proposition 6.5.

This yields
‖Φ(f, g̃, h)‖Y∞ 6 CR2, (6.47)
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and ∥∥∥Φ(f (1), g̃(1), h(1))− Φ(f (2), g̃(2), h(2))
∥∥∥
Y∞

6 CR
∥∥∥(f (1), g̃(1), h(1))− (f (2), g̃(2), h(2))

∥∥∥
Y∞

. (6.48)

for (f, g̃, h), (f (i), g̃(i), h(i)) ∈ B∞,R. Then, we use the Banach fixed point by taking R small enough and we
deduce the global existence and uniqueness of a strong solution (u, p, η) ∈ X∞,γ for the system (3.5), (3.6) and
(3.7) provided that R is small enough.

A Technical results
In this section, we give some technical estimates that have been elaborated in [6]. Given a function ξ, we define
for t∗ ∈ [0, 1], ξ∗(t∗) = ξ(t∗T ). Assume X is a Banach space. If ξ ∈ Hs(0, T ;X), then ξ∗ ∈ Hs(0, 1;X) and

bξ∗cs,2,(0,1),X = T (2s−1)/2bξcs,2,(0,T ),X. (A.1)

Assume σ2 ∈ (1/2, 1] and σ1 ∈ [0, σ2]. Using the above result, there exists a constant independent of T such
that for any ξ ∈ Hσ2(0, T ;X) and ξ(0) = 0, then

‖ξ‖Hσ1 (0,T,X) 6 CTσ2−σ1 ‖ξ‖Hσ2 (0,T,X) . (A.2)

We also recall the following result on the interpolation estimates (with constants independent of T ), see [6,
Lemma A.5]: assume σ ∈ [0, 1], µ1 > 0, µ2 > 0 and µ = σµ1 + (1 − σ)µ2. Then there exists a constant C
independent of T such that for any function u ∈ H1(0, T ;Hµ1(Ω)) ∩ L2(0, T ;Hµ2(Ω)), we have

‖u‖Hσ(0,T ;Hµ(Ω)) 6 C ‖u‖σH1(0,T ;Hµ1 (Ω)) ‖u‖
1−σ
L2(0,T ;Hµ2 (Ω)) . (A.3)

On the other hand, for p, q ∈ [1,+∞] and
1

r
=
σ

p
+

(1− σ)

q
, we have

‖u‖Lr(0,T ;Hµ(Ω)) 6 C ‖u‖σLp(0,T ;Hµ1 (Ω)) ‖u‖
1−σ
Lq(0,T ;Hµ2 (Ω)) , (A.4)

for u ∈ Lp(0, T ;Hµ1(Ω)) ∩ Lq(0, T ;Hµ2(Ω)).
We give also a useful formula (see [6, Lemma A.7]) for the product of functions: assume that X1, X2 and X3

are Banach spaces such that

‖fg‖X3
6 C ‖f‖X1

‖g‖X2
, ∀f ∈ X1, ∀g ∈ X2.

Let us assume σ ∈ (1/2, 1], s ∈ [0, 1/2], T0 > 0. Then there exists a constant C such that for any T 6 T0 we
have

‖u1u2‖Hs(0,T ;X3) 6 CTσ−s−1/2 ‖u1‖Hs(0,T ;X1) ‖u2‖Hσ(0,T ;X2) + ‖u2(0)‖X2
‖u1‖Hs(0,T ;X1) , (A.5)

for all u1 ∈ Hs(0, T ;X1) and u2 ∈ Hσ(0, T ;X2).
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