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The objective of this article is to provide a generalized framework of a novel method that investigates
the problem of combining and fusing different types of measurements for pose estimation. The pro-
posed method allows to jointly minimize the different metric errors as a single measurement vector in
n-dimensions without requiring a scaling factor to tune their importance. This paper is an extended
version of previous works that introduced the Point-to-hyperplane ICP approach. In this approach an
increased convergence domain and a faster alignment was demonstrated by considering a 4-dimensional
measurement vector (3D Euclidean points + Intensity). The method has the advantages of the classic
Point-to-plane ICP method, but extends this to higher dimensions. For demonstration purposes, this
paper will focus on a RGB-D sensor that provides color and depth measurements simultaneously and
an optimal error in higher dimensions will be minimized from this. Results on both, simulated and real
environments will be provided and the performance of the proposed method will be carried on real-time
visual SLAM.

Keywords: Point-to-hyperplane, Visual Odometry, RGB-D Pose estimation, Visual SLAM

1. Introduction

One of the most common problems in view registration is estimating the pose that relates sets of
measurements obtained by a moving sensor (or sensors). This problem has been widely studied by
the computer vision and robotics communities and it is specially applied for 3D reconstruction,
visual odometry and autonomous navigation tasks.

Depending on the type of sensor, different types of measurements of the environment can be
registered through pose estimation. Classically, when more than one type of sensor is employed
for pose estimation, the alignment between the extended measurements has been achieved by
minimizing each sensor’s error separately or by jointly optimizing over each type of measurement
in a so-called hybrid-manner.

Nowadays, the availability of RGB-D sensors such as the Microsoft Kinect V1, V2 or Asus Xtion
have provided the possibility to acquire color and depth information simultaneously at a consider-
ably high framerate, which has been useful for real-time pose estimation. The metric information
obtained by RGB-D sensors has been individually studied in the literature. One case is by using
depth images, where geometric-based methods, such as the well known Iterative Closest Point
(ICP) [1] and its variants, have demonstrated the ability to obtain robust alignments when enough
geometric information is available and they can obtain fast alignment if the datasets are closely
overlapping. Particular variants such as the Point-to-plane ICP strategy [2] and the Generalized-
ICP [3] have demonstrated to be the most effective and robust methods when combined with
robust estimations approaches such as the M-estimators [4]. On the other hand, color images have
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Figure 1. Classic hybrid approach diagram. The geometric and photometric error
(e¢ and eg, respectively) are jointly minimized. A tuning parameter A = (Ag, A1)
weights the contribution of each measurement during the minimization process. The

. . . . T
metric measurements are represented in a ¢ — th single vector M; = [P;r Ii] € R4,

which contains the 3D Euclidean points P and its associated intensities I.

been used for pose estimation processes by performing photometric-based minimization. Strate-
gies as direct approaches based on view synthesis [5] or feature-based strategies such as: SIFT
(Scale-Invariant Feature Transform) [6], SURF (Speeded Up Robust Features) [7], BRIEF (Binary
Robust Independent Elementary Features) [8] or ORB (Oriented FAST and Rotated BRIEF) [9]
have been widely used. In [6], the feature descriptors are obtaining by computing a histogram of
local oriented gradients around a keypoint, however, it can be computationally expensive due to the
high dimensionality of its descriptors. An improved version has been proposed in [7], which relies
on local gradient histograms but the matching is accelerated by using integral images. However,
methods [6, 7] are highly discriminant and features of the same object under different illumination
cannot be properly detected. A similar performance is shown in [8], but the feature matches are
improved by training a set of classification trees and by using the Hamming distance as the met-
ric for matching instead of Euclidean distance. Finally, an efficient alternative has been presented
in [9], where an efficient computation of BRIEF features is performed.

It can be noted at this point that feature-based approaches first extract geometric information
from the image before performing estimation on a geometric error. Therefore, for purposes of this
article, feature-based approaches won’t be detailed here since they can be considered as a sub-part
of direct approaches.

The geometric-based and photometric-based approaches share much similarity and subsequently,
the common pose estimation framework of both strategies involves the following non-linear Itera-
tively Re-weighted Least Squares (IRLS) process:

(1) Acquisition of the measurements at different times.

(2) Transform (warp) the measurements using the last pose estimate.
(3) Find the closest points between the sets of measurements.

(4) Minimize the robust weighted error functions.

(5) Estimate a new incremental update on the pose.

(6) Perform all the steps from 2 until convergence.

Recently, several strategies have combined geometric and photometric-based methods together
to obtain the main benefits of each via a so-called hybrid method (The main recent surveys are
cited in [10]). The advantages of hybrid approaches in combining different measurements include in-
creased efficiency, accuracy and robustness for pose estimation processes. However, the contribution
of each measurement during the minimization process should be weighted by a tuning parameter
A, which scales the relative importance of each measurement (Figure 1). Various prominent hybrid
methods proposed in the literature are those that simultaneously minimize the geometric and pho-
tometric error functions in real-time such as [11-15]. The aforementioned methods differ in how
the tuning parameter is estimated and how the closest points are found.
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The cited hybrid strategies in this paper do not necessarily consider the color and depth simul-
taneously when computing the closest points. All the methods perform the closest point searching
separately for both color and depth except for [14], which estimates the closest points using a
kd-tree (k-dimensional) in a 4-dimensional space (3D Euclidean points + intensity). Finding the
closest points by considering the fused information increases the accuracy of finding the true nearest
neighbours, however, this approach requires an efficient search in a higher dimensional space. De-
pending on how the closest points are found, this step can potentially be the most computationally
expensive part of the pose estimation pipeline.

The choice of A has a huge influence while estimating the pose. If the parameter is well de-
termined, then it can speed-up the alignment and increase the convergence rate. Depending on
how A is chosen, a variety of hybrid strategies have been categorized into adaptive or non-adaptive
methods in [16]. Basically, adaptive methods are those that determine the tuning parameter at
each iteration of the minimization process and the non-adaptive methods estimate A only once and
its value is used for all the following iterations. For purposes of this article, methods that perform
real-time tasks for pose estimation are selected for comparison.

Adaptive methods such as [12] and [15] estimate the tuning parameter by obtaining the ratio
between the Median Absolute Deviation (MAD) of the photometric and geometric error functions.
In [11] the uncertainty between the metric measurements is compensated by computing the co-
variance matrix between both metric errors and in [14] the tuning parameter is obtained by a
sigmoid function which increases the importance of the photometric error over the geometric er-
ror or viceversa. The strategy proposed in [13] is classified as the non-adaptive since A is chosen
experimentally.

The aim of this article is to provide an extended framework of a previous work on fusing different
metric measurements via the Point-to-hyperplane ICP approach [17]. The invariance to any tuning
parameter will be proven mathematically, which will demonstrate that the Point-to-hyperplane
ICP method is invariant to A in hybrid pose estimation processes if the normals are estimated in
higher dimensions. Particularly, here the method is applied for RGB-D pose estimation in a 4D
and 6D space by fusing both geometric and photometric techniques based on Point-to-plane ICP
and direct methods, respectively. With respect to previous work, this paper addresses the issue of
computing the 4D normal when geometric or photometric information together are not available.
Various real RGB-D sequences that allow to better compare texture vs structure will be compared
for the proposed method alongside hybrid strategies that estimate a scale factor.

This paper is organized as follows: In Section 2 an overview of the hybrid method briefly explains
how the RGB-D pose estimation can be performed by jointly minimizing over the color and depth
by using a direct method for the color and Point-to-plane ICP for the geometric 3D points. In
this section it will be shown that the tuning parameter A has a huge influence on these methods.
In Section 3 the Point-to-hyperplane ICP method will be introduced and the invariance to the
scale parameter will be demonstrated by minimizing the error as a single vector for n-dimensions.
Finally, extended results for both, real and synthetic environments, will be shown.

2. Hybrid RGB-D pose estimation

Hybrid approaches have been useful when color or depth alone are not significant enough for
obtaining a correct alignment between RGB-D frames, that have been acquired at different times
and that are not in correspondence. A IRLS pose estimation process can be employed to minimize
the geometric or photometric error functions separately, but hybrid methods estimate the unknown
pose by iteratively minimizing the non-linear error functions simultaneously. Hybrid methods can
converge faster than using geometric or photometric approaches individually, and attempt to retain
the main benefits of each by weighting their respective contribution.
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2.1. Joint error for pose estimation

The generated errors between two sets of extended measurements (color + depth) can be jointly
minimized to estimate the pose since the color and depth pose estimation pipeline shares too
much similarity. So-called hybrid methods have been introduced to minimize both error functions
simultaneously, where a 3D Euclidean point P; € R? is associated with an unique intensity I,
by weighting each contribution with an uncertainty factor A. Consider here two augmented point
clouds obtained at different times. Let M™* be the reference point cloud and M be the current point
cloud measurements. The hybrid error function for the ¢ — th joint measurement vector, eg, and
es, (geometric and photometric error, respectively) can be represented as:

_ €G; | _ P: - w(Pi7 X) 6
e, = A er _/\[If—w(h,x) eR (1)
where A = diag(Ax, A\v, Az, A1) = POG ;)J are the tuning parameters which weigh the contri-

bution of each error function. For 3D Euclidean points, Aq = diag(Ax, Ay, Az). The alignment
between the measurement vector M* = [P* I*]T and M = [P I]T is found by iteratively minimiz-
ing the error function (1). This involves transforming the current dataset M with the estimated
pose x with the transformation function represented here as: w(-). A 3D Euclidean point can be
T 3
] eR3,
where Z; € RT is the depth measurement for each pixel coordinate p; = [u; v; 1]T € R? of the
depth image and K € R?*3 is the intrinsic camera calibration matrix as:

determined by using the depth-back-projection function as: P; = K~ 'p; Z; = [Xi Y, Z;

fw f39 (&%
K= |0 fh c,|R¥>? (2)
0 0 1

where f is the focal distance, sy is the skew angle of a pixel (which is usually set to 0), w and h is
the width and height of the image, respectively and ¢, ¢, are the coordinates of the center of the
image.

The 6DOF (Degrees of freedom) pose parameter x can be decomposed into rotational and

translational components and it will be defined here via the homogeneous transformation matrix

T(x) = [R(S;() t(lx )} € SE(3) which is parametrized by the linear v € R? and angular velocity w €

R3, respectively. The relationship between the velocity twist and the homogeneous pose matrix is

given by the exponential map as T'(x) = e[x}/\, with the operator [/] A defined as: [x] A= {[w(lx :ﬂ €
SE(3) where [-], is the skew symmetric operator.
Here the non-linear error defined in (1) is minimized iteratively using a Gauss-Newton approach

to compute the unknown 6DOF pose parameters with increments given by:

_ 1T 1Tws |Acea 6
x=—(J'"'WJ) JW[)\]eI]GR (3)
where J = [ J5 J] | is the stacked Jacobian matrix obtained by deriving the stacked error
functions, and the weight matrix W = diag(p1, p2,- - , pn) contains the stacked weights associated

with each set of coordinates obtained by M-estimation [4]. Often, robust M-estimation is performed
separately for each different measurement type.
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(b) Color

(c) Depth (d) Color

Figure 2. Examples of RGB-D images: Texture vs Color. (a) and (b) are images
taken from an environment where the geometric measurements are more significant
than photometric measurements while (c) and (d) were taken from a scenario where
the texture is more significant than geometry. The depth image is visualized as an
intensity image, where black indicates a non valid depth measurement.

The cited hybrid strategies [11-15] perform the Point-to-Plane ICP algorithm [2] and a direct
image-based method [5] whilst minimizing the error simultaneously. Generally, these approaches
minimize an error function ! similar to:

_ (A (N;T (PP = PY)
CH, = ( ¢ (AI (I —1p) )) <R @

where P}’ = II;TT (x) P} € R? is the warped 3D point and N} € R3 is the surface normal for each
3D point P; € R*. In the photometric term, I = I (w(’i‘T(x), P; )) is the warped image through

the geometric warping function w(-) as:

R w w /7w

_ . KILTT(x)M,” |% Cot [P/ 2]

P = eT%’I\‘T(>(<))M>Z = v | = |y + £ X1/ 2| € RO (5)
3 i 1 1

where II3 = [1,0] € R¥** projects the 4 x 4 pose matrix onto the 3 x 4 space and e5 = [0 0 1]
extracts the depth component of a transformed 3D point.

The closest image intensity is found by interpolating the current intensity function at the warped
pixel coordinates. Therefore, the corresponding intensities can be estimated as: I} (p}) = Li(p}’) €
Z*. The 3D point correspondences and the matched intensities are defined as P™ and I!", respec-
tively. Finally, the pose estimation T(x) is computed at each iteration and is updated incrementally
as: T + TT(x) until convergence.

INote that in (4) the parameter A\g = det(Ag) is a scalar for the geometric point-to-plane error
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Figure 3. Influence of the scale coefficient on the error function residuals (Equation
(13)) when (a) X is not estimated, (b) when the intensities and 3D points are normal-
ized between [0, 1] [18] and (c) when X is estimated at each iteration [15]. An example
of a cost function is shown in (d), which indicates that the number of iterations can
be improved when a good choice of A is made.

2.2. Uncertainty between depth and color

Since the geometric and photometric measurements and subsequently their uncertainties are not
in the same units or order of magnitude, the contribution in the minimization process of each
measurement should be weighted to compensate for the relative uncertainty between the different
error functions. Consider as an example the case when the intensity is almost uniform in the scene
but the geometric features are not (Figure 2(b) and 2(a)). The pose estimation function should
give more importance to the geometric features since the errors generated in the photometric term
are not significant enough to constrain all degrees of freedom. On the other hand, the opposite
case can be found when rich texture can be registered from flat surfaces (Figure 2(d) and 2(c),
the geometric information does not constrain all degrees of freedom for obtaining the alignment.
An example of the influence of A = diag(Ax, Ay, Az, A\r) in the minimization process is shown in

Figure 3 where a Gaussian distribution has been fitted into the residuals.

As is shown in (1), each intensity is associated with its corresponding 3D Euclidean point through
a matrix A that scales the importance of the geometric points w.r.t. the intensities. As mentioned in
the introduction, many methods have been proposed to choose this parameter ranging from manual
tuning to more complex estimation approaches. Manually fixing A is not optimal nor efficient for
real-time applications, and estimating its adequate value can require extra computational cost.
Various strategies, which obtain A in different ways, have been cited in [17]. Three efficient real-time
possibilities will be considered here and they will be compared in the results section. They include
adaptive methods: such as the ratio of the Median Absolute Deviations (MAD) [15] or computing
the covariance matrix for each measurement vector as in [11], and non-adaptive methods: using

the normalization of the metric measurements to scale the relative error distributions.
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Figure 4. Point-to-hyperplane approach diagram. In the first iteration, the closest
points can be estimated by finding in a kd-tree with the 4D vector and linear inter-
polation in the following iterations. The method is invariant to a tuning parameter
A

3. Point-to-hyperplane ICP

The aim of this paper is to present a method that performs RGB-D registration by minimizing over
color and depth components simultaneously in such a way that it is invariant to the scale between
both measurements. The n-D space generated by considering measurement vector of n-Dimensions,
has additional degrees of freedom. The proposed method therefore consist in extending the classic
Point-to-plane method [2] for 2D and 3D points, to higher dimensions. Therefore, the estimated
n-dimensional normal (as well as the 3D normal) will be orthogonal to a surface in n-dimensions
which spans both geometry and color. This n-dimensional surface will be referred in this paper as
the hyperplane.

Based on the Point-to-plane method for 3D points, an error function in higher dimensions can
be defined as follows:

err, = AN;T (M — w(M;,x)) (6)

where a tuning parameter A = det(A) is added to deal with the uncertainty between different
measurements and the normal NZT is perpendicular to the formed hyperplane.

For the purpose of this article, 4 dimensions will be considered (3D Euclidean points + intensity)
for the experimentation (See Figure 4). The 4-vector is defined as M; = [P I;]T € R*. The normals
N* are computed on the reference 4D measurements vector M*, which will be referred throughout
this paper as the reference dataset. Therefore, the pose vector x can be estimated by iteratively
minimizing the error function that projects the Point-to-point distance onto the normal direction
as:

x=—(JTWI)1J"Wey (7)

3.1. Inwvariance to a tuning parameter A\

The invariance to any scale factor A = diag(\1, A2, -+ , Ap) in the Point-to-hyperplane ICP method
was experimentally observed in [17] and a demonstration to this invariance is given in [16], where
the mathematical proof of the following lemma is given:

Lemma. The integrated error eg in n-dimensions is invariant to the relative scale X if it is
minimized by a Point-to-hyperplane ICP method.

er, = N (M} —w(M;,x)) = AN; T (M — w(M;, x)) (8)

The projection of the error onto the normal direction has the effect of canceling out the effect
of A = det(\) between the geometric and photometric error since the direction of the normal is
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Figure 5. Principle of the Point-to-hyperplane applied in 2 dimensions Point-to-line
and 3 dimensions Point-to-plane. It should be noted that the axis  and y are not
in the same scale in (a). A tuning parameter X is added in order to demonstrate the
invariance of the Point-to-hyperplane method in the 2D case. The distance ep, is the

—
result of projecting the vector MY M; onto the normal direction N*.

invariant to any tuning parameter. The mathematical proof given in [16], demonstrated that the
error function is not influenced by any scale parameter if the n-dimensional normals are normalized.
In fact, for this paper it was observed that the invariance to the scale parameter is due to the fact
that the elements of X have no influence on the direction of the estimated normals. For purposes
of simplicity, this invariance will be shown for the 2D case here.

Consider two sets of measurements taken at different times as M* = [X* Y*]T and M = [X Y] "
where each measurement (X,Y) has a different scale (e.g. centimeters and millimeters). The mea-
surements are scaled to the same order of magnitude by the tuning parameter A = diag(Ax, \y).
The equation of the tangent line ax + by + ¢ = 0 (where (a,b) are the coordinates of the normal)
at an ¢ — th reference point can be obtained from the definition of the slope of a line:

WY AV - YY) o)
P X A (Xf - X))

that can be written as: Ay (Y, Y*) + Ax (X7 — X7 )y + ¢ = 0, where ¢ = Ax Ay (X[, V" —
Y;‘HX*) The normal (a,b) = (Ay (Y5, — Y;*), Ax (X} — X/,;)) can be represented for simplicity
as: N* = det (A) - A7'V} where VI = [Y%, —Y;* X7 — X7 ,]". For simplicity this last will be
written as: VI = [N] N3 |"

The projection of the point-to-point error M7M; = A(M; — M) onto the normal direction N;
defines the distance of a pomt to a line (Flgure 5(a)). It is clearly seen that the error function
can be computed as: eH = N*T)\ (M; —M;). Replacing N7 into this error function as: ey, =
det (X) - A~ 1V*T)\( M — M) allows to rewrite it as eg, = AxAy (N} (X; — X7) + N3 (Y; — Y;")),
where is demonstrated that the tuning parameter X has no effect on the minimization process since
it has no influence on the direction of the normal and it scales its magnitude only.

The invariance for the 3D case has been demonstrated in [16] and it has been extended to n-
dimensions. In this paper, a better presentation of the proof will be given. The normal in three
dimensions is obtained by performing the cross product between two hybrid vectors, scaled by
A = diag(Ax, Ay, A1) (2D geometric points + intensity) as: N¥ = det(X) - A1 (V”€ X Vil), where
V% and V¥ are defined as the k — th and the [ — th closest point to M that lies on the reference
dataset as V& = X\ (M} — M) and V¥ = X\ (M} — M}), respectively (See Figure 5(b)).
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Figure 6. The neighbours of a central pixel (in grey) in a 3 x 3 window on a image are
employed to associate its closest 3D points and estimate the normal to the connecting
plane (or hyperplane). Any pixel on the image can be selected as a central pixel to
compute the distance with its surrounding neighbours (except for the corners).

Therefore, a 3D normal at the ¢ — th reference point is obtained as follows:

Ay Ar (VikFvit — virvil Ay ArN
N = | AxAr (ViRVE = VIFEVI) | = | Ax A1 No (10)
Ax Ay (VI — ViRV Ax Ay N3

The error function generated between two sets of 3D hybrid measurements can be defined then as:
en, = det(\) (VIF x VI T (M — M).

The estimation of the normal presented in (10) can be easily extended to higher dimensions.
The n-dimensional normal is estimated by performing the n-dimensional cross product between
the n — 1 vectors such as:

N; = det(A) - A7 (VEx V2 x o x Vi) e R (11)

The n-dimensional error function [16] between two sets of measurements can be defined as:
e, = detAMAL (VI x V2 x ... x V"_l)T A(M; —M;), which can be re-written as:

ey, = det(A) (V! x V2 x -+ x anl)T (M] — M;) (12)

where det(A) = M2 -+ \y.

The aforementioned normals can be computed by performing an n-dimensional cross product
but other strategies can be equally used. In the Generalized-ICP strategy, the PCA (Principal
Component Analysis) is computed. The eigenvector associated with its lowest eigenvalue is consid-
ered as the normal. Recently, an alternative solution has been provided in [3], where the normals
are efficiently and accurately computed by performing the Prewitt operator on projected spherical
coordinates onto a spherical range image. This approach, however, only applies to the 3D case. For
the 4-dimensional case presented in this article, a PCA analysis was performed to estimate the 4D
normal, which can be written as: N;k = [)\y)\z/\[Ni )\X}\Z}\]Ni )\X/\Y)\INPZ Ax)\y)\zN;fi]T
where N1, No, N3 and N, are the components of the normal. These components can be estimated by
considering the lowest eigenvalues of the nearest 4D points to a central i — th 4D point (Figure 6).
Therefore, equation (6) can be rewritten for the 4-dimensional space as follows:

)

e, = det(X) (Nx, (X7 — X{) + Ny, (Y] = Y}¥) + Nz, (Zf — Z}) + Ni,(I] — I}"))

where det()\) = Axky/\z)\[.
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4. Results

In order to evaluate the Point-to-hyperplane ICP method, some parameters considered for the
experiments are established. All the experiments were performed on both, real and synthetic RGB-
D grayscale images in MATLAB. Furthermore, visual SLAM in real-time was performed in C++.
All the experiments were validated on a PC with Ubuntu 14.04, Intel core i7-4770K and 16GB
ram.

A multi-resolution pyramid was used to improve computational efficiency (resolution: 160 x 120
at the top), where a pose is estimated at the top of the pyramid and the estimated transformation is
employed to initializate the transformation in the next level until reaching the base of the pyramid.

The minimization process can be stopped by two criteria: an established maximum number of
iterations (200 iterations for the experiments performed in this paper) or if the norm of the pose
parameter is less than 1 x 107% in rotation and 1 x 107° in translation. To reject outliers, the
Huber influence function was employed in only one M-estimator (as opossed to [11, 12] where the
M-estimation is performed separately for color and depth). The M-estimation allows the use of
different minimization functions not necessarily corresponding to normally distributed data.

The Point-to-hyperplane ICP method is compared in this paper with variants (which differ in
how the uncertainty factors A = diag(Ax, Ay, Az, A1) are estimated) of the error function proposed
in [12]. For this strategy, the classic Point-to-plane [2] approach is employed to minimize the
geometric term and a direct method for the photometric term as:

(‘RR(X)N;*)T (P;ﬂ ~I,TT (x) ?;)

i, eR* (13)
L (w(TT(x), P)) - I (b))

eHi =

where the first and second row correspond to the geometric and photometric error function, re-
spectively. P" € R3 is the closest 3D Euclidean point in the current cloud, R « RR(X) is the
incremental update of rotations, N = [N,, N,, N.,]" are the normals of the reference points and
I3 = [1,0] € R3** is the projection matrix. For the purposes of this paper, the photometric term
is minimized by using the Second Order Minimization (ESM) method [19].

A strategy to locally find the closest points is needed for computing the normals. The nearest
neighbours to a central pixel in the image are considered to find its associated 3D point. At least
three 4D points should be considered to estimate the 4D normal. A 3 x 3 window was considered
in this paper for the experiments, which estimate the resultant normal of the 8 nearest neigbours
(Figure 6). For the real-time application, however, a 2 x 2 window is employed to speed up the
performance. It should be mentioned here that the computational cost is linear to the size of this
window, but the accuracy is increased.

For the comparisons, the performance of the Point-to-hyperplane ICP method is compared with
three different strategies that compute a non-adaptive or adaptive A: 1) The intensities are nor-
malized A; = I;/255) (non adaptive), 2) an adaptive A as in [15], where the scale parameter is the
ratio between the Median Absolute Deviation (MAD) of the errors A\¢ = M AD(e;)/MAD(eq)
and 3) the covariance matrix of the metric errors as A = cov(eg, er). For this last strategy, the
T-distribution was employed to reject outliers as in [11]. The minimization of the error presented
in (13) will also be compared with a A = eye(1) (A is not estimated) in order to demonstrate
that the parameter A can improve the hybrid methods if it is well estimated. Alternatively, the
estimation of the closest points were also done by searching a kd-tree (Labeled in Figure 7(b) as
NN4D). This strategy demonstrated a better performance while aligning the frames when they are
not close enough, but increasing the computational cost.
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Figure 7. Example of the estimated trajectories between a current and a reference
frame in the transformation space. (a) The green and red dot indicates the initial and
final pose respectively. The Point-to-hyperplane method improves the other hybrid
methods by obtaining more direct trajectories and a less number of iterations (b).
A similar performance was observed in the 1000 synthetic frames that were equally
tested. The label NN4D indicates that the nearest neighbours were obtained by using
a kd-tree in the first iteration.

Table 1. Averages in time and in the number of iterations until convergence for 1000
synthesized Images at Random Poses. The legend NN4D or NN6D indicates that the clos-
est points were estimated in the first iteration only by searching the nearest neighbours
in the 4D or 6D kd-tree.

Method # Iterations Time (sec)
Hybrid (A = ones) 157.668 2.046
Hybrid + non-adaptive A\ = I;/255 124.419 1.598
Hybrid 4+ non-adaptive A\ = I;/255 (NN4D) 116.609 1.563
Hybrid + adaptive A\g = MAD(er)/MAD(eq) [15] 154.966 2.010
Hybrid + adaptive A = cov(eg, er) [11] 155.455 6.079
Point-to-hyperplane (3D points + Intensity) 48.038 0.531
Point-to-hyperplane (NN4D) 13.224 0.191
Point-to-hyperplane (3D points + RGB) 96.79 2.1572
Point-to-hyperplane (NN6D) 79.439 1.7978
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(e) frl_teddy (f) lvr_trajo (g) lvr_trajl (h) lvr_traj2

Figure 8. Examples of the Absolute Trajectory Error evaluation obtained by the
Point-to-Hyperplane method. The benchmarck datasets [20] and [21] were used.

4.1. Simulated environments

The performance of the aforementioned strategies were compared in a synthetic environment.
The motivation for using synthetic data is that the generated images provide a groundtruth for
the evaluation since the transformation between the frames is known. For the comparisons, 1000
synthesized RGB-D frames were generated with random poses and Gaussian noise was added.

Averages in time and number of iterations are shown in Table 1 2. The time shown, however,
does not consider the computation of the normals or construction of the kd-tree in the reference
image. Therefore, for the employed RGB-D image in this experiment, the normals obtained 9.33
seconds for a 3 x 3 window and the construction of the kd-tree took 0.0056 seconds in MATLAB.
For comparisons in this experiment, the matching points obtained by the kd-tree were used by
considering 4D and 6D points. It was observed that the searching of the closest points by using
this strategy reduces the number of iterations and convergence time if it is performed in the first
iteration only. The chances to find the true nearest neighbours increases when more dimensions
are considered. This is useful when the overlapping area between RGB-D frames is not large
enough. However, the searching of the closest points in the kd-tree require extra computational
time. Therefore, for purposes of this paper, only 4 dimensions were considered (This balances the
computational cost and accuracy while estimating the pose). Figure 7(a) shows an example of the
estimated trajectories in the convergence domain by different strategies.

4.2. Real environments

The well known living room ICL-NUIM RGB-D [20], freiburg? and freiburg3 TUM [21] benchmark
datasets were employed to perform visual odometry to compare different hybrid strategies. For this
experiment, a frame-to-frame alignment was employed. The estimated poses were used to evaluate
the ATE (Absolute Trajectory Error) and RPE (Relative Pose Error). Various examples of the
ATE evaluation for the Point-to-hyperplane ICP method are shown in Figure 8, where it can be
seen that the Point-to-hyperplane ICP method can obtain close solutions w.r.t. the groundtruth
without employing extra strategies for pose refinement or loop closure methods.

2In order to better present the performance of the strategies, the best obtained results are displayed in bold in all tables.
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Table 2. Averages in Time (miliseconds), number of iterations, Relative Pose Error (RPE) and Absolute Trajectory Error
(ATE) for the synthetic dataset [20]. It can be seen that the Point-to-hyperplane method [17] improves hybrid methods
that combine the direct approach and the geometric Point-to-plane approach.

Sequence  Method ATE (m) RPE translational (m) RPE rotational (deg) AVERAGE
RMSE MEAN RMSE MEAN RMSE MEAN Time(sec)  #lterations
1 0.107 0.096 0.003 0.002 0.083 0.067 0.203 15.68
2 0.107 0.096 0.003 0.002 0.083 0.067 0.230 16.51
Ivr/trajo 3 0.128 0.114 0.002 0.001 0.042 0.026 0.179 16.07
4 0.128 0.114 0.002 0.001 0.042 0.026 0.214 17.23
5 0.230 0.210 0.006 0.004 0.132 0.105 0.541 41.47
6 0.320 0.300 0.007 0.005 0.179 0.141 1.308 33.25
1 0.211 0.190 0.003 0.003 0.082 0.072 0.227 17.73
2 0.211 0.190 0.003 0.003 0.082 0.072 0.240 17.95
Ivr/trajl 3 0.041 0.032 0.001 0.001 0.021 0.017 0.148 14.87
4 0.041 0.032 0.001 0.001 0.021 0.017 0.181 15.99
5 0.397 0.330 0.006 0.005 0.128 0.112 0.451 38.89
6 0.341 0.291 0.007 0.006 0.155 0.136 1.228 34.30
1 0.152 0.146 0.003 0.003 0.085 0.074 0.189 16.13
2 0.152 0.146 0.003 0.003 0.085 0.074 0.220 16.61
Ivr/traj2 3 0.039 0.036 0.001 0.001 0.024 0.019 0.172 16.06
4 0.039 0.036 0.001 0.001 0.024 0.019 0.203 17.07
5 0.323 0.297 0.007 0.005 0.139 0.118 0.519 41.93
6 0.398 0.363 0.008 0.007 0.176 0.149 1.205 34.78
1 0.445 0.403 0.003 0.003 0.120 0.097 0.300 22.65
2 0.445 0.403 0.003 0.003 0.119 0.097 0.317 22.95
lvr /traj3 3 0.080 0.066 0.001 0.001 0.044 0.027 0.185 15.97
4 0.072 0.056 0.001 0.001 0.044 0.027 0.212 16.62
5 0.526 0.459 0.005 0.004 0.145 0.119 0.584 46.51
6 0.484 0.436 0.007 0.006 0.179 0.150 1.689 42.07

The numerical results are shown in Table 2, where the methods are listed as follows:

(1) Hybrid + non-adaptive A\; = I;/255

(2) Hybrid + non-adaptive A\; = I;/255 (NN4D*3)

(3) Point-to-hyperplane

(4) Point-to-hyperplane (NN4D)

(5) Hybrid + adaptive A\¢ = M AD(e;)/MAD(e¢q) [15]
(6) Hybrid + adaptive A = cov(eg, er) [11]

From Table 2, it can be seen that the Point-to-hyperplane methods improve other methods
while obtaining less computational cost and less number of iterations. It was observed that when
the frame-to-frame alignment is employed, the Strategies 2 and 4 obtain about the same results as
Strategies 1 and 3, respectively. Therefore, the results for these strategies are shown together in
Table 3, where it can be noted that the adaptive A methods obtained less ATE and RPE error for
the freiburg3 sequences (benchmark structure vs texture), however the computational cost is high
w.r.t. Point-to-hyperplane strategies. It can be noted that the Point-to-hyperplane ICP method
obtained more robust results in challenging 360 degree scenarios.

The results obtained by performing visual odometry in the synthetic environment demonstrated
the robustness of the Point-to-hyperplane ICP method when rich color and depth features can be
associated. During the experiments in real scenarios, the Point-to-hyperplane ICP method obtained
better estimations in challenging sequences with blurred images such as frl/room and frl/360
(closed loops), demonstrating the robustness of the method. It was observed in the experiments that
adaptive methods can improve the accuracy of the pose estimation methods when rich geometric
and photometric information is available (as the case of sequences fr/3), however they were not
robust enough for closed loop sequences.

3The legend NN4D means that the closest points were estimated by a kd-tree in the first iteration only
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Table 3. Average in Time (miliseconds), number of iterations, Relative Pose Error (RPE) and Absolute Trajectory Error
(ATE) for the dataset freiburgl and freiburg3 [21].

Sequence Method ATE (m) RPE translational (m) RPE rotational (deg) AVERAGE
RMSE MEAN RMSE MEAN RMSE MEAN Time(sec)  #lterations
1&2 0.068 0.064 0.041 0.035 2.485 2.068 0.227 18.41
frl/xyz 3&4 0.045 0.038 0.021 0.019 1.106 0.998 0.301 26.94
5 0.092 0.087 0.040 0.035 2.407 2.034 0.364 28.97
6 0.086 0.080 0.041 0.036 2.421 2.080 0.946 24.51
1&2 0.102 0.087 0.040 0.034 2.918 2.566 0.273 21.16
frl /rpy 3&4 0.035 0.032 0.038 0.032 2.820 2.652 0.445 36.79
5 0.129 0.111 0.045 0.037 3.034 2.643 0.288 23.15
6 0.131 0.114 0.046 0.038 2.947 2.594 0.997 25.09
1&2 0.353 0.332 0.111 0.090 3.917 3.550 0.295 22.95
fr1/360 3&4 0.322 0.296 0.152 0.114 3.159 2.859 0.460 38.68
5 0.190 0.179 0.094 0.085 4.113 3.583 0.285 22.18
6 0.268 0.245 0.191 0.149 5.210 4.539 0.962 24.55
1&2 0.375 0.353 0.075 0.055 3.373 2.836 0.255 19.75
fr1 /room 3&4 0.152 0.131 0.056 0.047 2.673 2.329 0.375 33.36
5 0.323 0.286 0.063 0.051 3.250 2.743 0.308 23.34
6 0.363 0.305 0.068 0.055 3.434 2.902 0.896 23.41
1&2 0.064 0.060 0.043 0.036 2.738 2.403 0.236 19.78
fr1/desk 3&4 0.071 0.067 0.044 0.036 2.310 2.028 0.408 34.98
5 0.069 0.065 0.044 0.036 2.580 2.233 0.300 23.79
6 0.065 0.062 0.045 0.037 2.667 2.285 0.877 24.19
1&2 0.083 0.079 0.058 0.049 3.816 3.133 0.243 20.00
fr1/desk2 3&4 0.133 0.116 0.060 0.051 3.026 2.641 0.496 38.33
5 0.560 0.233 0.624 0.154 24.448 7.055 0.328 25.02
6 0.409 0.188 0.463 0.129 16.883 5.887 0.940 25.20
1&2 0.124 0.105 0.035 0.023 1.946 1.364 0.198 15.61
fr1/floor 3&4 0.473 0.405 0.080 0.051 3.909 1.915 0.355 31.67
5 0.273 0.224 0.085 0.037 2.846 1.754 0.281 21.64
6 2.050 1.765 0.384 0.089 21.096 4.932 0.873 22.75
1&2 0.066 0.056 0.035 0.030 1.740 1.568 0.262 20.63
fr1/plant 3&4 0.101 0.093 0.055 0.043 2.130 1.947 0.395 34.88
5 0.067 0.055 0.031 0.027 1.608 1.405 0.329 25.48
6 0.065 0.054 0.033 0.028 1.623 1.427 0.914 23.52
1&2 0.260 0.219 0.061 0.046 1.996 1.656 0.282 20.97
fr1/teddy 3&4 0.169 0.158 0.070 0.056 2.287 1.954 0.424 36.86
5 0.303 0.267 0.086 0.049 2.432 1.734 0.322 23.74
6 0.339 0.299 0.100 0.055 2.681 1.821 0.926 24.12
1&2 0.136 0.133 0.028 0.025 0.936 0.856 0.201 16.71
£r3 /5.t far 3&4 0.401 0.361 0.067 0.061 1.561 1.428 0.172 15.52
- 5 0.044 0.040 0.024 0.021 0.707 0.639 0.274 22.32
6 0.044 0.042 0.021 0.018 0.649 0.590 0.617 16.32
1&2 0.152 0.143 0.027 0.021 1.568 1.176 0.161 13.59
f3/stnear  3&4 0185 0157 0045 0.036 1.862 1.525 0.240 21.32
5 0.056 0.052 0.018 0.016 0.965 0.848 0.345 27.43
6 0.066 0.063 0.019 0.016 0.997 0.856 0.813 21.25

On the other hand, non adaptive methods achieved faster convergence and they obtained better
estimations for sequences as frl/desk, fr1/desk2 (where the sequences contain several sweeps) and
fr1/floor, where the geometric features are not significant enough but texture. An example of
the performance of the Point-to-hyperplane method can be shown in Figure 10, where the 3D
reconstruction of loop closed sequences is obtained by transforming the cloud of points by the
estimated 6DOF pose parameter.
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(a) Top view

(b) Perspective view

(c) Side view

Figure 9. 3D reconstruction of a long corridor by the Point-to-hyperplane method

4.3. Visual SLAM

The Point-to-hyperplane ICP method has been implemented successfully for real time applications
by employing the ASUS Xtion sensor. The proposed method here has demonstrated its robustness
in a long corridor which contain similar geometric and photometric features (See Figure 9). The
depth map obtained by the sensor contain holes in the depth map which are not valid values.
This can generate a problem in the estimation of the normal for the Point-to-hyperplane ICP.
In previous works, the corresponding intensities with non-valid depth values were considered as
outliers. Another solution is to interpolate the surrounding valid depth values or assign the value of
the closest point. By doing this, the method can achieve the main advantages of the Point-to-plane
ICP or the direct method if either the color or the 3D point are not available.

The implementation of the Point-to-hyperplane ICP method in real-time can be an alternative
for performing visual navigation, 3D reconstruction and localization of robotics platforms. The
method can be also used for combining other types of measurements obtained by different sensors.

15



February 2, 2018

Advanced Robotics Advanced Robotics'Journal 2017

5. Conclusion

In this article, extended results of previous works on the Point-to-hyperplane strategy were shown.
Particularly, the method has been extended to higher dimensions (3D Euclidean points + intensity
and 3D Euclidean points + 3 channels of color) and it was mathematically demonstrated that the
joint error function projected onto the normal direction has the effect of canceling out the A tuning
parameter since it does not change the direction of the normal. The future aim is to exploit other
types of measurements for estimating the pose.

Two strategies for obtaining the closest points were compared, kd-trees and bilinear interpola-
tion. For the benchmark sequences presented, both strategies obtained about the same performance.
The bilinear interpolation was employed for the real-time application where a 2 x 2 window, which
has been used to improve the computational cost. The real-time visual SLAM is running under
CPU, obtaining a mean computational time of 1236 ms for the estimation of the normals in 4
dimensions. As a future work, the proposed method here will be implemented using GPU and a
refinement method will be employed by estimating the global pose for a keyframe-to-frame and
keyframe-to-keyframe tracking.

The reconstructions can be refined by any post-processing algorithms. The post-processing re-
finement strategies were not introduced here, but strategies that perform global convergence can be
considered [22-24]. The refinement of the Point-to-hyperplane method has been recently performed
by estimating the global pose of a RGB-D frame w.r.t. the generated 3D model in [25].
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(e) fr1/plant groundtruth (f) Point-to-hyperplane

(g) fr1/teddy groundtruth (h) Point-to-hyperplane

Figure 10. 3D reconstruction of sequences freiburgl: room, 360, plant and teddy
(shown at each row, respectively). In the first column the groundtruth obtained by
an external motion capture system is shown, the second column shown the result of
the Point-to-hyperplane method. This difficult 360 degree sequence with motion blur
shows that the proposed method can achieve more robust estimations.
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