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Identification of parametric models in the frequency-domain through
the subspace framework under LMI constraints

Pauline Kergus, Fabrice Demourant and Charles Poussot-Vassal ?

Abstract— An extension of standard subspace-based algo-
rithms to identify parametric systems from frequency response
samples is presented. This algorithm uses arbitrary frequency
spacing and allows frequency weighting. It offers the possibility
to impose the model’s poles location through LMI constraints.
This technique is applied to a numerical example and to real
industrial frequency-domain data originating from an open-
channel flow for hydroelectricity production.

I. INTRODUCTION

Within system identification, experimental data of a sys-
tem are used to characterize a model describing its dynamics,
for simulation or control purposes. Considering that many
systems can be characterized in the frequency domain, given
samples of the frequency response of the system, determining
a low order linear model is really useful for control design
and analysis steps. In particular, subspace-based algorithms
deliver estimated state-space models with no intermediate
step either for SISO and MIMO systems indistinctly. Two
frequency-domain subspace-based approaches are proposed
in [1] and [2].

The subspace-based methods are well-established for
Linear Time Invariant (LTI) systems for both time and
frequency-domain. However, the obtained models are valid
only for a single operating point. To tackle this issue,
many methods have been developed in the area of Linear
Parametrically Varying (LPV) modelling and identification,
as detailed in [3]. In time-domain, subspace-based algorithms
to identify LPV models with affine parameter dependence
have been introduced in [4], [5] and [6] for example,
relying on the reconstruction of the state sequence. As
other global approaches in the area of LPV modelling, this
method requires a unique experiment where the parameters
entering the model vary in a known sequence. In this
type of experiment, frequency-domain data are not relevant.
Nevertheless, in many applications, as explained in [7], a
parameter-dependent model is needed and must be identified
on the basis of local experiments or simulations in which the
parameter is frozen. This case, different from the traditional
LPV framework, can be designated as parametric-LTI (p-
LTI), it allows to use frequency responses to characterize the
system since the operating point remains unchanged during
a local experiment.

The main contribution of this paper is to propose a
subspace-based algorithm to identify a parametric LTI model
from frequency-domain data. This stands as an extension
of the original frequency-domain subspace-based method
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presented in [1]. It preserves its two important features that
are the frequency weighting capability, allowing to avoid
sparse data in some regions of interests, and the ability
to treat non uniformly spaced data, enabling to emphasize
certain frequency ranges (see [1]). The formulation is close
to the LTI identification scheme proposed in the two methods
mentioned above. In this paper, we consider models with an
affine parameter dependency, but the proposed method can
be easily extended to polynomial dependency. Moreover, one
of the main strength of our method is that it is possible
to impose the poles location through LMI constraints for
every considered operating point. This is also proposed in
this article as an extension of what have been done in [8]
and [9] in the LTI case only.

The outline of this paper is as follows. We start in Section
II with the problem formulation and preliminary results on
the identification of a LTI model through the frequency-
domain subspace-based algorithm of [1]. In Section III, the
extension of the classical frequency-domain subspace-based
algorithm to identify p-LTI models is introduced and the
possibility to use LMI constraints to impose poles location
is detailed, both aspects constituting the core contribution. In
Section IV, two numerical examples are presented. The first
is purely academical while the second one is an industrial
application representing an open-channel flow which behav-
ior is described by partial differential equations. We end this
paper with conclusions and discussion in Section V.

The following notations are used throughout the paper: the
complex variable is denoted ı =

√
−1, R and C designate

respectively real and complex numbers. <(.) and =(.) are
respectively the real and imaginary parts of a complex
number. G designates the considered system and H the
identified model. (.)T is the matrix transposition and ? is
defined as follows:(

A B
? C

)
=

(
A B
B C

)
.

II. PRELIMINARY RESULTS

A. Problem formulation

As mentioned in the introduction, subspace-based methods
to identify a parametrized model of a system were developed
in time-domain [7] [10] but not in the frequency one. Let
us consider a parametric system G(p) with nu inputs and
ny outputs where p ∈ Rnp is a vector of parameters that
characterizes the operating point or the configuration1.

1Here, parameters can be the geometrical coefficients of a system,
damping or mass values of a system for example.



Given a set {ω(j)
i ,Φ

(j)
i } (i = 1 . . . N, j = 1 . . . Np),

where Φ
(j)
i ∈ Cny×nu represents the frequency response of

G(p) obtained at pulsation ω(j)
i ∈ R+ and at the operating

point p(j) ∈ Rnp and Np is the number of local samplings
in the parameter; one can write:

Φ
(j)
i = G(p(j), ıω

(j)
i ). (1)

The problem is to identify a linear model H(p) equipped
with a nth order state-space realization as follows:

H(p) :

{
x(t+ 1) = A(p)x(t) +B(p)u(t)

y(t) = C(p)x(t) +D(p)u(t)
, (2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rnu the
input vector of the system, y(t) ∈ Rny the output vector,
A(p) ∈ Rn×n, B(p) ∈ Rn×nu , C(p) ∈ Rny×n and
D(p) ∈ Rny×nu and where all A(p), B(p), C(p) and D(p)
matrices have an affine2 form as follows:

M(p) = M0 +

np∑
k=1

pkMk, (3)

where pk is the kth element of the vector p. In this article,
the proposed method is an extension of what have been
proposed in [1], [8] and [9]. Since our procedure relies on the
concatenation of all the LTI problems obtained at each op-
erating point p(j), the McKelvey algorithm (see [1]), which
applies for LTI systems, is recalled in the next paragraph
before detailing the proposed contribution in Section III.

B. Preliminary results: the LTI case

The algorithm presented in [1] is based on the extraction
of a low-dimensional subspace by the use of a truncated
singular value decomposition of a data matrix. The matrices
of the state-space representation (4) are computed thanks to
an estimation of the extended observability matrix (5). This
method is recalled hereafter.

Let us consider a single operating point p(j), the McK-
elvey algorithm allows finding a nth order model Hj of
system G(p(j)) defined as:

Hj :

{
x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
, (4)

with A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu .
To obtain this state-space representation, the extended

observability matrix is defined as follows, where q ≥ n:

Oq =


C
CA

...
CAq−1

 . (5)

Such a matrix is identified from samples of the frequency
response {ω(j)

i ,Φ
(j)
i } (i = 1 . . . N) obtained at the consid-

ered operating point p(j). The following data matrices G =
1
N [G1 . . . GN ] ∈ Cqny×nuN and W = 1

N [W1 . . .WN ] ∈

2Affine forms are considered for simplicity, but polynomial extensions
are straightforwardly derived.

Cqnu×nuN are computed according to (6). For all i =
1 . . . N , we have:WT

i = [Φ
(j)
i eıω

(j)
i Φ

(j)
i eı2ω

(j)
i Φ

(j)
i . . . eı(q−1)ω

(j)
i Φ

(j)
i ]

GTi = [Inu eıω
(j)
i Inu eı2ω

(j)
i Inu . . . eı(q−1)ω

(j)
i Inu ]

(6)
Then, a QR decomposition is applied in the first place:[

<(W ) =(W )
<(G) =(G)

]
=

[
R11 0
R21 R22

] [
QT1
QT2

]
, (7)

and the following rank revealing factorization (8) is per-
formed on the matrix M = R−1R22:

M =
[
Ûs Ûo

] [Σ̂s 0

0 Σ̂o

] [
V̂ Ts
V̂ To

]
, (8)

where R is a weighting matrix defined according to the
assumptions on the noise (see [1] for details on how to
build the weighting matrix). In the rest of the article, R
will be set to the identity matrix (no weighting is used). Σ̂s
contains the n largest singular values. Then n is the order of
the estimated model and is fixed by the user. An extended
observability matrix for a realization of Hj is then given by
Ôq = Ûs ∈ Rqny×n.

Granded on these definitions, the A and C matrices
are estimated from this extended observability matrix Ôq ,
through relation (9):

(J1RÛs)A = J2RÛs, C = J3RÛs, (9)

with:
J1 =

[
I(q−1)ny 0(q−1)ny×ny

]
, J2 =

[
0(q−1)ny×ny I(q−1)ny

]
,

J3 =
[
Iny 0ny×(q−1)ny

]
.

(10)
The remaining B and D matrices are the solutions of the
following least square problem:

{B,D} = arg min
B̃,D̃

N∑
i=1

∣∣∣∣∣∣Φ(j)
i − D̃ − C(eıω

(j)
i I −A)−1B̃

∣∣∣∣∣∣2
F

(11)
where ||.||F denotes the Frobenius norm. Problem (11) can
be solved in an efficient way using a linear solver.

III. FREQUENCY-DOMAIN SUBSPACE-BASED
ALGORITHM FOR THE IDENTIFICATION OF

PARAMETRIC MODELS

The subspace-based algorithm proposed in [1] allows
to identify a model valid at one single operating point.
Considering the structure of the matrices of the desired state-
space representation (see equations (2) and (3)), we propose
a way to concatenate all the LTI problems to solve the
parametric problem directly.

A. Proposed methodology

Now that the LTI case has been recalled, we propose to
consider all the local observability matrices Ô(j)

q computed
as explained above for every operating point p(j) where the
data are available. Those are used to identify a parametric
model H(p) as in equation (2).



For the resolution of the parametric problem, the following
notations are introduced:

Ωj = J1RÔ(j)
q , ∆j = J2RÔ(j)

q , Λj = J3RÔ(j)
q ,

(12)
where J1, J2 and J3 are the same matrices as in the LTI
case (see equation (10)). The matrix R is still an eventual
weighting function.

To be concatenated, these equations must be expressed
in a unique basis, which is not guaranteed by the classi-
cal subspace-based algorithm of [1]. Since the McKelvey
algorithm gives an extended observability matrix O(j)

q for
a representation of G(p(j)), it is possible to compute a
transformation matrix Tj for each available operating point
p(j) so that every LTI problem is expressed in the same
basis corresponding to an observability canonical form. This
form, which is unique, will be considered in this paper.
As explained in [3], the computation of the transformation
matrix Tj consists in choosing n independent rows of the
full column rank observability matrix Ô(j)

n ∈ Rnyn×n. The
selection of these n independent rows is detailed in [3].

B. Extension to the parametric case

Finally, the A(p) and C(p) matrices of the parametric
model satisfy:

A(p(j)) = TjA
(j)T−1

j , C(p(j)) = C(j)T−1
j , (13)

where A(j) and C(j) are the solution of Equation (9) of the
LTI identification problem at the operating point p(j).

Considering Equations (2) and (9), and the transformation
into the observable canonical form (13), finding the A(p) and
C(p) matrices of the parametric model consists in solving
the following sets of equations ∀j = 1 . . . Np:

ΩjTjA(p(j))T−1
j = ∆j , C(p(j))T−1

j = Λj , (14)

where the matrices Ωj ,∆j ,Λj are obtained as in (12). Then,
following equations (3) and (14), the matrices Ak, k =
0 . . . np and Ck, k = 0 . . . np forming A(p) and C(p)
respectively are computed as follows:

ΨAaug = ∆aug, ΓCaug = Λaug (15)

with Ψ ∈ RNp(q−1)ny×npn, Aaug ∈ Rnpn×n and ∆aug ∈
RNp(q−1)ny×n defined by:

Ψ =


Ω1T1 p

(1)
1 Ω1T1 . . . p

(1)
np Ω1T1

...
...

...
ΩNpTNp p

(Np)
1 ΩNpTNp . . . p

(Np)
np ΩNpTNp

 ,
ATaug =

[
A0 A1 . . . Anp

]
, ∆T

aug =
[
∆1T1 . . . ∆NpTNp

]
.

and with Γ ∈ RNpny×npny , Caug ∈ Rnpny×n and Λaug ∈
RNpny×n:

Γ =


Iny p

(1)
1 Iny . . . p

(1)
np Iny

...
...

...
Iny p

(Np)
1 Iny . . . p

(Np)
np Iny

 ,

CTaug =
[
C0 C1 . . . Cnp

]
, ΛTaug =

[
Λ1T1 . . . ΛNpTNp

]
.

Finally, the Bk, Dk matrices, for k = 1 . . . np, forming
B(p) and D(p) are the solutions of the following least
square problem:

min
∑Np
j=1

∑N
i=1 ||Φ(j)

i −D(p(j))− C(p(j))

(ejω
(j)
i I −A(p(j)))−1B(p(j))||2F .

(16)
The whole procedure to identify a parametric model as

formulated in (2) is summed up in Algorithm 1.

Algorithm 1: Parametric subspace identification
Data:

• Samples of the frequency response of the plant
{ω(j)

i ,Φ
(j)
i }, i = 1 . . . N, j = 1 . . . Np obtained at

different known operating points p(j)

• Desired order n for the model
• Considered size q for the observability matrix
1) For j = 1 . . . Np

a) Build the data matrices W and G as in (6)
b) Compute O(j)

q following (7) and (8)
c) Compute the matrices Ωj ,∆j ,Λj as in (12)
d) Compute the transformation matrix Tj

according to [3]
2) Build the matrices Ψ, ∆aug , Γ and Λaug according

to (15) and get the matrices A(p) and C(p) of the
parametric model given in (2)

3) Solve the least square problem given in (16) to get
the matrices B(p) and D(p)

Remark 1: In practice, if one does not want the matrices
B and D to be parameter-dependant, the key is to adapt the
least square problem given in Equation (16), in this case,
B(p) = B0 and/or D(p) = D0.

Remark 2: The extension of Algorithm 1 to have the
parameters enter the model in a polynomial way is straight-
forward, the matrices Ψ and Γ from Equation (15) have to
be adapted. More specifically, a column should be added
for each polynomial term appearing in the structure of
the state-space representation matrices. However, the affine
form offers interesting properties in terms of convexity that
allows to impose poles location through LMI constraints as
explained in the next paragraph. Last but not least, it should
be noted that the parameter dependency needs to be a priori
determined so that the matrices Ψ and Γ can be computed
according to the corresponding structure. If one needs a
hint on the parameter dependence, it is possible to use the
Loewner interpolation technique for p-LTI systems proposed
in [11] as a complement.

Remark 3: Note that the frequency weighting proposed
in [1] that appears during the computation of the matrices
Ωj ,∆j ,Λj (see Equation (12)) through the matrix R can be
different according to the considered operating point.



C. LMI regions constraints

As a second contribution, the above parametric model
computation can be performed under LMI constraints to
impose the poles location, as explained in this paragraph.

In [8] and [9], a modified frequency-domain subspace
method allowing to introduce constraints on the identified
model poles location is presented. This formulation is based
on an LMI description of regions in continuous/discrete map
(where the stability domain is a particular case). Here, we
propose to adapt this LMI approach to impose the poles
location of the identified parametric model of Equation (2).

First, let us recall some preliminary results on LMI regions
which were presented in [12] and [13]. A LMI region D is
defined through two matrices P = PT ∈ Rr×r and Q ∈
Rr×r:

D = {z ∈ C | P +Qz +QT z̄ < 0}. (17)

By extension of what has been done in [8] and [9] in the
LTI case, the eigenvalues of the matrix A(p) lie in D if and
only if X = XT > 0 ∈ Rn×n exists such that the following
LMI is verified:

∀p ∈ ∆, P ⊗X + Q⊗ (A(p)X) + QT ⊗ (A(p)X)T < 0, (18)

where ∆ = {p | ∀k = 1 . . . np,p(k) ∈ [0, 1]} is a convex set
(we assume that the parameters are normalized). Its convex
hull is defined by ∆0 = {p | ∀k = 1 . . . np,p(k) ∈ {0, 1}}
For a fixed x ∈ Rrn, we define the function fx : ∆ → R
by:

fx(p) = xT
(
P ⊗X + Q⊗ (A(p)X) + QT ⊗ (A(p)X)T

)
x. (19)

Since A(p) is an affine function of p, the function fx(p) is
a convex function of p. We then have the following property
(see [14] for details):

fx(p) < 0 ∀p ∈ ∆ ⇐⇒ fx(p) < 0 ∀p ∈ ∆0. (20)

Obviously this means that, to ensure that the eigenvalues of
A(p) lies in D, one just needs to check the LMI given in
Equation (18) for p ∈ ∆0, which contains a finite number
of elements.

By denoting Ã(p) = A(p)X = Ã0 +
∑np
k=1 p(k)Ãk with

Ãk = AkX, k = 1 . . . np, finding the matrices Ak forming
A(p) ensuring that the poles of the system lie in D is done
by solving the following problem, β > 0:

min
Ãk,X,β>0

β (21)

subject to:

P ⊗X +Q⊗ Ã(p) +QT ⊗ Ã(p)T < 0,∀p ∈ ∆0 (22)(
I (ΩjTjÃ(p(j))−∆jTjX)

(?)T β

)
> 0, (23)

X = XT > 0. (24)

According to the definition of the convex hull ∆0, Equation
(22) gives a set of 2np LMIs to be verified. Equation
(23) comes from the fact that one wants to minimize
||ΩjTjA(p(j))−∆jTj ||2,∀j = 1 . . . Np (see Equation (14))
to fit the data.

The procedure to identify a parametric model with con-
straints on the poles location is summed up in the following
Algorithm 2.

Algorithm 2: Parametric subspace identification under
LMI constraints

Data:
• Input data as for Algorithm 1
• Matrices P and Q defining the LMI region of

interest
1) Follow Step 1 of Algorithm 1 to get Ωj ,∆j ,Λj

and Tj for j = 1 . . . Np
2) Solve the problem (21) subject to (22), (23) and

(24). Then, compute Ak = ÃkX
−1,∀k = 1 . . . np

to obtain A(p).
3) Build the matrices Λ and Λaug according to (15)

and get the matrix C(p)
4) Solve the least square problem given in (16) to get

the matrices B(p) and D(p)

Remark 4: It should be noted that the consistency of the
problem is not affected by the use of LMIs if the constraints
are relevant with the system to identify (see [1], [9]).

Remark 5: In most cases, one wants the dynamical pro-
cess to be stable, so the poles of A(p) must lie in the unit
circle corresponding to the LMI region D defined by:

P =

(
−1 0
0 −1

)
, Q =

(
0 0
1 0

)
.

Additional LMI regions examples can be found in [9].
Remark 6: Note that Equation (20) is valid only if the

function fx(p) defined in (19) is convex, which is the case
when the desired model has an affine parameter dependency.
If it is not the case, it is still possible to impose the location
of the poles for the different considered operating points p(j)

by using the classical LMIs defined in [8] and [9]. This is
frequently done in local LPV approaches even if there is
no guarantee on the poles location between the considered
operating points p(j).

IV. NUMERICAL APPLICATIONS

In order to illustrate the main features of the algorithm
presented above, simulation examples are presented. The first
one is a simple academical one while the second one is
obtained from an industrial simulation of an open channel
flow described by partial differential equations.

A. Academical example

Here, we consider a second order SISO system with vary-
ing damping factor and static gain according to a scheduling
parameter p ∈ [0, 1]. The objective is to identify a parametric
model on the basis of two frequency responses obtained at
two different operating point, p(1) = 0.2 and p(2) = 0.8
(np = 1 and Np = 2). The system is the following one:

G(p, z) = 1+p
z2+0.01pz+0.99 , (25)



and the sampling period is Ts = 1ms. According to (2)
and (25), one wants to identify a second order LPV model
(n = 2) of the following form:

H(p) :

{
x(t+ 1) = (A0 + pA1)x(t) + (B0 + pB1)u(t)

y(t) = (C0 + pC1)x(t) + (D0 + pD1)u(t)
(26)

We used N = 400 logspaced samples of the two frequency
responses of G(p(1)) and G(p(2)) between 0.1rad.s−1 and
the Nyquist pulsation π

Ts
rad.s−1. No frequency weighting

is used in this example. The results of the identification are
given in Figure 1 for the noise-free case.
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Fig. 1. Identification of the parametric model H(s, p) on the basis of
noise-free data: the blue solid lines correspond to frequency responses of
the obtained p-LTI model for p = 0.1k, k = 1 . . . 9, the red points to the
frequency responses of the local systems G(p(1)) and G(p(2)) from which
the data for the identification come from, and the dashed green lines are the
frequency responses of the real transfers G(p(k)), p(k) = 0.1k, k = 1 . . . 9

Figure 1 shows that our algorithm successfully identified
a parametric model that shows a coherent behavior between
the different values of the operating point. Obviously, in this
example, we knew that the system has an affine dependence
in p, so the proposed model is consistent with the problem
considered here. The matrices of the discrete state-space
representation are given in Equation (27), note that the
expected observable canonical form is recovered.

A(p) =

[
0 1

−0.99 0.01p

]
, B(p) =

[
0

1 + p

]
,

C(p) =
[
1 0

]
, D(p) = 0,

(27)

Since G(p, z) is stable, using Algorithm 1 or 2 gives the
same result in the noise-free case. However, when consid-
ering noisy data, the identified model is unstable for some
values of the parameter p. Noise is added as follows, with a
signal to noise ratio SNR = 5:

∀i, j, Φ
(j)
i = G(p(j)ıωi)(1 +Ni), (28)

where Ni = 10−
SNR
10 (randn(1) + ı randn(1)). Using

Algorithm 1 with this noisy dataset leads to an unstable
system for some values of p, see Figure 2. It is then
interesting to use Algorithm 2 with a stability constraint since
the system is known to be stable. This is a common problem
when identifying a parametric model on the basis of noisy
experimental data (see [15]).
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Fig. 2. Poles of the parametric model identified using Algorithm 1
(blue points) or Algorithm 2 with a stability constraint (red points) for
p = 0.1k, k = 1 . . . 9. The unit circle (limit of stability) is indicated in
black, the poles of the original system are in green. There are two complex
conjugate poles, only the evolution of one pole is represented here.

Figure 2 illustrates the fact that Algorithm 2 allows to
constraint the poles location for all p ∈ [0 1] for an affine
parameter dependence, which is particularly useful when
working with noisy data.

B. Application to an open channel flow for hydroelectricty

Now let us move to an industrial problem provided by
the French power producer EDF (Electricité de France).
EDF uses water resources to generate green energy with
run-of-the-river power plants. The behavior relies on open-
channel hydraulic systems that are non-linear and which
dynamic depends on the operating point. Their physical
model requires partial differential equations (namely Saint-
Venant equations). In [16], a new irrational transfer function
is proposed for open channels to represent the level-to-flow
variations for any operating point. It is the solution of Saint-
Venant equations under many assumptions. The system has
two inputs, the entering and the outgoing flows qe and qs,
and one output, the water depth h. The transfer is given by:

G(x, s,Q0) = Ge(x, s,Q0)qe(s) +Gs(x, s,Q0)qs(s) ,

where

Ge(x, s,Q0)=λ1(s)e
λ2(s)L+λ1(s)x−λ2(s)e

λ1(s)L+λ2(s)x

B0s(eλ1(s)L−eλ2(s)L)

Gs(x, s,Q0)=λ1(s)e
λ1(s)x−λ2(s)e

λ2(s)x

B0s(eλ1(s)L−eλ2(s)L)

where x is the position of the measurement point on the chan-
nel, Q0 the nominal flow, L the length of the open channel.
B0, λ1(s) and λ2(s) depend on the canal configuration and
the nominal flow (see [16] for details). The system, which
dynamic is visible on Figure 3, is extremely slow, has a
delay behavior and a pole in limit of stability. Moreover, it
has an infinite number of poles since the transfer function is
irrational. Due to this complexity, a low-order and parameter
dependent model well tailored is needed to quickly simulate
the behaviour of a channel and to design a controller. In this
paper, we propose to identify such a parametric model for a
varying measurement point x (allowing them to simulate the



process at varying measurement points). Note that a model
has been identified in [16] through the Loewner framework
but for a varying discharge Q0.

In this application, the delays (τe and τs for the entering
and outgoing flows qe and qs respectively) are known,
they depend on the measurement point x and the canal
configuration:

τe =
x

c0 + V0
, τs =

L− x
c0 − V0

.

As it has been done in [16], we will identify a model Ĥ of
the ”delay-free” system H defined by the following equation
(Q0 = 1400m3.s−1 is fixed):

H(x, s) = [Ge(x, s,Q0)e+τes Gs(x, s,Q0)e+τss]

Ĥ(x, s) = [Re(x, s) Rs(x, s)]

Ĝ(x, s) = [Re(x, s)e
−τes Rs(x, s)e

−τss]
(29)

The model Ĝ of the actual system is then obtained by
adding the delays to the previously identified ”delay-free”
model Ĥ . The samples of the frequency response of the
system without considering the delays {ω(j)

i ,Φ
(j)
i }, i =

1 . . . N, j = 1 . . . Np are estimated directly through its ir-
rational transfer for five different measurement points x(j) ∈
{100, 3925, 7750, 11575, 15400}m (Np = 5):

∀j = 1 . . . Np,∀i = 1 . . . N,Φ
(j)
i = H(xj , ıω

(j)
i ) (30)

The same frequencies are used for every operating point:
250 pulsations uniformly spaced between 10−4rad.s−1 and
5.10−2rad.s−1. The results of the identification of the delay-
free system are given on Figure 3. It shows that our method
successfully identified a model of order n = 10 of the
delay-free system with an affine dependence of x. This
application is really interesting: from a partial differential
equation of great complexity, our method allows to obtain a
parametric model which is simple to evaluate and to simulate
for different measurement points.

In this case, the assumption of affine parameter depen-
dence is probably limitating but still shows good results.

V. CONCLUSIONS

In this paper, an algorithm to identify parametric systems
with an affine (or polynomial) parameter dependence through
the subspace framework has been proposed. The formulation
is close to the LTI identification scheme proposed in [1] and
[2], it uses frequency-domain data obtained at different oper-
ating points. For an affine parameter dependence, the set of
parameters is convex and our algorithm offers the possibility
to impose the poles location through LMI constraints as it
has been done in [8] and [9] for the LTI case. The method
was illustrated on a numerical example and has shown good
results on an industrial application consisting in an open-
channel for hydroelectricty. So far, we consider parametric
models where the parameter is frozen. An interesting outlook
for this work would be to take into account the variation
dynamics of the parameters, for example by by including
their dynamics into the state-space representation.
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Fig. 3. Identification of the delay free system G̃: the 10th order
model Ĥ(x) is in solid green for the 5 measurement points x(j) ∈
{100, 3925, 7750, 11575, 15400}m and in solid red for other values x ∈
{2013, 5837, 9663, 13487}m. The dashed blue lines are the transfers of
the delay free system G̃ estimated from the irrational transfer function for
the different points x used above.

REFERENCES
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