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cpetridi@math.uoa.gr

Abstract
In [1] Enrico Bombieri, asked the question “For example, is it always true that
c < H p2 27
p/abc

in present paper we prove that the answer is: Yes.

1 The series S  £0

nS

We introduce the series

=, R(n)
s

where
R(n) := the multiplicative radical of n,
:= a real positive variable,
S := a real variable, such that s > ¢ + 1.

S B(n)! converges because it is majorized by >°°° , —L; since R(n)! < n® and the
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latter series converges since s > t + 1. We denote the set

{t>0,s>t+1},

oo R(n)t

the convergence region of )~ =5,

and ¢.

by C'R(s, t), indicating its dependance on s



2 The Euler product of } %n)t

Since R(n)" is also multiplicative if R(n) is, we have
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The product converges since it is majorized by

S
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taking logarithm of (2), we have
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3 The functions T'(s, t) and S(s, t)

Differentiating (3), firstly, with respect to ¢, legitimate because the n—th prime is
smaller than n [2], we have
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which we denote by T'(s, t), and for short by 7.

Secondly, differentiating (3) with respect to s, legitimate because of [2], we have
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which we denote by S(s, t) and, for short, by S.
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4 Inequalities for T'(s, t) and S(s, t)
Comparing the series for T'(s, t) and S(s, t) we have on the one hand

T(s,t) <2 S(s,t)

since psp_ T < 2, and, on the other hand,

T(s,t) < S(s,t)

S

since 1 < Sp )
p°—1

Combining, we get
T(s,t) < S(s,t) <2T(s,t),

or

5 The identity Y °° 20 fo _ g

By multiplying (4) by S > 7, B0 and (5) by T' >~ ==, we have, respectively,
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From these we get
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so that ;
= R(n)!, R(n)
l =0 7
Z lg— 7 (7)



6 Splitting > | Ribn)tlg%ﬂf)s in summands

Taking as point of reference of the split the ratio

S S(s, 1)
T T(s, t)
(7) becomes
= R(n)", R(n)° R(n)t R(n)° R(n)t R(n)°
$= RO R()* (), B0 (), A0S
— n n<R(n)S/T " " n>R(n)S/T " "

After evaluation of the first two terms, the left side of this is actually equal to

S—-T L R(n)', R(n)S
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Hence (7) becomes

S—-T = R(n)", R(n)°
lg2 !
9 +Z ns g TLT
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n<R(n)S/T n>R(n)S/T

Since, however, the sets {n < R(n)%/T} and {n > R(n)*/T} are disjoint, it results
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that the sum zn<R(n)S/T lg%f})s contains all numbers n > 3, i.e. we have

n < R(n)T. 9)

7 Bombieri’s “abc-question”

Because of (6) and (9), we deduce that for all ¢ > 3, we have

and therefore, a fortiori



or

c < Hp2. (10)

That

results from the fundamental theorem of arithmetic [2], page 2.

Summarizing, we have shown that the answer to Bombieri’s “abc-question” is “Yes”.
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