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ABSTRACT

Most giant exoplanets discovered by radial velocity surveys have much higher eccentricities than those in the solar system. The
planet—planet scattering mechanism has been shown to match the broad eccentricity distribution, but the highest-eccentricity planets
are often attributed to Kozai-Lidov oscillations induced by a stellar companion. Here we investigate whether the highly eccentric
exoplanet population can be produced entirely by scattering. We ran 500 N-body simulations of closely packed giant-planet systems
that became unstable under their own mutual perturbations. We find that the surviving bound planets can have eccentricities up to
e > 0.99, with a maximum of 0.999017 in our simulations. This suggests that there is no maximum eccentricity that can be produced
by planet—planet scattering. Importantly, we find that extreme eccentricities are not extremely rare; the eccentricity distribution for
all giant exoplanets with e > 0.3 is consistent with all planets concerned being generated by scattering. Our results show that the
discovery of planets with extremely high eccentricities does not necessarily signal the action of the Kozai-Lidov mechanism.
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1. Introduction

One of the most interesting discoveries over the short history of
exoplanet science is that although planetary systems are common
in the Galaxy, most of them are in many ways quite different from
the solar system (see, e.g. Raymond et al. 2018). One of those dif-
ferences is that many planets have amuch more eccentric orbit than
that of any planet in the solar system (e.g. Udry & Santos 2007),
with the most massive exoplanets having the most eccentric orbits
(Jones et al. 2006; Ribas & Miralda-Escudé 2007; Ford & Rasio
2008; Raymond et al. 2010).

Gravitational interactions between planets in a system lead
to a chaotic evolution of orbital elements that can cause planet
orbits to cross. When that happens, giant planets rarely col-
lide, but instead gravitationally scatter (Rasio & Ford 1996;
Weidenschilling & Marzari 1996; Lin & Ida 1997); for a review,
see Davies et al. (2014). Planet—planet scatterings can reproduce
much of the observed distribution of exoplanet eccentricities
for a wide range of initial conditions (Adams & Laughlin 2003;
Moorhead & Adams 2005; Chatterjee et al. 2008; Ford & Rasio
2008; Juri¢ & Tremaine 2008; Raymond et al. 2010, 2011). See
also Davies et al. (2014) for a review of planet—planet scatter-
ing. A planetary system is said to be Hill stable if the orbits
of the planets therein will never cross. For a two-planet sys-
tem it is possible to derive, to first order, a criterion that guaran-
tees that the system is Hill stable (Zare 1977; Marchal & Bozis
1982; Gladman 1993). For systems with three or more plan-
ets, our understanding of the stability limits comes largely from
numerical experiments. For example, Chambers et al. (1996)
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showed that systems with three equal-mass planets (m,/M, €
{107,1077,107%}) are probably always unstable if A < 10,
where A is the planet separation in terms of their mutual Hill
radii,
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where mj, mp, a;, and a, are the masses and semimajor
axes of the two planets, and M, is the stellar mass. Similar
experiments have been conducted by several authors (e.g.
Marzari & Weidenschilling 2002; Chatterjee et al. 2008; Marzari
2014). Broadly speaking, the evolution of the planetary system is
highly chaotic and there are various islands of stability (Marzari
2014), but in general, the time to close encounters increases
rapidly with A and decreases with the number of planets in the
system (Chambers et al. 1996). Close encounters then lead to
strong dynamical scatterings and sudden changes in the orbital
parameters. To avoid most of the dependence on the number of
planets, Faber & Quillen (2007) ran simulations for ten-planet
systems and estimated that
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where 7. is the time to the first close encounter and y is the planet—
star mass ratio. More recently, Marzari (2014) showed that the
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stability structure of a three-planet system is a two-dimensional
space. Rather than “stability islands”, the stable region forms a
grid structure caused by the mean-motion resonances between
adjacent planet pairs. It is important to keep this structure in mind
when studying the stability of three-planet systems.

The orbit-crossing phase lasts until at least one planet is
removed from the system, either by a collision with another
body, or by being ejected from the system. The planets that sur-
vive are left with higher eccentricities. Planetary systems with
equal-mass giant planets tend to produce the highest eccen-
tricities (Ford & Rasio 2008; Carrera et al. 2016). To reproduce
the overall eccentricity distribution of giant exoplanets prob-
ably requires a mix of equal-mass and unequal-mass systems
(Carrera et al. 2016, Fig. 13) with the most massive planets typ-
ically forming equal-mass systems (Raymond et al. 2010, 2012;
Idaetal. 2013). In this investigation we are interested in the
highest eccentricities, so we focus on equal-mass systems.

Ford & Rasio (2008) suggested that the maximum eccentric-
ity that can be attained from planet—planet scatterings, regard-
less of the planet mass ratio, is around e ~ 0.8. Importantly,
that conclusion is conditioned on the two-planet scenario con-
sidered by the authors. Other simulations involving three or
more giant planets have been seen to produce eccentricities
above 0.9 (e.g. Veras & Armitage 2006; Chatterjee et al. 2008;
Nagasawa et al. 2008; Veras et al. 2009; Zanardi et al. 2017), but
a targeted investigation of the limits of planet—planet scattering
has so far been absent in the literature. The significance of this is
that if there is indeed an “ey,,” from scattering, that would mean
that any planet with e > ep,x must have acquired its eccentric-
ity through some other process, such as the Kozai-Lidov effect
(Kozai 1962; Lidov 1962). In other words, if past experiments
have lead us to an “en,y” that does not exist, we may be mis-
interpreting the evidence from exoplanet surveys, and drawing
incorrect conclusions about which mechanisms have shaped the
exoplanet population.

In this work we probe the limits of planet—planet scattering,
both in terms of the maximum eccentricity that can be achieved,
and how often e ~ 1 could be plausibly produced. It is no use
to say that planet—planet scattering can produce an eccentricity
of ~1 if those events are so rare that they cannot be part of the
observed exoplanet population.

This Letter is organised as follows. In Sect. 2 we describe
our simulations and initial conditions. In Sect. 3 we present our
results. We discuss our results in Sect. 4 and draw conclusions
in Sect. 5.

2. Methods

We ran 500 N-body simulations using the MERCURY code with
the hybrid integrator (Chambers 1999). All simulations had a
single star with a mass of 1 Mg, and three Jupiter-like planets,
each with a mass of 1073 Mg and p = 1.4gcm™ (about the
same density as Jupiter). We choose equal-mass planets in order
to maximise the final eccentricities after the dynamical instabil-
ity (Carrera et al. 2016). In addition, Raymond et al. (2010) pro-
posed that giant planets are more likely to be born in equal-mass
systems.

Table 1 shows the initial orbital parameters of all the plan-
ets. The innermost planet was placed at 3 AU, and the other
planets were arranged so that the planets were all separated
by five mutual Hill radii, meaning that the simulated systems
become unstable quickly. While most giant planets from RV
surveys have semimajor axes less than 3 AU, placing the plan-
ets farther from the star allows them to be more eccentric
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Table 1. Initial conditions.

Planet a (AU) e I (deg) w, Q, A (deg)
J1 3.0000 0.05 1° Random ~ U[0-360°)
J2 4.6765 0.05 1° Random ~ U[0-360°)

]3 7.2899  0.05 1° Random ~ U[0-360°)

Notes. We ran 500 N-body simulations. Each simulation had three
Jupiter-like planets separated by five mutual Hill radii. The eccen-
tricity and inclination were fixed, and the other orbital angles (longi-
tude of periastron, longitude of ascending node, mean longitude) were
randomised.

without colliding with the star or becoming tidally circularised.
We inflated the stellar radius to 0.03 AU (roughly 6 Ry) because
g = 0.03 AU seems to be the empirical limit for tidal circulari-
sation (e.g. Beaugé & Nesvorny 2012, Fig. 4). In other words,
planets that would normally have their orbits circularised by
stellar tides will instead collide with our simulated star. For
our numerical experiment to produce believable results, it is
essential to accurately resolve close passages with the central
star, which can be a source of energy error if the time-step
is too large (Rauch & Holman 1999; Levison & Duncan 2000;
Raymond et al. 2011). In order to minimise numerical errors,
we used an integration time-step of 0.1 days, and an accuracy
parameter of 1071, We set the ejection radius to 10° AU, so as
to not preemptively remove planets.

All planets started out in near circular (e = 0.05), near copla-
nar orbits (/ = 1° in the lab frame), and all other orbital angles
were randomised. Therefore, mutual inclinations range from 0°
to 2°, with a median of 1.4°. We ran the simulations for 10 Myr.
At the end of the simulations, we determined the final eccentric-
ities and semimajor axes of the surviving planets. We removed
any planets that were in hyperbolic orbits, as they are in the pro-
cess of escaping the system.

Finally, in order to compare our simulations against
observations, we downloaded the exoplanet catalogue from
exoplanets.org'. We selected all the planets discovered by
radial velocity with a measured mass of m sin(f) > 1 Myy,.

3. Results

Figure 1 shows the evolution of one of our simulations. A typ-
ical instability begins with a period where the orbital param-
eters evolve chaotically, but orbits remain separated. There is
then a sudden instability that leads to a period of orbit crossing
and associated close encounters between the planets. This period
ends with the removal of one of the planets from the system. In
our simulations, 311 of 500 runs had a planet ejected, 113 had a
collision with the host star, and 109 had a planet—planet collision
(some systems had more than one of these events). In the end, 82
runs ended with one giant planet, 392 had two giant planets, and
26 runs still had three giant planets. The run with the largest
error had |[AE/E| = 2.967 x 1073, The median energy error was
|AE/E| = 2.858 x 1077 and 95% of the runs had |AE/E| < 1073,
The errors in angular momentum were smaller, with a maximum
|AL/L| of 1.503 x 107, See Appendix A for an in-depth look at
the integration errors.

Most of our systems have their first close encounter very
quickly. The median time to the first close encounter was only
t.e = 1885 yr, and 95% of the systems had #.. < 40000 yr. There

! Downloaded on February 5, 2019.
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Fig. 1. Sample simulation. The solid lines mark the semimajor axis of
each planet, and the shaded region goes from periastron to apastron.
The three Jupiter-like planets start in near coplanar, near circular orbits.
After a period of chaotic evolution but mostly stable orbits, there is a
sudden instability. This leads to a period of orbit crossing and strong
interactions that only ends when one of the planets is ejected from the
system at ¢+ = 0.8 Myr. The remaining planets have final eccentricities
of e = 0.754 (outer planet) and e = 0.938 (inner planet) at 10 Myr.

was a wide spread in time between the first close encounter
and the first ejection or collision, with a central 90% interval
of 35000 yr—4.6 Myr.

Figure 2 shows the final eccentricities and semimajor axes of
all the giant planets that survived to the end of the simulation.
There were 26 systems that still had all three giant planets at the
end of the 10 Myr integration. Three of those had a planet on a
hyperbolic orbit, and were therefore treated as an ejection. We
consider the other systems “unresolved”, since it is likely that
some of those systems will have collisions or ejections at some
point in the future. Resolved systems almost always end up with
two giant planets, and nearly all planets with e > 0.9 belong to
a two-planet system. Among the systems that are resolved, the
most eccentric planet had a final eccentricity of e = 0.999017. In
other words, our study suggests that there is no maximum eccen-
tricity that can be produced by planet—planet scattering events.
To illustrate why our result was not discovered earlier, out of
the 33 resolved planets with e > 0.95, 24 have semimajor axis
beyond 300 AU and 29 had an apastron above 100 AU, which
would have been considered an ejection by many previous sets
of simulations (e.g. Raymond et al. 2010, 2011). The other four
planets all had periastrons that at some point were beyond the
numerical resolution of Raymond et al. (2010, 2011).

The dynamical pathway that produces these extremely
eccentric planets is characterised by a large number of close
encounters. Figure 3 shows planet eccentricities against the num-
ber of close encounters (i.e. encounters within 3 Ryj;) that the
planet experienced. Figure 4 shows examples of the two types of
dynamical histories that can lead a planet to an extreme eccen-
tricity. For a planet to reach e > 0.95, it needs to either gain
a great deal of energy (orange path; near total loss of binding
energy), or it needs to lose most of its angular momentum (green
path). A sequence of close encounters causes the orbit of the
planet to follow a random walk across the energy-momentum
phase space. The more encounters, the greater the chance that
the planet will reach the high-eccentricity region of the phase
space.
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Fig. 2. Final semimajor axes and eccentricities of all the simulated giant
planets that survived to the end of the 10 Myr simulation. We say that
a simulation is resolved if there was at least one ejection or collision.
Most runs result in two surviving planets (blue) and nearly all planets
with e > 0.9 appear in two-planet systems. For unresolved systems,
some of the planets may be ejected in the future. Unresolved systems
are excluded from our analysis to avoid this potential source of bias.

The most eccentric planets (e >0.99) inevitably have large
semimajor axes (i.e. their dynamical histories resemble the
orange trajectory in Fig. 4). For example, the one planet with
e = 0.999017 also had a = 43656 AU. This is inevitable if
the planet is to avoid stellar collisions or tidal circularisation.
A planet with e = 0.995 at 3 AU would have its periastron at
g = 0.03 AU and would be at risk of being tidally circularised.
In order to make a more direct comparison with observations we
select the simulated planets with semimajor axes less than 5 AU.
The most eccentric planet with @ < 5 AU in a “resolved” sys-
tem has e = 0.98. This value is just above the highest measured
eccentricity for an exoplanet, which is e = 0.97 (HD 20782 b,
O’Toole et al. 2009).

Figure 5 shows the cumulative distribution of eccentricities
for simulated and observed giant planets with e > 0.3. The figure
shows no evidence of an excess of highly eccentric planets in the
RV sample. Quite the contrary, the simulated planets are slightly
more eccentric. This would be expected if e > 0.3 eccentricities
come from scattering, because giant exoplanets probably do not
always form in systems with exactly equal masses. While this
result does not imply that the Kozai-Lidov effect never occurs,
it clearly suggests that Kozai-Lidov is not a major force in shap-
ing the eccentricity distribution of giant exoplanets (or it might
imply that the Kozai-Lidov mechanism coincidentally produces
an eccentricity distribution similar to that from planet scatter-
ings; but we believe that option to be unlikely).

Finally, it is worth commenting on the fact that Fig. 5 com-
pares present-day observed systems which are typically a few
gigayears old with simulations that only lasted 10 Myr. The rea-
son why sub-gigayear simulations are valid and commonly used
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Fig. 3. Final eccentricities of all “resolved” planets vs. the number of
close encounters that each planet experienced. A close encounter is
defined as two planets having a closest approach inside 3 Hill radii.
The greater the number of close encounters, the greater the probability
that the giant planet will reach an extremely high eccentricity.

is that once planets have a dynamical instability, the survivors
cluster just past the edge of the formal instability limit (e.g.
Raymond et al. 2009). Furthermore, Fig. 3 shows that any addi-
tional evolution in these systems is only likely to further increase
the orbital eccentricities.

4. Discussion
4.1. Difficulty of the Kozai-Lidov interpretation

An unfortunate implication of our results is that inferring the
presence of the Kozai-Lidov effect is very difficult. The fact
that several highly eccentric exoplanets have known wide stel-
lar companions is suggestive (e.g. HD 20782 b, HD 4113 b,
HD 80606 b; Desidera & Barbieri 2007; Frith et al. 2013), but
this is merely circumstantial evidence and does not imply
causation.

If a much larger sample of highly eccentric exoplanets
became available, it might be possible to test correlations
between extreme eccentricities and the presence of stellar com-
panions. But that leads into another complication: the Kozai-
Lidov mechanism and dynamical instabilities are not mutually
exclusive. It is possible for Kozai-Lidov oscillations to trigger
an instability in a system that would otherwise be stable (e.g.
Malmberg et al. 2007), and it is possible for Kozai-Lidov oscil-
lations to increase the eccentricity of a planet after an instability.

Kaib et al. (2013) showed that the eccentricities of giant exo-
planets are statistically higher in systems with wide (>1000 AU)
binary companions than in systems with closer binary compan-
ions or single stars. This may be explained by variations in wide
binary orbits that are driven by Galactic perturbations and which
disrupt their planetary systems (Kaib et al. 2013). This seems to
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Fig. 4. Evolution of the binding energy and angular momentum of two
planets that reached e > 0.95. Values are normalised to the initial orbit
of the planet (black dot). We also show constant-eccentricity curves
spaced in intervals of Ae = 0.05, except we show e = 0.99 instead
of e = 1. The orange trajectory follows a planet whose semimajor axis
increased from 7.3 to 395 AU, while its angular momentum dropped by
only 30%. The green trajectory is for a planet that in fact gained bind-
ing energy, but lost 84% of its angular momentum. For clarity, only the
first 1 Myr is shown. The final eccentricities shown are 0.996 and 0.959,
respectively.

[ Simulated 1
[ Observed

o o o
IN ) o

Cumulative distribution

e
o
A

0.0 T - .
0.3 0.6 0.7 0.8
Planet eccentricity

04 05 0.9 1.0
Fig. 5. Cumulative distribution of eccentricities for observed and sim-
ulated giant planets with e > 0.3. The simulated sample is restricted
to planets in “resolved” systems (see main text) with semimajor axis
below 5 AU. The observed sample is restricted to planets with m sin(/) >

1 My,

indicate that the Kozai-Lidov effect is probably not central to the
high-eccentricity exoplanet population but is instead just a late-
stage side effect of other processes.

4.2. Statistical biases

Zakamska et al. (2011) investigated potential biases in the mea-
surements of orbital eccentricities from radial velocity data.
Unsurprisingly, low signal-to-noise ratio leads to larger uncer-
tainties. In addition, the fact that eccentricities cannot be nega-
tive causes a subtle bias toward larger eccentricities for nearly
circular orbits. For example, a planet on a perfectly circular
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orbit may have its eccentricity measured as e =0.05 but it can-
not be measured as e = — 0.05. Both of these biases affect low-
eccentricity orbits the most. Since our investigation is focused
on the highest eccentricities, we are effectively taking the radial
velocity sample with the most reliable eccentricity estimates.

4.3. Implications for habitability

Previous works have shown that strong dynamical instabili-
ties that produce very eccentric giant planets will typically
destroy, by ejection or collision with the central star, any ter-
restrial planets present in the system (Veras & Armitage 2006;
Raymond et al. 2010, 2011; Carrera et al. 2016). Giant plan-
ets as eccentric as those considered here would certainly wipe
out the terrestrial zone. However, previous authors have shown
that moons of giant planets can often survive close encoun-
ters, with survival rates of tens of percent for close-in moons
(Gong et al. 2013; Hong et al. 2018). Future work should inves-
tigate whether giant planet moons can survive the large number
of close encounters needed to produce a giant-planet eccentricity
of e > 0.95. While those systems will certainly be quite rare, they
would be some of the most dynamically interesting. In addition,
an exomoon of an extremely eccentric giant planet is possibly the
most extreme environment that may still permit liquid water on
the surface, and thus, habitability. Any such moon would very
likely experience a prolonged deep-freeze winter with only a
brief summer, but previous works suggest that even that type of
environment may still be habitable (Williams & Pollard 2002;
Dressing et al. 2010). For a planet orbiting a Sun-like star, liquid
water on the surface can be maintained up to an eccentricity of
around e ~ 0.6 (Bolmont et al. 2016).

5. Conclusions

We have modelled the dynamical evolution of unstable plan-
etary systems containing three Jupiter-mass planets. Planet—
planet scattering leads to the ejection and collision of some
planets leaving others on eccentric orbits. The eccentricity dis-
tribution of observed giant (msin(/) > 1 My,,) exoplanets with
eccentricities above 0.3 is consistent with all of them being
the result of planet—planet scattering. Significantly, we find that
some planets are left on extremely eccentric orbits (e > 0.95).
These systems have been missed in earlier work for two reasons:
many are on very wide orbits (wider than the semi-major axis
cutoff used in many studies); and those closer in have very close
periastrons which were beyond the numerical resolution of sim-
ulations. Thus planet—planet scattering could be the mechanism
responsible for all observed eccentric orbits. The discovery of
planets with extremely eccentric orbits does not necessarily sig-
nal the action of the Kozai-Lidov mechanism.
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Appendix A: Numerical errors
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Fig. A.1. Final eccentricities of all the simulated giant planets against
the total accumulated error in energy at the end of the simulation. The
lack of correlation between eccentricity and simulation error shows that
extreme eccentricities are not a numerical artefact.

Here we take an in-depth look at the numerical integration errors
and their implications.

Figure A.1 shows the final eccentricities against the total
accumulated energy error |AE/E| at the end of the simulation.
Clearly there is no broad correlation between final eccentricities
and correlation errors. The cluster with |AE/E| > 1075 has a
somewhat higher rate of planets with e > 0.9 (9.6% vs. 5.3%),
but because those runs are fewer in number, most planets with
e > 0.9 come from the cluster with |AE/E| < 107 (36 vs. 16).
More importantly, Fig. A.2 shows what Fig. 5 would look like
if all runs with |AE/E| > 107 were removed. It is clear that
none of the scientific conclusions would change between the two
figures.
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Fig. A.2. Similar to Fig. 5, but excluding all runs with |AE/E| > 107,
The plot shows the cumulative eccentricity distribution for observed and
simulated giant planets (msin(/) > 1Mjy,,) with eccentricity e > 0.3.
The simulated sample contains only the planets that are resolved, have
a < 5AU, and have integration errors [AE/E| < 107, Compared with
Fig. 5, none of the scientific conclusions change.

Having said all this, Fig. A.1 shows a strong bimodality in
|AE/E| that demands an explanation. We determined that the clus-
ter of runs with |AE/E| > 107> corresponds exactly to the runs
where at least one planet collided with the central star. When a
planet is removed from a simulation, the energy of that planet is
removed as well. The MERCURY code tries to account for this, but
we suspect that it does so imperfectly. In the MERCURY code, col-
lisions with the central star involve a two-body approximation of
the orbit of the planet (i.e. it ignores the other planets). Therefore,
it is not surprising that they would incur an error in the order of
mpl /My ~ 1073, In fact, since the colliding planet is closer to the
star than to the other planets, it is reasonable that the error would
typically be slightly lower than my, /M, ~ 1073.
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