

The benefits of Raman spectroscopy to monitor water quality near transportation infrastructures. From qualitative appreciation to the identification of organic pollutants traces

> Marchetti M., Kauffmann T. H., Fontana M. D., Saidi S., Bourson P., Jobard C., Branchu P., Casteran G., Saintot B.

Cerema Est

ICORS 2018, Jeju (Korea) 26-31 August 2018

Summary

Anthropogenic transportation activities and water quality

Specific case of airports

Ions related to urban configurations

Down to water courses

Anthropogenic transportation activities and water quality

degradation of vegetation along pavemens + impacts on soils, rivers and ponds

spreading of NaCl roads \Rightarrow amounts 20-40 g/m²

pollution of rivers during and after winter maintenance season

aircraft de-icing >50t (A319, A320, A330) \Rightarrow aspersion 160-650 L

ICORS 2018, Jeju (Korea)

Context and objectives

Increasing amounts of chemical products used on ruways, taxyways and aircrafts

Absence of knowledge of residual amounts on treated surfaces Economical and envronmental concerns

Objectives

- to detect these chemicals (formates, acetates, glycols, fluorinated ethers ...),
- to discriminate the chemicals between each others,
- to quantify their amounts into water, included for large dilutions

\Rightarrow investigations on Raman spectroscopy

anti-icing fluids

Raman data and analysis on airports fluids

Raman acquisition with aqueous solutions at different concentrations (from pure to 0.0004% v/v) in either de-icing fluids and fluorinated ethers Measurements with Kaiser RXN-2, 785 nm, 150-3425 cm⁻¹ spectral range Integration time of a few seconds, with laser ouput of 100 mW maximum

-anti-icing_type I __anti-icing_type II __anti-icing_type IV __anti-icing_runway

-tridiol_SB3 -biofilm_6S -Uniseral_AF12_S6

XXVI

ICORS KOREA

5

ICORS 2018, Jeju (Korea)

Raman data and analysis on airports fluids

Principal Components Analysis (PCA) on Raman data of tested fluids (type I, II and IV and Cryotech BX36) at different dilutions

coordinates 1st principal component

6

XXVI 2018

ICORS KOREA

ICORS 2018, Jeju (Korea)

Raman data and analysis on airports fluids

PLS forecast the amount of fluorinated ether into water

XXVI 2018

ICORS KOREA

7

ICORS 2018, Jeju (Korea)

Context and objective

Ecological water balance compromised par presence of anthropogenic species (potability thresholds (mg/L), European directive 98/83/CE)

Objective: to test a method based on spectroscopy (stand Raman alone, chemometrics-coupled) to obtain qualitative and quantitative information on chemical species present into water

250

1,5

50 250

0.1

150

12 50

0,5

Both use of direct and indirect information from Raman spectra

ICORS 2018, Jeju (Korea) The benefits of Raman spectroscopy to monitor water quality near transportation infrastructures

8

Raman data and chemometrics

Raman acquisition with Kaiser RXN-1, laser at 532 nm (300 mW), 100–4350 cm⁻¹ (spectral resolution $\sim 2 \text{ cm}^{-1}$), CCD 1024 x 256 cooled at -40°C, integration time 3x5 s)

ICORS 2018, Jeju (Korea)

Raman data and chemometrics Case of mixtures

Solutions	$[NO_3^-]$	$[SO_4^{2-}]$	[CI]	[Br]	[I ⁻]	$[NH_4^+]$
Nitrate à 90 mM	91	0	0	0	0	0
Nitrate à 50 mM	49	0	0	0	0	0
Sulfate à 30 mM	0	32	10	0	15	0
Sulfate à 70 mM	0	72	0	0	0	0
Chlorures à 50 mM	0	0	49	0	0	0
Chlorures à 90 mM	0	25	112	0	0	0
Bromure à 30 mM	0	0	38	0	18	0
Bromure à 90 mM	0	0	0	82	0	55
lodure à 30 mM	0	0	0	0	28	18
lodure à 60 mM	0	0	0	77	0	26
Ammonium à 500 mM	0	0	453	0	0	501
Ammonium à 1000 mM	992	0	0	0	0	1011

$\sqrt{\text{good results for simple}}$ solutions

predicted concentrations

	Solutions	$[NO_3^-]$	$[SO_4^{2-}]$	[CI-]	[Br [_]]	[[-]]	$[NH_4^+]$
	N80/S20	95	20	Х	212	Х	42
	N50/S50	63	60	Х	199	Х	44
	N20/CI80	32	Х	Х	232	Х	48
~ improvements needed	N50/CI50	63	Х	Х	210	Х	54
with mixtura	CI70/Br50/I30	9	Х	Х	359	6	113
with mixtures	CI50/Br50/I50	8	Х	Х	430	8	128
	N82/S16/Cl33/Br33/l33/NH ₄ 66	97	17	Х	335	1	165
	N66/S33/CI33/Br33/I33/NH ₄ 33	78	38	Х	314	Х	153

ICORS 2018, Jeju (Korea)

Objective: test on a full scale a Raman-based alternative method to obtain qualitative and quantitative information on water quality variations

Monitoring of a river from the spring to the confluence with another river Sampling on 7 spots, every month, over two years

Measurements with an i-Raman (BWTek) 532 nm, integration time of a few seconds

PCA applied to Raman spectra

 \Rightarrow reach a cost effective water quality sensor

Evolution with time of water quality

Evolution with time of water quality

Evolution along the water course

- the farther from the spring, the greater the fluorescence,

- changes in the 800-1700 cm⁻¹, and 2800-3600 cm⁻¹ spectral ranges

Evolution along the water course

Comparison between the spring and the confluence

 \Rightarrow specificity in a loading in 2013

Where is water quality started to change ?

ICORS 2018, Jeju (Korea)

Cerema

UNIVERSITÉ DE LORRAINE

Evolution along the water course-challenges

- Identification of the chemical species

- Relationship with anthropogenic activities

- Relationship with watersheds

Conclusion

Application of Raman spectroscopy in different applied contexts and in field configurations

Possible detection and quantification into water of some chemicals related to transportation infrastructures (roads, airports, ...)

Extended possibilities, from elaborated Raman spectrometer up to field designed instruments

Thanks for your attention

mario.marchetti@cerema.fr

www.cerema.fr

http://lmops.univ-lorraine.fr/

Cerema Est

ICORS 2018, Jeju (Korea) 26-31 August 2018

Raman data and analysis on anti-icing fluids

PLS forecast the amount of fluorinated ether into water

X = matrix of Raman spectra of solutions with decreasing concentration in fluorinated ether (no significant difference on normalized spectra)

XXVI

ICORS KOREA

20

Y = matrix of concentration

Context and objective

Ecological water balance compromised par presence of anthropic species

Products and chemicals ending up into the environment, with mobilisation of other pollutants

Water quality appreciation based on field conventional measurements (pH, conductivity, suspended matter, NO_3 -...) and collected samples for further laboratory analysis (dosing, chromatography, ...)

Main drawbacks and limits: analysis on a given spot, delay between sample collection and information

Raman data and analysis of specific peaks

Raman acquisition with Kaiser RXN-1, laser at 532 nm (300 mW), 100 - 4350 cm-1 (spectral resolution ~2 cm-1), CCD 1024 x 256 cooled at -40°C, integration time 3x5 s)

ICORS 2018, Jeju (Korea)

Raman data and analysis of specific peaks

Quantification through indicators (data processing and sensitivity)

ICORS 2018, Jeju (Korea)

Raman data and analysis of specific peaks

Quantification through indicators (data processing and sensitivity)

normalization methods	R ²	sensitivity S
Spectra	0,9571	$1,6{ imes}10^3$ u.a./mM
OH stretching J_p^{OH-SB}	0,9926	1,8 $ imes$ 10 $^{-5}$ mM $^{-1}$
OH bending J_p^{OH-BB}	0,9980	3,8 $ imes$ 10 $^{-3}$ mM $^{-1}$
SNV J_p^{SNV}	0,9924	3,1 $ imes$ 10 $^{-2}$ mM $^{-1}$

sensitivity	S	3,11x10 ⁻² mM ⁻¹
average error	3	4,2 mM
average quadratic error	RMSE	5,2 mM
repetability (n=30)	CV	3,9 %
limit of détection (k=3)	LD	1,8 mM (112 mg/L)
Limit of quantification	LQ	5,9 mM (366 mg/L)

Raman data and chemometrics

$$\label{eq:csep} \begin{split} C_{sep} &< 0 \text{ ou } C_{uni} < 0 \Rightarrow C_{pred} = 0 \\ 0,5 < R < 2 \Rightarrow C_{pred} = C_{sep} \text{ (accuracy gain)} \end{split}$$

Cerema UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ De benefits of Raman spectroscopy to monitor water quality near transportation infrastructures 25

Water quality analysis based on conventional techniques (pH, suspended matter, $NO_3^{-}...$) and sampling with later lab tests (dosing, chromatography, ...)

Main drawbacks: analysis in specific spots, results obtained afterwards

Objective: test on a full scale a Ramanbased alternative method to obtain qualitative and quantitative information on water quality variations between different spots and in time

Moselle river (north east of France)

