
HAL Id: hal-02061419
https://hal.science/hal-02061419

Submitted on 8 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal sparse apertures for phased-array imaging
Frederic Cassaing, Laurent Mugnier

To cite this version:
Frederic Cassaing, Laurent Mugnier. Optimal sparse apertures for phased-array imaging. Optics
Letters, 2018, 43 (19), pp.4655-4658. �10.1364/OL.43.004655�. �hal-02061419�

https://hal.science/hal-02061419
https://hal.archives-ouvertes.fr


Optimal sparse apertures for phased-array imaging
F. CASSAING1,* AND L. M. MUGNIER1

1ONERA / DOTA, Université Paris Saclay, F-92322 Châtillon - France
*Corresponding author: Frederic.Cassaing@onera.fr

Compiled March 1, 2019

A key issue in a sparse-aperture imaging system is the
relative arrangement of apertures, or aperture config-
uration. Transposing previous works into a discrete
setting, we perform a systematic search for maximal-
resolution configurations with 9 to 21 apertures. From
the catalog of found solutions, we derive a procedure to
simply optimize the main free parameters of the aper-
ture from high-level constraints, such as the sought res-
olution and the minimum MTF level or the fill-factor.
© 2019 Optical Society of America

OCIS codes: (110.1220) Apertures; (110.5100) Phased-array imaging
systems; (110.3175) Interferometric imaging; (110.4100) Modulation transfer
function.

Pioneered by Fizeau [1], sparse-aperture imaging systems
(SAISs) are now used for astronomy [2, 3] and considered for
spaceborne imaging [4, 5] or ground-based satellite imaging
[6, 7]. Based on pupil masks [2], segmented primary [4], tele-
scope arrays [5–9], photonics chips [10] or laser illumination [11],
SAISs can access very high resolution, reject atmospheric tur-
bulence, or reduce the system size, weight and power (SWAP).
But unlike for single-aperture telescopes, the array performance
strongly depends on many free parameters to be optimized
during the design: the number, position, and diameter of the
sub-apertures, known as aperture configuration.

This Letter proposes a methodology to quickly but optimally
define a SAIS from a small set of high-level requirements. Main
parameters and properties of the SAIS are first recalled, per-
formance criteria are then discussed, and a catalog of optimal
aperture configurations found by an exhaustive search is pre-
sented and its use through simple formulas illustrated.

Three main types of arrays can be distinguished, in relation
to the shape of their modulation transfer function (MTF) given
by the aperture autocorrelation (⊗), up to a wavelength scaling
factor omitted in the following. The first type is the segmented
telescope, with nearly contiguous sub-apertures to maximize the
collecting area for a given resolution [12]. The global aperture is
then hardly distinguishable from a connex, nearly filled, aper-
ture and the MTF very close to that of a classical telescope. A sec-
ond type is the stellar interferometer, with metric sub-apertures
spanning hectometers for very high resolution [13]. This results
in a diluted pupil, in the sense that the instantaneous frequency
coverage is partial, even if complemented by Earth rotation. The
small number of observables has, until the last decade, often

limited its use to the estimation by model fitting of a few stellar
parameters [14]. Additionally, the discrete frequency sampling
by the MTF leads to field aliasing, restricting the interest of this
observation mode to objects with small support. We will focus
here on the intermediate third type of array (Fig. 1), where the
aperture is made sparse to enable both complex images and maxi-
mal resolution with minimum SWAP, at the expense of exposure
time [15]. Such SAISs include focal-plane imagers [4, 5, 7–9],
where the pupil is necessarily compact, i.e., the MTF is non-null
up to a cutoff frequency defined as the practical resolution limit
(PRL) [16].

The design of a SAIS aperture configuration has been widely
addressed in the radio and optical domains [16–19]. A first cat-
alog is due to Golay [17], who identified a dozen widely used
configurations discussed hereafter. Another catalog has been es-
tablished with a priori configurations [20]. Some works perform
a metric-based aperture configuration optimization, but the met-
ric definition is often based on somewhat ad hoc criteria [21], and
even if the chosen metric uses the MTF shape or support it does
not consider explicitly the noise propagation occurring during
the necessary image restoration [22]. For wide-field imaging, a
rigorous approach is to consider that the optimal aperture mini-
mizes the Euclidian distance ε between the observed object and
the object restored from its image, cf. Eq. (4) of [18]. Simplifying
assumptions leads to the main result that ε is proportional to
the inverse of MTFmin, the MTF minimum over the frequency
domain of interest (FDI), cf. Eq. (16) of [18]. This precisely de-
fines the commonly acknowledged MTF uniformity requirement
and demonstrates the compactness requirement, but does not
give an explicit solution for the best aperture. Unfortunately,
the large number of continuous free parameters makes an ex-
haustive search difficult for a large number of sub-apertures,
and many suboptimal configurations exist since the criterion

a)

M

D+

P

B
⊗

=⇒

b)

D

BM

PRL

MTFmin
(exaggerated)

Fig. 1. Example of sparse aperture (a) and MTF (b, logarithmic
scale) for a Golay-6 array of dilution 1.4; P: grid pitch; D: sub-
aperture diameter; BM: maximum baseline; +: PA center.



defined by [18] is not convex. When using the tool developed
in [18] with continuous positions, the optimum sub-aperture
positions were found to be close to triangular lattices [23]. The
core of this Letter is to transpose [18] to a lattice and to perform
a systematic search, since quantifying sub-aperture positions on
a lattice considerably reduces the number of degrees of freedom.

We will consider here arrays of N identical sub-apertures of
diameter D, and call point-array (PA) the set of their centers.
We will restrict ourselves to PAs with integer coordinates on a
regular lattice of pitch P [Fig. 1(a)]. Such lattices can be made
only of squares, regular hexagons or triangles. Since hexagonal
lattices are a sub-set of triangular lattices, and square lattices lead
to poor paving, we focus (as Golay did) on triangular lattices.
Then, the free aperture parameters boil down to the normalized
(unitary pitch) PA, the actual pitch P, the dilution ratio dL =
P/D [16] and marginally the sub-aperture shape (disk/hexagon,
central obscuration, etc.). Assuming that there are no aberrations,
or that they are later accounted for as a MTF reduction, the
total aperture transmittance is the convolution of a single sub-
aperture transmittance by the PA.

The resulting MTF is the convolution of the PA autocorrela-
tion (PAA), by the inter-correlation between two sub-apertures,
which is also the single-aperture MTF. It is made of a central peak
(sum of the N sub-aperture autocorrelations) whose height is
normalized to 1, surrounded by (N − 1)N fringe peaks of height
1/N associated to each baseline formed by a sub-aperture pair
[Fig. 1(b)]. The PAA is on the same lattice as the PA, but each
fringe peak has a support of diameter 2D. Thus fringe peaks are
disjoint when dL ≥ 2 and their overlapping can be continuous
if dL ≤

√
3 [as in Fig. 1(b)]. The PAA can be characterized by

the distance DPRL from its center to the first zero, which we will
approximate for simplicity by the distance from the origin to the
closest lattice point outside the PAA [16].

A MTF like the one in Fig. 1(b) has strong system impacts.
First, an image processing step must be included in the system
to equalize the oscillating plateau and local peaks with respect
to the central peak. Second, unlike full-aperture systems with a
monotonically decreasing MTF, the Nyquist frequency is ideally
placed near the PRL where the MTF has a steep cutting slope:
a smaller value would introduce aliasing and wastage (base-
lines longer than required are built), and a larger value would
require more pixels than useful, thus more noise and a smaller
field. Third, for wide-field imaging, a continuous frequency
coverage—thus, a sufficiently small dilution—is required. Inci-
dentally, since adjacent MTF peaks must constructively superim-
pose for continuous frequency coverage, a co-phasing subsystem
is required to phase the array apertures.

An equivalent dual approach to the maximization of the MTF
over a given FDI in a continuous setting, as in [18] but in a
discrete setting, is to maximize the PRL of a unit-pitch lattice-
based PA. Indeed, scaling the PA to the actual radius of the FDI,
after this maximization, will yield a minimal pitch and thus a
maximal value for MTFmin.

An important result is that PAs that are both non-redundant,
i.e., where all fringe peaks are formed at different frequencies,
and compact, such as Golay-6 in Fig. 1, unfortunately no longer
exist as soon as N > 6. In his search for non-redundant PAs
(Fig. 2), Golay identified the a series where all peaks are inside
a central core but with holes inside this core and the b series
with the largest full core but with peaks outside this core [17].
The non-redundancy constraint of Golay’s search is not only no
longer required as soon as sub-apertures are phased, but is even
a detrimental constraint: although the Golay PAs have maxi-

Fig. 2. Some Golay PAs (top) and PAAs (bottom). Text annota-
tions are detailed after ‡ in the caption of Fig. 3.

mum compactness, they are not strictly compact in the sense
of the frequency coverage previously discussed. Indeed, the a
series has a reduced PRL because of the frequency holes, and
the b series suffers from aliasing noise introduced by baselines
significantly longer than required.

This motivated the exhaustive search we performed on a tri-
angular lattice, similarly to Golay, but with a different metric
as the quality criterion. The selected approach is, for a given
number N of sub-apertures, to compute the PRL for each of the
subapertures’ positions, and then to identify the configurations
with the largest PRL, even if these configurations include some
unavoidable redundancy. PAs with 120° invariance are selected,
leading to highly symmetric PAAs with 60° invariance. PAs with
a central point (such as G7a,b [17]) are not considered, to leave
room for some combining optics in the aperture center. The first
of these maximum compactness PAs (C-PAs) are shown in Fig. 3
for N ≤ 21, grouped by number of apertures N, and ordered by
decreasing DPRL (MTF performance), then by increasing maxi-
mum baseline BM (structure cost), then by increasing moment
of inertia I (pointing cost).

Figure 3 shows that compact PAs with a small redundancy
exist. For N=9, C9a is the only PA with the largest core, a 5-sided
hexagon with DPRL=4.36. C9a has the same PAA core support as
G9b (Fig. 2) but BM is 33% smaller. Other PAs have DPRL ≤3.61,
except C9b with DPRL=4. For N=12, four PAs have a 6-sided
hexagonal PAA, but some PAAs even have points on the next
ring, which give them the highest DPRL=5.29. With N=15, eight
PAAs are larger than the 7-sided hexagon. For N=18, the largest
PAA is the 9-sided hexagon. It can be noted that best PAs shapes
are often elbows (C12b, C15b, C18b), or trapezes (C12a, C15a,
C18a) with a slightly smaller moment of inertia. For N=21, best
PAs are clustered along a ring. For best C arrays, in Fig. 3:

DPRL ' 0.43 N P. (at least for N ∈ {9, 12, 15, 18, 21}). (1)

This empirical scaling law shows that C-PAs are 33% better
than regular polygon PAs, for which DPRL ' N P/π.

The value of MTFmin can be approximated as a function of
N and the dilution ratio dL only. For a C-PA, from the MTF
value at the center of any triangle formed by the surrounding
non-redundant maxima [white spot in Fig. 1(b)] and the MTF f0
of a unit-diameter sub-aperture ( f0(0) = 1), we obtain:

MTFmin '
1
N

f (dL), with f (dL) = 3 f0(dL/
√

3). (2)

Inversion of Eq. (2) is simple: for circular sub-apertures, the
f function [18] can be well approximated by a linear fit versus
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Fig. 3. First maximum compactness PAs with 9, 12, 15, 18 and 21 sub-apertures in successive cells. The redundancy amount is given
by the color: 1, 2, 3, 4, 5, 6. ‡ PAs (top, with PRL circle), drawn with dL=2.2 to separate fringe peaks in the PAA support (bottom,
half-scale, central peak excluded), are characterized by their name [moment of inertia], PRL value DPRL (maximum baseline BM),
with P = 1. The few PAs whose center is on the lattice (unlike in Fig. 1) have a dot after their names.



Fig. 4. Evolution of MTFmin through the f function in Eq. (2)
versus the dilution ratio dL and the linear central obscura-
tion ε.

d−1
L (Fig. 4); d−1

L directly derives through Eq. (1) from another
high-level parameter, and the fill-factor dS = ND2/D2

PRL:

0.588 + 0.431 N MTFmin ' d−1
L ' 0.43

√
N dS. (3)

Equations. (1) and (3) allow one to quickly configure an opti-
mal aperture from high-level constraints such as N and MTFmin
or dS. For example, a DPRL=10 m telescope with MTF≥ 5% can
be based on C9a, with P ' 2.6 m [Eq. (1)] and dL ' 1.3 [Eq. (3)],
thus D ' 2 m sub-apertures; with C18a, P ' 1.3 m, dL ' 1.03
and D ' 1.25 m (Fig. 5). The fill-factor dS is slightly less than 30%
in both cases, but C18a has very close sub-apertures and a lower
MTF average. The C15b array gives slighty larger apertures than
C18a (D ' 1.4 m), but a larger spacing (dL=1.1), nearly linear
arms, and a higher MTF average.

In conclusion, we have proposed a simple methodology to
define the aperture configuration of a SAIS: system requirements
impose the Frequency Domain of Interest over which MTFmin
is to be maximized, imaging requires minimum wavefront er-
rors, and manufacturing pleads for identical sub-apertures. A
systematic search for configurations with 120° invariance on a
triangular lattice with maximum PRL led to the ones shown in
Fig. 3 for N=9 to 21 sub-apertures. From this catalog and other
constraints (location along a beam or near a ring), an aperture
configuration can be selected, possibly by iterating on N. The
two free parameters, the grid pitch, and the sub-aperture diame-
ter, then directly derive from two high-level specifications, the
sought resolution (PRL) and the MTF level or the fill-factor dS,
through Eqs. (1) and (3), respectively, which are typically set
from the photometric budget. Because compactness is required

P'2.6 m, D'2 m P'1.55 m, D'1.4 m P'1.3 m, D'1.25 m

Fig. 5. Apertures C9a, C15b, C18a (top) and associated MTFs
(bottom, logarithmic scale) with DPRL=10 m and MTF > 5%.

for a wide-field imager and non-redundancy cannot be simul-
taneously met, these configurations are slightly redundant, but
more efficient for phased arrays than other ones since they pro-
vide the smallest baselines, thus less or no aliasing, and nearly-
niform MTFs. Eq. (3) shows that the change in MTF level with
the fillfactor is more complex than linear, which should slightly
modify some quantitative conclusions of [15]. The arrays in
Fig. 3 can be used as given or as starting points for a refined
optimization based on continuous positions, taking into account
the weighting by the observed object spectrum and the exact
deconvolution algorithm [18, 24]. They can also be used with
larger dilutions to image compact objects with hypertelescopes
[25].
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