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In this study we elaborate on the recent concept of metagratings proposed in Ra’di et al. [Phys.
Rev. Lett. 119, 067404 (2017)] for efficient manipulation of reflected waves. Basically, a metagrat-
ing is a set of 1D arrays of polarization line currents which are engineered to cancel scattering in
undesirable diffraction orders. We consider a general case of metagratings composed of N polar-
ization electric line currents per supercell. This generalization is a necessary step to totally control
diffraction patterns. We show that a metagrating having N equal to the number of plane waves scat-
tered in the far-field can be used for controlling the diffraction pattern. To validate the developed
theoretical approach, anomalous and multichannel reflections are demonstrated with 3D full-wave
simulations in the microwave regime at 10 GHz. The results can be interesting for the metamaterials
community as allow one to significantly decrease the number of used elements and simplify the de-
sign of wavefront manipulation devices, what is very convenient for optical and infra-red frequency
ranges. Our findings also may serve as a way for development of efficient tunable antennas in the

microwave domain.

For long time, the microwave community has ap-
proached a particular problem of anomalous reflection by
means of reflectarray antennas [1, 2]. In such antennas, a
linear phase variation is created along the surface, allow-
ing one to reflect incident waves to a desirable angle.
With the development of nanofabrication technologies
and metasurfaces, the concept of reflectarrays was trans-
posed to infra-red and optical frequency domains [3, 4]. A
metasurface is represented by a 2D dense distribution of
subwavelength scatterers and a reflectarray is a particular
case of a metasurface which can generally be used for var-
ious applications other than anomalous reflections. How-
ever, reflectarrays suffer from low efficiencies for angles
of anomalous reflection approximately greater than 45
degrees [5]. Extensive research in the area established a
strong theoretical ground in the form of equivalence prin-
ciple [6] for the design of wavefront manipulation devices
based on the use of metasurfaces. As such, multichannel
reflection with metasurfaces was demonstrated both the-
oretically and experimentally in [7]. Recently, a meta-
surface performing highly efficient anomalous reflection
at steep angle has been demonstrated in [8] on the basis
of the concept of metasurfaces possessing strong spatial
dispersion [5, 9]. Unfortunately, a theoretical framework
to design strongly spatial dispersive metasurfaces has not
been developed yet, making the design of a sample time
consuming [if it is possible at all] as it requires 3D full-
wave simulations. In spite of advances in the field of
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metasurfaces, drawbacks concerning design complexity
and material losses still exist, rendering implementation
of high performance devices very challenging in some fre-
quency ranges [10].

In this study we elaborate on the recent concept of
metagratings [11] for the manipulation of reflected waves.
Basically, a metagrating is a set of 1D arrays of scatterers
such as polarization line currents, separated by a distance
of the order of the operating wavelength A. Polarization
line currents are used to cancel scattering in undesirable
diffraction orders. Metagratings allow one to significantly
decrease the number of constitutive scatterers in contrast
to metasurfaces where scatterers are tightly packed in the
plane. This reduction can be very attractive to reduce
the fabrication complexity as well as the joule losses.

On the theoretical level, metasurface and metagrat-
ing are described differently. As a metasurface is com-
posed of deeply subwavelength tightly packed elements,
one can introduce averaged surface impedances. Mean-
while, a metagrating is treated as an array of polarization
line currents separated by distances much larger than
their sizes. Even though, there can be many polarization
line currents in a supercell the separation between the
currents remains on the order of operating wavelength
and one would speculate by introducing average surface
impedances.

It has been already shown that having just a single line
current per period allows one to cancel specular reflection
and perform perfect beam splitting and anomalous reflec-
tion [11-13]. In [14], the authors numerically and exper-
imentally demonstrated the possibility to perform highly
efficient broadband anomalous reflection with a Huygens’
metasurface having just two meta-atoms per supercell
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FIG. 1. (a) System under consideration: a periodic array of
line currents Jnq = Iqexp[—jksin[0]nL]é(y — yng,z + h)xo
(blue circles) placed on PEC-backed dielectric substrate hav-
ing permittivity €,, permeability ps and thickness h. The
array is excited by a plane wave incident at angle  and hav-
ing TE polarization. (b) A line current implemented as a 1D
array of loaded dipoles. (c) A PEC strip dipole of length B
and width w loaded with lumped impedance Z. (d) A PEC
strip dipole loaded with printed circuit capacitance having
arms of length A.

necessary for cancelling specular reflection. Basically, the
same functionality was demonstrated in [11, 13] where a
single meta-atom per supercell and the substrate thick-
ness were used as degrees of freedom instead of two meta-
atoms per super cell. In this sense, the work in Ref. [14]
is very similar to the ones on metagratings. Chalabi et
al. also demonstrated the possibility to perform near-
perfect anomalous reflection using two line currents per
super cell [15] that are necessary for eliminating reflec-
tion in the zeroth and minus first diffraction orders. Re-
cently, an implementation of a graphene-based tunable
metagrating operating in the THz frequency range was
suggested in [16].

In the present work, we study a general case of meta-
gratings having N polarization line currents per super
cell. This generalization is a necessary step for control-
ling diffraction patterns when the number of plane waves
scattered in the far-field is greater than three. Although,
the authors of Ref. [14] discussed the number of meta-
atoms per super cell necessary for controlling arbitrary
number of plane waves diffracted in the far-field, a clear
theory for designing a N-meta-atoms Huygens’ metasur-
face was not elaborated.

Gaining control over many diffraction orders can be
particularly interesting for implementing tunable devices
and performing multichannel reflection. Indeed, having
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FIG. 2. (a) Dependence of the excitation field [ = 0] acting
on a metagrating on the thickness of the substrate h when
es = 4.5 and ps = 1. (b) Absolute values of the R1Z vs. the
thickness of the substrate when § =0, r =1 =1, N = 3 and
L = \/sin[60°]. The rest of RLF does not have poles under
these parameters. A is the operating vacuum wavelength.

many identical wires but being able to control polariza-
tion currents in each of them allows one to perform all
possible transformations of the diffraction pattern with
the same device, where the only restriction remains the
device size. Moreover, metagratings can operate in a
broad frequency range as usually does not require res-
onance response of meta-atoms. Broadband response of
metagratings with a single and couple of polarization cur-
rents per supercell was demonstrated in [13] and [15],
respectively.

As a physical system, we consider a 1D periodic ar-
ray of polarization electric line currents placed over a
grounded dielectric substrate of thickness h and excited
by an incident harmonic TE-polarized plane wave at an-
gle § where exp[jwt] time dependence is assumed. The
array has period L and consists of super cells each hav-
ing N equally separated line currents by the distance
d = L/N. The schematics of the considered system is
presented in Fig. 1 (a). A line current is imagined as a
tightly packed row of point dipoles orientated in the same
direction, see Fig. 1 (b). Practically, one can realize the
dipoles as the loaded rods considered in Fig. 1 (¢) and
(d).

In the presence of the grounded substrate the excita-
tion field takes the following form

By, z < —h) = (e*jﬁoz + ROTEejmuwm) e—iksinldly
(1)

Electric line currents in the array are represented as cur-
rent densities Jpq(r) = Iy exp[—jksin[0nL]o(y — yng, 2+
h)xo where 6(y, z) is the Dirac delta function, y,q = nL+
(g—1)d, n and ¢ take integer values from —oo to +00 and
from 1 to N, respectively. The term exp[—jksin[f|nL]
represents the phase variation of the currents introduced
by the incident wave. Radiation of the array of electric
line currents is represented by a series of Hankel func-
tions [17, 18] of the second kind. It can be shown by
means of the Poisson’s formula [see Supplementary Ma-
terial at [19]] that the electric field of the wave radiated
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FIG. 3. The top row of figures demonstrates schematics of simulated metagratings with (a) N =3, (b) N =9 and (c) N = 5,
the green and white lobes depict excited and canceled diffraction orders respectively. Figures in the bottom row depict obtained
from 3D full-wave simulations frequency responses of the metagratings corresponding to the figures in the top row. (a), (d)
The example of anomalous reflection at angle of 50° with the metagrating having N = 3, L = A\/sin[50°], and loads [in 1/},
R =26.80 mm] Z, = —14.55, Z> = —6.86j, Z3 = —4.43j. (b), (¢) The example of small-angle anomalous reflection [of 12.5°] with
metasurface having N = 9, L = 4)\/sin[60°] and loads [in n/\, & = 27.43 mm] Z1 = —;7.62, Z2 = —j6.96, Z3 = —j6.19, Z4 =
—45.55, Zs = —j5.18, Z6 = —j3.57, Z7 = —j3.02, Zs = —j18.7, Zg = —j10.1. (c), (f) The example when out of five only —2¢
and 1% diffraction orders are equally excited with the metagrating having N = 5, L = 2)/sin[50°] and loads [in /), & = 27.18

mm] Z; = —9.005, Z2 = —5.88j, Z3 =
B =)/10 = 3 mm and w = 3mil ~ 76.2um.

by the array outside the substrate can be written as

E, (y, z < —h) =
TE
Z 1+R (A + Bon’) jenytipn(z+m) (g
E, = E. = 0. Corresponding magnetic fields can be

found from the Maxwell equations. The series represent
superpositions of plane waves having tangential compo-
nent of wave vector equal to &, = ksin(f) + 27m/L,
the longitudinal component is given by 3, = /k? — &2,
outside the substrate [k = w /e and ks = w,/Esfi; are
respectively the wave numbers outside and inside the sub-
strate]. Thus, RLE is Fresnel’s reflection coefficient from
the grounded substrate of a plane wave having tangential
component of the wave vector equal to &,,. Each current

contributes to the amplitudes of the plane waves via the

introduced quantity p( )

N
= Iexp[j&m(q — 1)d]. 3)
qg=1

One can recognize in Eq. (3) a discrete Fourier transfor-
mation.

In general case when a plane wave illuminates a meta-
grating one can find » + [ 4+ 1 scattered plane waves in

—6.595, Zy = —3.03j, Z5 =

—5.145. The substrate is Arlon AD450 [, = 4.5], h = 3 mm,

the far-field, where r and [ are largest integers satisfy-
ing the conditions 5, > 0 and f_; > 0. However, we
can arbitrary control all of the r + [ + 1 plane waves if
the number N of line currents in a super cell is equal to
7+ 1+ 1. Indeed, amplitude AT of the m!" plane wave

depends on p%) which is determined by the currents I,

[see Eq. (2)]

_m pia (1 + REF )P
2L Bm

where 6,0 is the Kronecker delta accounting for the inci-
dent wave reflected from the substrate. By setting all the
amplitudes ALE (m € [~1,7]), one can find necessary I,
from the corresponding p%) which are related via Eq. (3).

Thus, by designing currents I, one can perform all
possible transformations of the diffraction pattern, e.g.
beam splitting, anomalous reflection, multichannel reflec-
tion, etc. When implementing line currents as thin per-
fectly conducting wires one can obtain necessary currents
1, by loading wires with suitable impedance densities Z,.
The last are found from

ATE = + 6mORgE62jBOh7 (4)

Zglqg = E(exc) (Yoq» — Z Z(m)f (5)

where the right-hand side simply represents total elec-



tric field at the location of the gth wire in the zeroth
supercell [yo, = (¢ — 1)d, z = —h]. Here, we also intro-
duce notations for the input impedance density of wires
Zin = knH? [kro) /4, with H{?[kro] being the Hankel
function of the second kind and rg the radius of the wires,

and for the mutual impedance densities Zé;”) which ac-

count for interaction between the wires and between the
wires and the grounded substrate. When a wire is real-
ized as a perfectly conducting strip of width w, the radius
is ro = w/4 [18]. See Supplementary Material at [19] for
the derivation of Eq. (5) and expressions of the mutual
impedance densities.

Generally, currents found from (4) correspond to active
and lossy loads Z; calculated from (5). From a practical
point of view, we are interested only in passive and loss-
less metagratings where R[Z;] = 0, i.e. which cannot ra-
diate energy by themselves and do not require engineered
joule losses. A metagrating should redistribute the en-
ergy of the incident wave between r + [ + 1 diffracted
in the far-field plane waves. Then, the power conserva-
tion condition when assuming a unity amplitude of the
incident wave reads as

D . I
0

m=—1

where «, is the part of the incident energy going in the
m*" diffraction order.

In contrast to the case of metagratings having a sin-
gle line current in a super cell [11-13], when it comes to
greater number of line currents per supercell there are
no exact analytical formulas for reactive load impedance
densities necessary for obtaining some diffraction pat-
tern. To approach this problem we develop a very sim-
ple real valued genetic algorithm [20] which allows one
to find reactive Z, with given impedance reactivity ac-
curacy p for a desired diffraction pattern obtained with
given transformation accuracy «. The impedance reac-
tivity accuracy is defined in accordance with the following

inequality \/Zf;[:1 |Re[Z4]/Z4|? < p. A diffraction pat-

tern is set by assigning to all a¥, certain values. Phases
dm = arg[ALE] are assumed to be not important and as-
signed randomly. Transformation accuracy o means that
one is satisfied with a transformation when the part of
the incident energy going in the m** diffraction order is
within the range o, = o + a. Still, at each step the
genetic algorithm deals with a,,, > 0 constrained by the
energy conservation condition (6).

When designing a metagrating, one should also take
care of choosing parameters of the substrate. First of
all, when substrate’s thickness is varied the value of the
excitation field Eq. (1) on a metagrating passes through
zeros as illustrated in Fig. 2 (a). Clearly, a metagrating
cannot be excited when the excitation field is zero on its
plane. And secondly, the reflection coefficient RLF as a
function of h has poles when m is such that k < &, but
ks > &, [Fig. 2 (b)]. The poles correspond to excitation

of waveguide modes inside the substrate. Thus, assum-
ing €, and ug of the substrate are set, one should choose
the thickness: (i) corresponding to vicinity of the max-
imum of the excitation field on a metagrating and (ii)
|R5E (h)] # 0.

One can realize the line currents as dense 1D arrays of
loaded dipoles [separated by distance B < A and having
lumped load equal to Z] as in Figs. 1 (b) and (c). Then,
the load impedance density is simply Z/B. A capacitive
load can be realized as a printed circuit capacitance as
illustrated in Fig. 1 (d) for which Z = —jnk/(Acesys)
[when other parameters B and w are fixed],  is the pro-
portionality factor, .y is approximated as (14¢5)/2 and
1s is assumed equal to 1. The proportionality factor x
was introduced in [12] for the case of a single line current
per supercell. However, it turns out that in the general
case of many line currents per supercell one can success-
fully use the same proportionality factor for all currents,
i.e. independently on g. Thus, when load impedance
densities Z, are found from the genetic algorithm, one
can easily calculate arms lengths of necessary printed ca-
pacitors as A, = —R/(%[Zq]%eeff), Rk = Ak/B.

In order to validate the developed theoretical basis, we
perform 3D full-wave simulations with COMSOL Mul-
tiphysics. We demonstrate three examples of metagrat-
ings designed to operate at 10 GHz [A = 30 mm] and
perform different transformations of the diffraction pat-
tern as shown in Fig. 3. A polarization line current is
implemented as a 1D array of capacitively loaded per-
fectly conducting strips [as it schematically shown in the
top row of Fig. 3]. In all the examples normally incident
plane wave is assumed, i.e. § = 0.

When performing a large-angle anomalous reflection
with a metagrating, overall there are three diffraction or-
ders and therefore only three polarization line currents
per supercell are necessary to cancel the —1%¢ and 0"
diffraction orders, as illustrated in Fig. 3 (a). Figure 3
(d) depicts the frequency response of the metagrating
performing anomalous reflection at angle of 50°. The
situation is more difficult in case of a small-angle anoma-
lous reflection with the presence of many high diffrac-
tion orders and when the energy should be scattered
only in the first one. Indeed, in the example of Fig. 3
(b) there are nine diffraction orders and the metagrating
with nine polarization currents is used to cancel scatter-
ing in all of them except the first one corresponding to
an anomalously reflected wave at angle of 12.5°. Fig-
ure 3 (e) demonstrates the frequency dependence of the
metagrating’s performance efficiency. Clearly, metagrat-
ings are not restricted to anomalous reflection applica-
tion and can be used for multichannel reflection. One
can distribute the energy of an incident wave between all
diffraction orders in a desirable manner. For instance,
Figs. 3 (c) and (f) demonstrate the scenario when the
metagrating having five polarization currents is used to
split normally incident waves between the —2°¢ and 1t
diffraction orders and cancel scattering in the other three
diffraction orders.



In conclusion, it has been shown that a metagrating
having the number of polarization line currents per su-
per cell equal to the number of plane waves scattered
in the far-field can be used for controlling the diffrac-
tion pattern. Namely, equations (3) and (4) allowing one
to find currents realizing desirable transformations have
been derived. Since there are no analytical formulas of
reactive load impedance densities (5) for direct design,
genetic algorithms have been implemented for that pur-
pose. The diffraction orders control has been demon-
strated by means of 3D full-wave simulations on the ex-

amples of anomalous reflection and equal redistribution
of the energy of the incident wave between two diffraction
orders.

The validation results can be very interesting for the
metamaterials community to perform highly efficient con-
trol of light scattering. It allows one to significantly de-
crease the number of used elements and simplify the de-
sign, which is very convenient for optical and infra-red
frequency ranges. Our findings also may serve as a way
for development of efficient tunable antennas in the mi-
crowave domain.
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Appendix A: Details on the formula (2)

A single line current J(r) = I§(y, z)xo radiates as [1]
E,=E.=0,

kn
_Z[Hé@[k /2 + 22),
(A1)
where k = w./epp and n = /p1/e, Héz)[k\/zﬂ + 22] is the

second kind Hankel function. Corresponding magnetic
field is found from the Maxwell equations

J 0E.(y,2)
kn 0z

Ey (y7 Z) =

J O0E;(y,z
H.(y,2) = _kné)(y)'

(A2)

Hy(y7 Z) =

Consequently, radiation field of a periodic array of
N electric line currents per super cell J,q(r) =
I, exp[—jksin[0InL]é(y — Yng, 2)X0 [Where yny = nL +
(g — 1)d, n and q take integer values from —oo to +00
and from 1 to N respectively] is given by a series of Han-
kel functions

N oo
E IZTTIZ Z Iq —]kSlnG]nL

g=1n=—
H? [/ (y

that can be calculated by means of the Poisson’s formula
stating that for a given “good” function f(w) the follow-
ing identity takes place

L—(q—1)d)* + 27| (A3)

+o00 00 +o0
d S27m
S Ly =" / D p(w)e T (Ad)
n=-—oo m=—0oo
Thus,
Ea(y Z Z eJEm(q Ddo=jémy o—iBml2 \
q lmffooﬂ
Em = ksinff] +2nm/L, B = k2 — €2, (A5)
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as

“+o0o
/ dwH P [/ (y = w)2 + 22)e 76 = 2

e_jgﬂly_jﬁ”m, 2|
Brm
(AG)

The effect of the grounded substrate on the field ra-
diated by the array J,q(r) = I, exp[—jksin[dInL]é(y —
Yng, 2+ h)Xo can be derived in the same manner as in [2].
After some algebra one would arrive at the following ex-
pressions for the electric field profile inside (0 > z > —h)
and outside (z < —h) the substrate

E.(y,0>2z>—h) =
+ . s

ks”]s ~ mem Mefjfmy

2L 4= ALEBs, sin[Bsh)] ’

— 00

E (y,Z< _h)_

TE
Z 1+R ) =3€my+im (=+h), (A7)

m=—0oo

E, = FE, = 0. Corresponding magnetic fields can be
found from the Maxwell equations (A2). The series repre-
sent superpositions of plane waves having tangential com-
ponent of wave vector equal to &, = ksin(f) + 2mm/L,
the longitudinal component is given by Bm = k% — &2,
outside and by B3, = (/kZ — &2, inside the substrate
[k = wy/ep and ks = w./e,1s are respectively the wave
numbers outside and inside the substrate]. Thus, RLF
and TLF are the Fresnel’s reflection and transmission co-
efficients respectively

RTE _ j’YmE tan[3;, h] — TE _ QJVTE tan[3;, hl
™ jykE tan[Bs,h] 4 1’ ™ YL tan[Bg,h] + 17
TE snsﬁm
Ym = 7 an A8
knBs, (48)

where n = \/p/e and ng = \/ps/€s.

Appendix B: Calculation of load-impedance densities

Necessary currents I, can be achieved by engineer-
ing the load-impedance densities Z, defined as 1,7, =



Ellee) (Yoq, —h), where Eg(cloc)(yoq, —h) is the total electric

field at the location of the ¢'" line current [yo, = (¢—1)d,
z = —h]. The self-action of the ¢'"" current in the zeroth
supercell is given by —anqH(gQ) [kro]/4 [ro is the effective
radius of the line current which depends on its concrete
practical realization]. For instance, when a line current
is imitated as a perfectly conducting strip of width w the
radius 79 = w/4 [3]. The electric field created by ¢** line
current from all supercells [but the zeroth one] reads

—%Iq Z coslk sin[@]nL]HéZ) [k|nL]|].

n=1

The electric field created by all other line currents is given
by

N [e%s)
YooY pe It g® k(g - p)d — L),

p=1,p#qn=—00

Finally, the influence of the grounded substrate is ac-
counted with

N “+o0

RTE
I e]é'm (p—q)dtm
> 7

kn
9L

p=1m=—oc0

Summarizing three previous equations and keeping in
mind the excitation field the load-impedance densities

Z4 can be calculated by the following formula

N 0o
1 exc k77 —jksin[0]n
Zq = i B (yoq, —h *Z Z Z Ly Jksmllint
4 =1,p7#qn=—00
N “+oc0

x H{? k| (q — p)d — nL|] —

Z Z Ie]fmp qd};?j

p 1 m=—o0

Zcos ksm[@]nL]H(z)[lﬂ\ L|] -
n=1

477H(2 lkrol.  (B1)

The cumbersome equation (B2) can be rewritten in the
compact form by introducing mutual impedance densities

N
—h) = Zinly =Y 251, (B2)
p=1

Zglqg = Ea(cexc) (yO(p

where Z;,, = ané2)[kro]/4 is the input impedance den-
sity of wires and the mutual impedance densities Zé;n)
which account for interaction between the wires and be-
tween the wires and the grounded substrate are expressed
as

m /W? - — 7k sin[f]n
zim = =1 N HP[K|(q - p)d — nL[Je7*smlonk
n=—o00
k’fl -~ jfm(p_Q)d RTZ;LE
+E e ﬁa q# p,

m=—0oQ

m _ k< :
Z(gq ) = 5 Z cos[k sm[@]nL]Hém [knL]

Lk §RORE
2L it Bm

TE
Rm

[1] Leopold B Felsen and Nathan Marcuvitz, Radiation and
scattering of waves (IEEE Press, New York, 1994).

[2] O. Rabinovich and A. Epstein, “Analytical design
of printed-circuit-board (pcb) metagratings for perfect

anomalous reflection,” IEEE Transactions on Antennas
and Propagation , 1-1 (2018).

[3] Sergei Tretyakov, Analytical modeling in applied electro-
magnetics (Artech House, Norwood, MA, 2003).



	Controlling_diffraction_patterns_with_metagratings
	Supplementary_Material__Controlling_Diffraction_Patterns_With_Metagratings

