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Abstract

A collocation technique is applied to the equations governing
the linear stability of the anabatic layer on an evenly heated
vertical wall in a stratified fluid. Marginal stability curves and
critical heat fluxes are obtained for Prandtl numbers from 0 to
1000. As in other cases of vertical natural convection, two
kinds of instability are observed, depending on the Prandtl num-
ber: at lower Prandtl numbers, the modes are short slow waves
and the critical parameter is roughly proportional to the local
Reynolds number, whereas at higher Prandtl numbers, the criti-
cal Reynolds number decreases rapidly and the waves are longer
and faster.

Introduction

One of the simplest solutions of the Oberbeck [14] equations
of natural convection was discovered by Prandtl [15, pp. 422–
425]. It describes the flow parallel to a vertical (or inclined)
plane held at a constant temperature difference above the neigh-
bouring stratified fluid. The linear stability of this flow has been
studied by Gill & Davey [7].

A more realistic boundary condition, however, is that of a uni-
form heat flux at the wall. Since Prandtl’s [15] base solution is
independent of height, it also applies in this case. The flow may
be realized in a cavity with evenly heated and cooled vertical
walls [9], and its mass transfer-analogue occurs in electrochem-
ical cells [6]. The stability properties differ, however, due to the
replacement of the Dirichlet condition,θ(0) = 0, on the ther-
mal perturbation with a Neumann one,θ′(0) = 0. The authors
have recently investigated the linear stability of this modified
problem for Prandtl numberσ = 7 [11], and shown that both
the critical Reynolds number and the form of the critical distur-
bance agree with direct numerical simulations. The present pa-
per extends the linear stability results to the range0 6 σ 6 103.

Mathematical formulation

Let thex-axis be normal to the wall and they-axis vertical. De-
note the fluid properties byν, α, andβ for the coefficients of
kinematic viscosity, thermometric conductivity, and thermal ex-
pansion, respectively. Denote the normal temperature gradient
at the wall byΓw, the far-field stratification byΓs, and the grav-
itational field strength byg. Then if

δ =
(

4αν
gβΓs

)1/4

(1)

U = Γw

(
4gβ

ν

)1/4(
α
Γs

)3/4

=
2αΓw

Γsδ
(2)

∆T = Γwδ (3)

are the scales for length, speed, and temperature [7, 11], the
governing parameters are the Prandtl number,σ = ν/α and the
Reynolds number

R=
Uδ
ν

=
2Γw

Γsσ
, (4)

and the Oberbeck equations governing the evolution of the ve-

locity u, pressurep, and temperatureT in time t are

R

(
∂
∂t

+u ·∇
)

u = −R∇p+∇2u+2Têy (5)

Rσ
(

∂
∂t

+u ·∇
)

T = ∇2T, (6)

subject to the velocity vanishing at the wall

u = 0 (x = 0), (7)

the wall heat flux being specified

∂T
∂x

=−1 (x = 0), (8)

and general decay far from the wall

|u|,
(

T− 2y
Rσ

)
∼ 0 (x→ ∞). (9)

The system (5)–(9) admits Prandtl’s [15, 7, 11] steady one-
dimensional solutionu = V(x)êy, T = Θ(x)+2y/Rσ where

V(x) = e−x sinx (10)

Θ(x) = e−x cosx. (11)

The stability of small plane perturbations with streamwise
wavenumberκ and wave speedc of the form

δu = ℜêz×∇ψ(x)eiκ(y−ct) (12)

δT = ℜθ(x)eiκ(y−ct) (13)

are governed by [7]

[E2 + iκR{(V−c)E +V ′′}]ψ+2Dθ = 0 (14)[
2D− iκRσΘ′

]
ψ+[E + iκRσ(V−c)]θ = 0, (15)

subject to

ψ(0) = ψ′(0) = θ′(0) = ψ(∞) = θ(∞) = 0, (16)

whereD = d/dx andE = κ2−D2. For the temporal linear sta-
bility problem,κ is taken as real,ψ andθ are the eigenvectors,
andc is the complex eigenvalue.

Discretization and solution procedure

As in the previous study [11], (14)–(15) were discretized using
orthogonal collocation based on weighted generalized Laguerre
functions, the algebraic generalized eigenvalue problem(L−
cM)q = 0 converted to standard form as(M−1L−c)q = 0, and
solved by the QR algorithm. The flow is regarded as unstable
at a givenσ, R, andκ if any part of thec-spectrum lies in the
upper-half complex plane.

This approach needed modification atσ = 0, however, since
thenc disappears from (15); i.e. the ‘mass matrix’M becomes



singular, prohibiting the usual conversion to standard form. In-
stead, we used a shift-and-invert technique [1, 12] with the shift
taken near the critical complex wave speed found for small but
finite Prandtl numbers. The zero Prandtl number limit for this
problem differs from that for the isothermal slot [3], since there
the ψ-perturbation equation (14) becomes uncoupled from the
θ-equation (15); the reason is that the length scale there is fixed
by the slot width, but here (1) depends onα.

A Reynolds number close to both a value ofR for which the flow
is stable and one for which it is unstable is amarginalReynolds
number for thatσ andκ; the locus of marginal Reynolds num-
bers andκ is thestability margin. Margins for variousσ were
traced using our adaptive skirting algorithm [10].

The least marginal Reynolds number for a givenκ andσ is the
critical Reynolds number for thatσ number. After roughly lo-
cating the turning points of the margins, the critical Reynolds
numbers were found by Golden Section search [8, p. 37].

The method convergences exponentially (as is to be expected
from an orthogonal collocation method) for number of colloca-
tion pointsn up to about 60; for highern, a levelling-off occurs,
probably due to the high condition number of the differentia-
tion matrices. This is illustrated in figure 1, which shows the
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Figure 1: Convergence of the collocation method with bisection
for the marginal Reynolds number atσ = 7 andκ = 0.4612.

absolute relative error in the marginal Reynolds number com-
puted forσ = 7 and κ = 0.4612 (taking the true value to be
R= 8.581336650as assessed from all data at10< n < 100).

Another check on the method and code was made by reproduc-
ing Gill & Davey’s results [7] for the critical Reynolds num-
bers with the fixed temperature boundary condition; i.e. they
assumedT(0) = 1 in place of (8), and so replacedθ′(0) = 0 in
(16) with θ(0) = 0. Their results, originally obtained with a fi-
nite difference shooting method, were found to be correct to the
stated accuracy of three significant figures.

All computations were programmed in Octave [5] and executed
on a heterogeneous openMosix cluster. Computations at each
Prandtl number were performed serially, but several such pro-
grams were executed simultaneously.

Results

The variation of critical Reynolds number with Prandtl number
is plotted in figure 2 and some critical modes in figure 3.

At σ = 0 the marginal stability curve is simple (figure 4a) but
by σ = 0.1 a second lobe, representing a second mode of in-
stability, appears at small wavenumbers (figure 4b). The crit-
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Figure 2: Critical Reynolds numbers.

Figure 3: Isotherms (left) and stream-lines (right) of the critical
mode forσ = 0,0.1,0.7,7, and100 (rows, downward), drawn
over0 6 x < 16and−π/κc < y < π/κc.
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Figure 4: Marginal stability curves:σ = (a) 0, (b) 0.1, (c)
0.2163, (d) 0.7, (e) 7.

ical Reynolds number decreases with increasingσ, reaching a
minimum of about 130 nearσ = 0.12, then increases again (fig-
ure 2). The critical Reynolds number of the second mode de-
creases faster with increasing Prandtl number, and there is a
cusp in the critical curve atRc = 133nearσ = 0.2163at which
the second mode passes the first (figures 2, 4c). Thereafter,Rc
enters a steep decline which continues up to the highest Prandtl
numbers investigated (σ = 103).

Discussion

The phenomenon of the low Prandtl number mode of instabil-
ity giving way to one with longer wavelength and greater speed
(see figure 5) also occurs in the linear stability of convection in
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Figure 5: Critical wave numbers (above) and wave speeds (be-
low, also showing the maximum speed of the base flow). The
dashed vertical line marksκ = 0.2163.

a vertical slot [4, 12], in a stratified vertical slot [2], in the fixed-
temperature-excess plate problem [7], and for a hot isothermal
plate in a cold isothermal fluid [13]. Here, however, the tran-
sition occurs at quite a low Prandtl number:σ ≈ 0.216; cf.
σ = 12.454for the slot [12] and somewhere in0.4 < σ < 0.72
for the fixed-temperature-excess plate [7]. Roughly speaking,
we suspect this is because the Neumann condition on the tem-
perature perturbation is less restricting to the ‘thermal’ mode.
We call the first and second modes ‘hydrodynamic’ and ‘ther-
mal’ since the first sets in at roughly a constant boundary layer
Reynolds number, while the latter is strongly dependent on the
Prandtl number.

In order to investigate the effect of the thermal boundary condi-
tion on the stability of the anabatic layer, our critical Reynolds
numbers are compared with those of Gill & Davey [7] in
figure 6. It is evident that the low Prandtl number (σ <
0.2163) critical mode is slightly stabilized by the change to the
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Figure 6: Comparison of critical Reynolds numbers for the lin-
ear stability of a vertical anabatic layer for heat flux (present
work, curve) and temperature (Gill & Davey [7], points joined
by line segments) thermal boundary conditions.

flux boundary condition, though at moderate Prandtl numbers
(0.2163< σ <∼ 101–102) the base flow is destabilized with re-
spect to the ‘thermal’ mode by the change: the critical Reynolds
numbers at large Prandtl numbers are less, and this mode be-
comes the critical one at a lower Prandtl number. At large
Prandtl numbers, the difference disappears; e.g. Gill & Davey’s
Rc = 1.70atσ = 100, which coincides with the figure in table 1.
This is because the hot and cold spots in the critical modes are
increasingly localized, away from the wall and near the maxi-
mum of the base velocity profile; both the value and gradient of
the temperature perturbation are small near the wall so the two
boundary conditions are equivalent. This may be seen by com-
paring Gill & Davey’s figure 11 with the lower isotherm plots
in our figure 3.

Conclusions

The specially developed collocation method based on general-
ized Laguerre functions provides accurate solutions to the linear
stability equations for this flow with modest computational re-
quirements.

Like other vertical natural convection flows, the anabatic layer
on an evenly heated wall in a stratified fluid has two different
critical modes, depending on the Prandtl number.

The present flow system is particularly suitable for linear sta-
bility studies, since, unlike the boundary layer in an isothermal
fluid, it has a parallel base flow; unlike the unstratified slot, it
has boundary layer behaviour in the base solution; and com-
pared to the stratified slot, it depends on only two parameters
rather than three.

For future reference, some selected critical values are listed in
table 1.
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