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ABSTRACT
Data-flow oriented embedded systems, such as automotive
systems used to render HMI (e.g., instrument clusters, info-
tainments), are increasingly built from highly variable speci-
fications while targeting different constrained hardware plat-
forms configurable in a fine-grained way. These variabilities
at two different levels lead to a huge number of possible em-
bedded system solutions, which functional feasibility is ex-
tremely complex and tedious to predetermine. In this paper,
we propose a tooled approach that capture high level spec-
ifications as variable dataflows, and targeted platforms as
variable component models. Dataflows can then be mapped
onto platforms to express a specification of such variability-
intensive systems. The proposed solution transforms this
specification into structural and behavioral variability mod-
els and reuses automated reasoning techniques to explore
and assess the functional feasibility of all variants in a single
run. We also report on the validation of the proposed ap-
proach. A qualitative evaluation has been conducted on an
industrial case study of automotive instrument cluster, while
a quantitative one is reported on large generated datasets.

CCS Concepts
•General and reference → Design; Validation;
•Computer systems organization → Embedded sys-
tems; •Software and its engineering → Software
product lines; •Theory of computation → Verifica-
tion by model checking;

Keywords
Embedded system design engineering; variability modeling;
feature model; behavioral product lines model checking.

1. INTRODUCTION
Validating embedded systems design at early stages of de-
velopment is of fundamental importance in industry. Ide-
ally embedded system design should be modeled from high-
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level specifications, and then assess against possible imple-
mentations. Data-flow oriented embedded systems, such as
automotive systems used to render HMI (e.g., instrument
clusters, infotainments) are typically built from highly vari-
able specifications. They are composed of a data-flow driv-
ing and feeding graphical processors to provide efficient and
high-quality graphic rendering at a lower cost, while targeted
hardware platforms are composed of heterogeneous and con-
strained hardware components. The variability is then two-
fold, with multiple graphic data-flow variants that can meet
functional requirements, and diverse targeted hardware plat-
form, which are highly configurable in a fine-grained way.
These dimensions of variability dreadfully increase the size
of the design space of these embedded systems (i.e., the num-
ber of possible embedded system implementation designs),
making the feasibility assessment of these systems extremely
tedious and complex.

Generally, design spaces of variable systems and protocols
are assessed through variability-aware model checking on
variable transition-based systems [1, 8]. However these ap-
proaches are not capable of automatically map the vari-
able data-flow specifications on configurable platform de-
scriptions to apply their model-checking techniques. Con-
sequently, this would imply to manually infer, model and
assess embedded system design spaces from high level spec-
ifications, making this activity extremely tedious, time con-
suming, and error-prone.

Facing this issue, we determine three challenges to be tack-
led: (i) capturing and modeling from high-level specifica-
tions, structure, behavior and variability of these embed-
ded systems (e.g., data-flow and platform alternatives, data
sizes, memory capacities, graphic pipelines), (ii) inferring
automatically all possible embedded system design imple-
mentations from specification models and, (iii) exploring
and assessing the feasibility of all system implementations
w.r.t. the predefined structural, behavioral and variability
constraints. Current approaches [22, 15, 16] assess func-
tional feasibility of constrained data-flow-oriented embed-
ded systems, but do not capture nor manage variability at
both levels. Some Ad hoc techniques are trying to handle ei-
ther platform variability (as reconfigurable architectures [21,
20] [18]) or functional variability (as multiple scenarios [19,
25] or multi-modes systems [26, 17]). On the other hand,



approaches tackling both kinds of variability [12] are focus-
ing on optimal platform selections to implement multiple
functional variants at a lower cost, but they do not man-
age structural and behavioral properties (e.g. data sizes,
memory capacities, graphic pipelines).

In this paper we propose an approach that extends these re-
searches by supporting a complete modeling and assessment
of structural, behavioral and variability properties of the
targeted embedded systems by combining embedded system
design engineering [22, 15, 16] and Product line engineer-
ing techniques [1, 8]. The proposed solution is model driven
and i) captures high level variable data-flow and platform
specifications following principles of separation of concern,
ii) maps variable data-flow requirements into a description
of the targeted variable hardware platform, so to infer the
embedded system design space (i.e. all system implemen-
tations), iii) transforms the design space into a behavioral
product line to reuse automated reasoning techniques (i.e.
SAT solving, variability-aware model checking) to explore
and assess the functional feasibility of all system design im-
plementations in a single run. The framework also allows to
remove invalid designs from the design space by constraining
it.

This paper is an extended version from a paper published in
the Variability and Software Product Line Engineering track
of the SAC 2018 conference. In this extension, we detail a
complete evaluation of the proposed approach with:

• complete implementation details with end-to-end sam-
ple materials,

• a qualitative evaluation on a real industrial use case in
automotive systems, i.e., an instrument cluster prod-
uct line,

• a quantitative evaluation on the scalability of the ap-
proach, using large generated datasets on both appli-
cation and platform sides,

• a discussion on the threats to validity.

The remainder of the paper is organized as follows. Section 2
introduces the context and motivations illustrated by a run-
ning example. Section 3 presents the proposed framework,
detailing each model and step. Section 4 details the quali-
tative and quantitative validation, and discusses threats to
validity, while Section 5 concludes the paper.

2. MOTIVATIONS
Requirement gathering and validation of this research work
have been realized in the context of an industrial collabo-
ration with Visteon Electronics, a world class leader in au-
tomotive systems (e.g. instruments clusters, infotainment,
connected vehicles). In the following we introduce one of the
company case studies, extract a running example, determine
requirements from them and discuss related work.

2.1 Case study
The case study is focusing on functional validation of some
instrument clusters. By applying various data-flow image

processing effects, such as blending, warping and scaling, an
instrument cluster system improves driver experience with
useful and high quality 2D/3D Human-Machine Interface
(HMI). The embedded hardware platforms used to develop
these systems are more and more highly configurable, but
constrained in terms of architecture and capacities. Fur-
thermore, multiple graphic data-flows variants can meet the
client HMI requirements, but they also depend on the plat-
form architectures and capacities. We consider this case
study as representative of variability-intensive data-flow ori-
ented systems. Different forms of variability, from high-level
data-flows to low-level platforms lead to a huge number of
possible system solutions, which feasibility is extremely com-
plex and tedious to predetermine early in the development
process.

2.2 Running Example
We now introduce a running example of a simplified in-
strument cluster. The data-flow on Fig. 1 represents dif-
ferent image flow processing that meet the HMI functional
requirements. Images are processed by graphical tasks: im-
age d2 has two different possible resolutions (e.g. 800x480,
480x320) and will be processed by task C. Image d1 can be
either processed by task A or task B.

Figure 1: Functional specification

On the hardware side (cf. Fig. 2), the platform provides
image processing capabilities through non programmable
pipeline processors of DCU (Display Controller Unit) or
GPU (Graphic Processing Unit) type, as well as data storage
functionalities through RAM (Random Access Memory) and
ROM (Read Only Memory). RAM and GPU are optional in
the actual hardware products, so a system implementation
may contain or not these components. Among variabili-
ties in platforms, one can write data into and/or read data
from RAM memory while only reading data is possible from
ROM. Moreover, memory storage have limited and possibly
variable (e.g. RAM) capacity. Contrary to a DCU, which
renders directly processed images into display, a GPU needs
to store its processing result into RAM. Graphical hard-
ware processors are often designed as a multi-step pipeline,
composed of several hardware implemented processing steps,
and processor internal fifo memory buffers transferring data
from one step to another. In our example, while a GPU can
apply A followed by B processing on images in a single pass,
a DCU can apply A, then followed by C.

Images and processing could be, respectively, stored and pro-



Figure 2: Platform specification

cessed by multiple components, while images can be stored
on RAM or on ROM: task A could be processed by both
GPU and DCU, but a data-flow variant containing B task
can only be implemented on a system containing a GPU.
Finally, data mapping on memory are constrained in terms
of storage capacity.

Consequently, to be valid, a system implementation has to
fulfill (i) structural constraints such as not violating maxi-
mum memory capacities, (ii) behavioral constraints such as
using correctly processor pipelines and memories, and (iii)
variability constraints such as component dependency and
exclusion. In our example, the application data-flow has 4
variants while the Platform exposes 3 architecture variants.
Even with this simplified case, this leads to 178 possible im-
plementations, in which 58 satisfy constraints and could be
developed by engineers.1

2.3 Related Work
In the context of our work, engineers must be assisted to as-
sess the functional feasibility of the different potential em-
bedded system solutions, with means to capture both the
high-level functional requirements and the specifications of
targeted variable platforms. Ideally, a solution should be
able to capture structural, behavioral and variability prop-
erties of both functional and platform specifications at a fine-
grained level, so to use these input models to automatically
infer all possible embedded system implementation designs
and assess the resulting consistent design space.

In the product line engineering, lots of approaches [1, 8] are
capable to model variable transition-based systems such as
safety-critical systems or protocols, and to validate, through
variability-aware model-checking, temporal properties and
behavioral aspects. However, given high-level data-flows and
platform specifications, these approaches are not capable of
automatically map data-flows on platforms in order to infer
and assess the resulting design space. Assessing the different

1Finding the best solution among the remaining correct so-
lutions is also an important problem, but out of the scope
of this paper.

mapping manually is not feasible in practice, as the activity
would be tedious and error-prone.

In embedded system design engineering, most of the ap-
proaches capture high-level application and platform speci-
fications, and map an application on hardware platforms in
order to find, by design space exploration, an optimized sys-
tem implementation for a single functional specification on a
single platform [22, 15]. Consequently, they do not capture
nor manage variability at the application level and hardware
platform variability is limited to component capacities (e.g.
memory and bus size, processor frequency). Some other ap-
proaches try to handle some limited variability in functional
specifications (e.g. optional task, alternative tasks, variable
data) (as multiple scenarios [19, 25] or multi-modes sys-
tems [26, 17]), but they do not manage platform variability.
Some others try to handle some limited variability in plat-
forms (e.g. optional resource, resource dependency, memo-
ries sizes) with reconfigurable architectures [21, 20] [18]. To
the best of our knowledge, none of these approaches han-
dle variability in both application and platform sides so to
assess the feasibility of our class of problem.

Interestingly, the recent approach of Graf et. al. [13, 14]
manages some variability in both platform and functional
specifications. On the platform variability side, resource
components can be selected or not, while optional and mu-
tually exclusive task groups are managed on the functional
part. However, the approach is handling a coarse-grain form
of requirements and cannot capture some of our specifica-
tions (e.g.data and memory sizes, as well as platform aspects
such as processor pipelines or fifo buffers). Additionally,
only structural validation of the system implementations is
supported. Behavioral properties (e.g. data sizes, mem-
ory capacities, graphic pipelines) and behavioral constraints
(e.g., absence of deadlock, reachability, liveness, safety etc.),
which are fundamental in our case, cannot be checked.

3. PROPOSED FRAMEWORK

3.1 Overview
The proposed approach follows a model driven decomposi-
tion, based on the well-known robust Y-Chart pattern [2,
16], which separates application and platform into different
concerns. This allows modular specification and reasoning
about the different parts of the specified embedded systems.
Given high-level variable dataflow and platform inputs that
notably captures the variability of functional and platform
specifications, the framework will i) map all implementation
of each data-flow variants on each platform configuration, ii)
generate a Featured Transition System (FTS) [8] from the
system design space model, i.e. representing system imple-
mentations (cf. Fig. 3). This model consists in an extended
form of automaton product line, which is then iii) checked
in one run by a variability-aware model checker.

As shown on Fig. 3, our framework consists of three main
models and two processes. We give here an overview while
the following sections will detail and illustrate these ele-
ments.

Variable applications: a functional expert is in charge of
capturing the functional requirements (cf. fig. 1) of the em-



Figure 3: Framework Overview

bedded system through an extended data-flow (cf. sec. 3.2).
This model contains the classic structure and behavior of the
data-flow (data, task, data-path, etc.), but also captures the
variability in both structural properties (e.g., data size) and
behavioral properties (e.g., alternative flows).

Variable platforms: on this side, a platform expert is in
charge of expressing the platform specification (cf. fig. 2)
as a templated component based system (cf. sec. 3.3). This
model contains a set of components connected with each
others. Similarly to the application one, the platform model
also captures the variability of the defined components.

Variability-aware mapping process: the mapping algorithm
(cf. sec. 3.4) consumes the application and platform in-
put models previously defined and generates the Variability-
Intensive Design Space, i.e. representing system implemen-
tations. It is made of two steps: (i) it finds for each task
data and data-path (cf. fig. 1) all the possible mappings
on appropriate platform processors and storage (cf. fig. 2);
basically this is done by matching the task names with the
names of the hardware functions of processors; data-paths
are mapped on reachable memory of appropriate processor
hardware functions; (ii) as the design space contains all map-
ping possibilities, the algorithm prunes unfeasible mappings
w.r.t. structural and variability constraints.

Design space as a behavioral product line: from the system
design space model, a Behavioral Product Line representing
all system implementations is generated (cf. sec. 3.5). This
product line is represented as a featured automaton, so that
we can reuse and adapt techniques that rely on variability-
aware model-checking to validate the inferred systems. The
basic idea is to transform a variable data-flow, a variable
platform, and mappings to a data-flow automaton using,
through a mapping automaton, a platform automaton to
execute it. Valid executions of the application automaton
should then respect generated properties representing end
state reachability to ensure that the execution is correctly
scheduled and executed onto the platform automaton.

Validation process: the validation process reuses automated
reasoning techniques to assess structural and behavioral func-
tional feasibility of the system variants represented by the
behavioral product line (cf. sec. 3.6). The model checking is
going to determine classic properties, such as safety, absence
of deadlock, and our state reachability generated property,
on all variants in one run. As a result, the validation solves
and extracts valid variants respecting all structural, behav-
ioral and variability constraints.

3.2 Applications as Variable Data-Flows
In our approach, a functional expert captures structure, be-
havior (data, task, data-path, etc.) and variability aspects
(data size, alternative flows, etc.) of the functional require-
ments of the embedded system through an extended data-
flow model. The extensions concern variability and data
aspects of functional requirements, and in the following, we
propose a formal data-flow model to do so.

Definition 1. A variable data-flow graph is a tuple
V DG = (T,D, Path,E, ζ) where:

• T is a set of tasks,

• D is a set of source data, and, ζ : D → {s0, ..., si ∈ N∗}
returns a set of alternative sizes of data,

|ζ(d ∈ D)| =

{
> 1, if d has a variable size

1, if d has not a variable size

• Path is a set of data-paths by which producer and con-
sumer (i.e. tasks and data) are connected.

• E ⊆ (T ∪D)×Path×T is the set of edges representing
flows processing between producers and consumers.

The set of connected, input data-paths to a task I(t), output
data-paths from a task or data O(v) are denoted by:

I(t) : {p ∈ Path|(x, p, t) ∈ E},



O(v ∈ T ∪D) : {p ∈ Path|(v, p, x) ∈ E}.

Similarly I(p), input tasks to a output data-paths, and O(p),
output tasks from a input data-paths, are denoted by:

I(p) : {prod ∈ T ∪D|(prod, p, x) ∈ E},
O(p) : {t ∈ T |(x, p, t) ∈ E}.

Then:

|I(p)|+ |O(p)| =

{
> 2, if p has alternative flows

2, if p has not flow variability

A variable data-flow represents multiple data-flow variants.
To implicitly represent all these variants in a single model,
we follow the same approach as in variable workflows from
[13], allowing data-paths to have multiple input and output
tasks connected.

A data-path can be connected to multiple alternative, input
tasks if |I(p)| > 1, and output tasks if |O(p)| > 1. But, If
|I(p)| = 1 ∧ |O(p)| = 1, the data-path is connected to only
one input and output task (i.e the data-path has no flow
variability).

As data can have alternative sizes, we introduce the function
ζ which returns the set of alternative sizes S = ζ(d), each
datum has at least one size and if |ζ(d)| > 1 the size of d is
variable.

If the data-flow has no flow variability, ∀p ∈ Path, |I(p)| +
|O(p)| = 2, and no data variability, ∀d ∈ D, |ζ(d)| = 1, the
data-flow is not variable.

The functional specification of the running example V DGre
is then represented as

(Tre = {a, b, c}, Dre = {d1, d2}, Pathre = {p1, p2, p3},

Ere = {(d1, p1, a), (a, p2, c), (d1, p1, b), (b, p2, c), (d2, p3, c)})

with,

ζ(d1) = 512, ζ(d2) = {512, 1024},

I(p1) = d1, I(p2) = {a, b}, I(p3) = d2,

O(p1) = {a, b}, O(p2) = c,O(p3) = c,

I(a) = I(b) = p1, I(c) = {p2, p3},

O(a) = O(b) = p2, O(c) = ∅, O(d1) = p1, O(d2) = p3.

3.3 Platforms as Variable Resource Graphs
A variable platform specification is represented by a tem-
plated component based system (multi-pass processors,
streaming processor, read-only memory, read-write memory,
write-only memory, first-in-first-out buffers etc) where plat-
form can have optional resource components and variability
constraints on resources (dependency, incompatibility, etc.).
To capture variability aspects of a platform specification, we
propose a formal architecture model defined as follows.

Definition 2. A variable resource graph is a tuple
V RG = (Proc, S, Cs, ξ, θ, φrequires, φexcludes) where:

• Proc = (F,B,Cb ⊆ (F ×B)× (B × F )) is a processor
composed of a set F of possible functions, B is a set of

processor internal first-in-first-out buffers and Cb the
connections between the different functions and buffers
representing the processor pipeline.

• S is a set of memory storage, and ξ : S → {c0, ..., ci ∈
N∗} returns a set of alternative capacities of storage
s ∈ S,

|ξ(s)| =

{
> 1, if s has a variable storage capacity

1, if s has not a variable storage capacity

• Cs ⊆ (S×Proc)∪ (Proc×S) is the set of connections
between memory storage and processors,

• R ⊆ Proc ∪ S is the set of resource components (i.e.
processors and memory storage),

• θ : R → B return true if a component (i.e. processor
or memory storage) is optional,

• φrequires : R → R captures dependency between re-
source components, similarly φexcludes : R → R cap-
tures incompatibility.

The set of, input memories to a processor function I(f), out-
put memories from a processor function O(f) are denoted by:

∃p = (F,B,Cb) ∈ Proc,
I(f ∈ F ) : {m ∈ S ∪B|(m, p) ∈ Cs ∨ (m, f) ∈ Cb},
O(f ∈ F ) : {m ∈ S ∪B|(p,m) ∈ Cs ∨ (f,m) ∈ Cb}.

As a variable platform represents multiple platform configu-
rations, we also capture implicitly all these configurations by
introducing several functions, θ manages the optionality of a
resource component. If θ(r) = ⊥ the resource is mandatory,
otherwise the resource is optional, φrequires and φexcludes
manages constrained relations of dependency and incom-
patibility between resource components. φrequires(r) = r0
means that if r is implemented then r0 must be implemented
too. r depends on r0. On the contrary φexcludes(r) = r0
means that r and r0 cannot be implemented on the same
platform variant. r and r0 are alternatives.

As memory storage can have alternative capacities, we in-
troduce the function ξ which returns the set of alternative
capacities C = ξ(s), each memory storage has at least one
size and if |ξ(s)| > 1 the capacity of s is variable.

If the platform has no component variability ∀r ∈ R, θ(r) =
⊥ and no variable memory storage, ∀s ∈ S, |ξ(s)| = 1, the
platform is not variable.

The platform specification of the running example V Gre is
then formalized as

(Procre = {DCU,GPU}, Sre = {RAM,ROM},

Csre = {(RAM,DCU), (ROM,DCU),
(RAM,GPU), (ROM,GPU), (GPU,RAM)})

where,

DCU = (Fdcu = {adcu, cdcu}, Bdcu = r0dcu,
Cbdcu = {(adcu, r0dcu), (r0dcu, cdcu)}),

GPU = (Fgpu = {agpu, bgpu}, Bgpu = r0gpu,
Cbgpu{(agpu, r0gpu), (r0gpu, bgpu)}),



with,

ξ(ROM) = 4096, ξ(RAM) = {1024, 2048},

θ(GPU) = θ(RAM) = >, θ(DCU) = θ(ROM) = ⊥

φrequires(GPU) = RAM,φrequires(RAM) = ∅,

I(agpu) = {ROM,RAM}, O(agpu) = {r0gpu, RAM},

I(cdcu) = {r0dcu, ROM,RAM}, O(cdcu) = ∅.

3.4 Variability-Aware Mapping Process
The mapping algorithm takes as inputs the variable data-
flow and configurable platform models in order to find all
embedded system implementations. We propose a mapping
model to not only capture all implementations of a single
data-flow into a single platform but to capture all data-flow
variants implementations onto all platform configurations.
Our variability-aware mapping model can be seen as a prod-
uct line of traditional mapping models.

Definition 3. A variability-aware data-flow-oriented
mapping VM = (Tm,Dm,Em) where:

• Tm ⊆ T ×F is the set of possible mappings of tasks on
processors ∀(t, f) ∈ Tm, t can be mapped on processor
function f because f can implement t,

• Dm ⊆ D×S is the set of mappings of data on memory
storage,

• Em ⊆ E× (S∪B) is the set of data-paths mapping on
memory by which data are consumed/produced.

Definition 4. The Variability-Aware Mapping function
M = V DG× V RG→ VM sorts topologically the data-flow
and finds appropriate mapping for each data, task and data-
paths of the data-flow using resources of the resource graph.

Basically, each valid mapping should respect consistency
constraints such as that
(1) All tasks are mapped to, a least, one processor function:

∀t ∈ T,∃(t, f) ∈ Tm,
(2) All data are mapped to, at least, one memory storage:

∀d ∈ D,∃(d, s) ∈ Dm,
(3) All data-paths are mapped to, at least, one appropriate
mapping. For data-path starting by an input datum, the
storage on which the datum is mapped has to be reachable
by the processor function on which the task consuming the
datum is mapped.

∀e = (d ∈ D, p, t) ∈ E,∃(e, s ∈ S) ∈ Em,

∃(d, s) ∈ Dm,∃(t, f) ∈ Tm, s ∈ I(f),
For data-path between tasks, the memory on which the out-
put of the first task is mapped has to be reachable by the
processor function on which the second task is mapped.

∀e = (t ∈ T, p, t′) ∈ E,∃(e,m) ∈ Em,

∃(t, f) ∈ Tm,∃(t′, f ′) ∈ Tm,m ∈ O(f) ∧m ∈ I(f ′)
The mapping model of the running example VMre is then
formalized as

(Tmre = {(a, adcu), (a, agpu), (b, bgpu), (c, cdcu)},

Dmre = {(d1, RAM), (d1, ROM), (d2, RAM), (d2, ROM)},

Emre = {((d1, p1, a), RAM), ((d1, p1, a), ROM),
((d1, p1, b), RAM), ((d1, p1, b), ROM),
((a, p2, c), r0dcu), ((a, p2, c), RAM), ((b, p2, c), RAM),
((d2, p3, c), RAM), ((d2, p3, c), ROM))})

Finally, The design space representing all system implemen-
tations, called variability-intensive embedded system design
space is then composed of a data-flow, platform and map-
ping:

V DS ⊆ (V DG× V RG× VM)

3.5 Design Space as a Behavioral Product Line
Automata and model-checking techniques have been widely
used to model and validate real-time and embedded systems
[4, 5]. Interestingly, the basic approach used is to schedule
an application automaton using a platform automaton [10].
Unfortunately, these approaches are not design to manage
any variability aspect of specifications.

Our framework relies on Featured-Transition-Systems (FTS)
to represent and validate the design space. FTS has the
strength to model explicitly the variability points structural-
ly, through a Feature Diagram [3] (FD), instead of modeling
variability points behaviorally, by optional transition with
possible constraints [24]. This eases the transformation to
featured automaton and the removal of invalid implementa-
tions from it. In our approach, we also use LTL property
to ensure that all valid execution paths of all system imple-
mentations reach the end state of all task of the data-flow.

Definition 5. A featured automaton is a tuple FA =
(Loc, Loc0, I, Act ⊆ Aff∪φ∪Com, trans, χ, Ch, L,AP, d, λ)
such that:

• Loc is a finite set of locations, Loc0 ∈ Loc, is a set of
initial states and I ∈ Loc, is a set of final states,

• Ch is a finite set of communication channels,

• χ is a finite set of variables,

• Act is a set of, Aff which is a finite set of variable af-
fectations, φ which is a finite set of guards in a boolean
expression form and Com, which is a set of communi-
cations Com ⊆ {c!m, c?m, c!?m|c ∈ Ch,m ∈ χ}

• trans ⊆ Loc×Act× Loc are state transitions,

• d = (N ⊆ Nm ∪ Nopt ∪ Nxor, DE ⊆ N × N,Tcl) is
a Feature Diagram (FD), N is the set of mandatory,
optional and alternatives features, DE represents rela-
tion between features, Tcl are constraints between fea-
tures, JdKFD ⊆ P(N) is the set of valid product config-
urations,

• λ : trans → B(N) is a total function that labels tran-
sitions with feature expressions.

• AP is a set of atomic proposition and L : Loc → AP
labels transitions with atomic propositions.

A transition s
α−→ s′ is possible for the set of product config-

urations P ⊆ Jλ(s
α−→ s′)K and if



∀g ∈ α ∩ φ, g is satisfied,
∀(c?m) ∈ α ∩ Com, wait for data event c!m,
∀(c!?m0) ∈ α∩Com, send data event c!m0 but wait for data
event c!m1 with m0 = m1.

Definition 6. A Linear Temporal Logic property (LTL)
is a temporal expression of atomic proposition that all possi-
ble executions of system variants should satisfy as, JfaKFA |=
ϕ where
ϕ ::= a ∈ AP |ϕ ∧ ϕ| � ϕ . Symbol � means that the property
will become true at some point in the future.

We now show how our design space is transformed to a FA.
To simplify the transformation process, let us use the fol-
lowing functions:

f : T ∪ Path ∪R→ N, fs : D ∪ S × N∗ → N,

fto : Path→ N, ffrom : Path→ N,

fto : Path× T → N, ffrom : T ∪D × Path→ N,

fm : T ∪Path→ N, ftm : T ×F → N, fpm : Path×S∪B →
N , which transforms model elements to features.

For example, in our running example, the functions would
be:

f(a) = A, fs(d2, 1024) = D2Size1024

fto(p1) = p1 To, ffrom(pfrom) = p1 From,

fto(p1, a) = P1ToA, ffrom(a, p2) = P2FromA,

fm(a) = Am, fm(p1) = P1m,

ftm(a, adcu) = AOnAdcu, fpm(p1, ROM) = p1OnROM

f(RAM) = RAM, fs(RAM, 1024) = RAMSize1024, ...

Similarly,

c : T ∪D ∪ Path ∪ F ∪ S → Ch,

cm : T ∪ Path→ Ch

transforms model elements to communication channels to
interact with them at automaton level.

A first function GenFA : V DG → FA × LTL transforms a
variable data-flow graph into a FA and generates the LTL
property in the following way.

(1.1) it transforms each datum d with variable size into a
xor feature group (cf. fig.4(a)):

ζ(d) > 1 =⇒ ∀s ∈ ζ(d), ∃(f(d) ∈ Nxor, fs(d, s)) ∈
DE

(1.2) it creates the automaton for each source datum d ∈ D
(cf. fig.4(b)), after setting the datum size, calling the
mapping automaton (cf. fig. 6(a, b)) that will allocate
the datum on the memory.

∀s ∈ ζ(d), ∃{t0 = (s0
size(in)=s−−−−−−−→ s1) , where,

|ζ(d)| > 1 =⇒ λ(t0) = fs(d, s),

s1
∀p∈O(d),cm(p)!?in−−−−−−−−−−−−→ s2, s2

∀p∈O(d),c(p)!in−−−−−−−−−−→ s3} ∈ trans

(2.1) it transforms each variable data-path p in a xor feature
group (cf. fig. 4(a)).

|O(p)| > 1 =⇒ ∀o ∈ O(p),
∃(fto(p) ∈ Nxor, fto(p, o)) ∈ DE

|I(p)| > 1 =⇒ ∀i ∈ I(p),
∃(ffrom(p) ∈ Nxor, ffrom(i, p)) ∈ DE

(3.1) it creates task/data-paths consistency constraints (cf.
fig. 4(a)).

∀t ∈ T,∀p ∈ |I(t)|, |O(p)| > 1 =⇒
∃(f(t) ⇐⇒ fto(p, t)) ∈ Tcl

∀t ∈ T,∀p ∈ |O(t)|, |I(p)| > 1,
∃(f(t) ⇐⇒ ffrom(t, p)) ∈ Tcl

(3.2) it creates for each task t the automaton (cf. fig. 4(c))
that will wait for data-paths allocation, then call the
mapping automaton (cf. fig. 6(c)) to execute the task.

∃{t0 = (s0
∀p∈I(t),c(p)?in−−−−−−−−−−→ s1), where,

f(t) ∈ Nopt =⇒
λ(t0) = f(t) ∧ λ((s0 −→ s4) ∈ trans) = ¬f(t),

s1
∀p∈O(t),cm(p)!?out−−−−−−−−−−−−−→ s2 , s2

cm(t)!?in,out−−−−−−−−−→ s3,

s3
∀p∈O(t),c(p)!out−−−−−−−−−−−→ s4 ∈ I,
where, L(s4) = tend ∈ AP} ∈ trans

(3.3) it generates the LTL formula that checks that a valid
execution must, at some point, satisfy atomic proposi-
tion of all data-flow task terminal states.

ϕ = �(∧s∈I,L(s)6=∅L(s))

(a) Application FD

(b) Datum d1 FA

(c) Task A FA

Figure 4: Partial variable data-flow application FA

The second function GenFA : V RG → FA transforms a
variable resource graph into a FA in the following way.

(1) it creates feature constraints on resource implementa-
tion (cf. fig. 5(a)).



∀r ∈ R, θ(r) = > =⇒ ∃f(r) ∈ Nopt
∀r ∈ R, ∀rreq ∈ φrequires(r), ∃(f(r) =⇒ f(rreq)) ∈
Tcl

∀r ∈ R, ∀rexc ∈ φexcludes(r), ∃(f(r) =⇒ ¬f(rexc)) ∈
Tcl

(2.1) it creates for each storage s features representing stor-
age alternative sizes.

∀c ∈ ξ(s), ∃(f(s) ∈ Nxor, fs(s, c)) ∈ DE

(2.2) it creates for each storage s an automaton that rep-
resents basic memory behavior (cf. fig. 5(b)), cons
and cap are respectively the consumed size and the
maximal capacity of the storage. Through channels,
one can allocate memory, and if there is not enough
memory, an error is raised.

∀c ∈ ξ(s), ∃{t0 = (s0
cons=0−−−−−→ s1), where,

f(s) ∈ Nopt =⇒
λ(t0) = f(s) ∧ λ((s0 −→ s4) ∈ trans) = ¬f(s),

s1
cap=c−−−−→ s2, where, λ(s1

cap=c−−−−→ s2) = f(s, c),

s2
c(s)?in,cons+=size(in)−−−−−−−−−−−−−−−→ s3, s3

cons<size−−−−−−−→ s2,

s3
cons≥size,error−−−−−−−−−−−→ s4} ∈ trans

(3) it creates for each processor p an automaton that mod-
els basic graphic processor pipeline behavior (cf. fig.
5(c)). When a processor function is executed, the in-
put and output are checked to verify that the pipeline
is not misused.

∀p = (F,B,Cb) ∈ Proc, ∀f ∈ F,
∀(si, p) ∈ Cs, ∀(p, so) ∈ Ws, ∀(bi, f) ∈ Cb,∀(f, bo) ∈
Cb,

∃{t0 = (s0
c(f)?in,out−−−−−−−→ s1), where,

f(p) ∈ Nopt =⇒
λ(t0) = f(p) ∧ λ((s0 −→ s4) ∈ trans) = ¬f(p),

s1
loc(in)=si∧∀(bi,f)∈Rb,bi=free−−−−−−−−−−−−−−−−−−−−−→ s2,

s1
loc(in)=bi∧bi=in−−−−−−−−−−−→ s2,

s2
loc(out)=so∧∀(f,bo)∈Wb,bo=free−−−−−−−−−−−−−−−−−−−−−−→ s3,

s2
loc(out)=bo∧bo=free−−−−−−−−−−−−−−→ s3, s3

c(f)!in,out−−−−−−−→ s0} ∈ trans

A third function GenFA : VM → FA transforms a variabi-
lity-aware dataflow-oriented mapping into a FA as follows.

(1.1) it creates features representing all possible task map-
pings on processor function (cf. fig. 6(a)).

∀(t, f) ∈ Tm,∃(fm(t) ∈ Nxor, ftm(t, f)) ∈ DE

(1.2) it creates for each task mapping the automaton that
executes the processor function according to the map-
ping configuration (cf. fig. 6(c)).

∀t ∈ T,∀(t, f) ∈ Tm, ∃{t0 = (s0
cm(t)?in,out−−−−−−−−→ s1),

where,
fm(t) ∈ Nopt =⇒
λ(t0) = fm(t) ∧ λ((s0 −→ s3) ∈ trans) = ¬fm(t)

t1 = (s1
c(f)!?in,out−−−−−−−−→ s2), where, λ(t1) = ftm(t, f),

s2
cm(t)!in,out−−−−−−−−→ s3},∈ trans

(2.1) Like 1.1, it creates features representing all possible
data-path mappings on memory.

∀((x, p, y), s) ∈ Em,∃(fm(p) ∈ Nxor, fpm(p, s)) ∈ DE

(2.2) Like 2.2, it creates for each data-path mapping the
automaton that allocates memory (cf. fig.6(b)).

∀p ∈ Path,∀((x, p, y), s) ∈ Em,

∃{s0
cm(p)?out−−−−−−→ s1, t0 = (s1

c(s)!?out,loc(d)=s−−−−−−−−−−−→ s2)

where, λ(t0) = fpm(p, s), s2
cm(p)!out−−−−−−→ s3} ∈ trans

Finally the function GenFA : V DS → FA, defined by:
GenFA((vdg, vrg, vm)) :

GenFA(vdg)||GenFA(vrg)||GenFA(vm),

transforms our design space into a featured automaton.

(a) Platform FD

(b) RAM storage

(c) GPU processor

Figure 5: Partial variable platform FA



To preserve the consistency of the design space, variability
constraints are inferred such as:

(1.1) Task features with variable data-path features are not
implemented on all data-flow variants, then those fea-
tures are made optional (cf. fig. 4(a)).

∀t ∈ T,
∃pi ∈ I(t), |O(pi)| > 1 ∨ ∃po ∈ O(t), |I(po)| > 1

=⇒ f(t) ∈ Nopt

(1.2) Variable task features have their mapping variable too;
if a task feature is implemented its mapping must be
implemented too, and vice-versa (cf. fig. 4(a) & 6(a)).

∀t ∈ T, f(t) ∈ Nopt =⇒
fm(t) ∈ Nopt ∧ (f(t) ⇐⇒ fm(t)) ∈ Tcl

(2.1) If a task mapping feature is implemented on a proces-
sor function, the implemented input and output path
mappings have to be reachable (cf. fig. 6(a)).

∀(t, f) ∈ Tm,∀pi ∈ I(t), ∀po ∈ O(t),

∃(ftm(t, f) ⇐⇒
(

∨
((x,pi,t),m∈I(f))∈Em

fpm(pi,m))∧

(
∨

((t,po,x),m′∈O(f))∈Em
fpm(po,m

′))) ∈ Tcl

(3.1) If a task mapping feature using an optional processor
is implemented, the processor must be implemented
too.

∀p = (F, x, y) ∈ Proc, f(p) ∈ Nopt, ∀(t, f ∈ F ) ∈ Tm
=⇒ ∃(ftm(t, f) =⇒ f(p)) ∈ Tcl

Similarly, if a data-path mapping feature is implemented on
fifo buffer of optional processor (3.2) or optional memory
storage (3.3), the resource have to be implemented.

(3.2) ∀pu = (F,B, x) ∈ Proc, ∀((y, p, z), b ∈ B) ∈ Em,
f(pu) ∈ Nopt =⇒ ∃(fpm(p, b) =⇒ f(pu)) ∈ Tcl

(3.3) ∀((x, p, y), s ∈ S) ∈ Em, f(s) ∈ Nopt =⇒
∃(fpm(p, s) =⇒ f(s)) ∈ Tcl

As an illustration, in our running example, the rules would
be:
(1.2) A ⇐⇒ Am, B ⇐⇒ Bm
(3.1) BOnBgpu =⇒ GPU , AOnAgpu =⇒ GPU
(3.2) P2OnR0gpu =⇒ GPU
(3.3) P1OnRAM =⇒ RAM , P2OnRAM =⇒ RAM

P3OnRam =⇒ RAM

3.6 Validation Process
As our form of behavioral product lines is based on FTS [8],
model checking techniques can be directly reused. In our
implementation (cf. next section), we reuse the ProVeLines
checker as a back-end for the validation process. The pro-
cess consists in verifying all execution paths of all products
JfaKFA of the product line, in an efficient way by exploiting
commonalities between different products. Theoretically,
the more the products share common behavior and the more

(a) Mapping FD

(b) data-path Mapping p1 FA

(c) Task Mapping A FA

Figure 6: Partial Variability-Aware Mapping FA

efficient should be the variability aware model checking in
comparison of iterative model checking on individual sys-
tems [7]. Instead of exploring all executions for each system
implementation, the model-checker explores an execution π
once for all implementations P able to produce this specific
execution:

P = {p ∈ JdKFD|π ∈ Jfa|pKA}.

As mentioned in the previous section, some system config-
urations may expose inconsistent behaviors (e.g., memory
allocation error, violation of graphical pipeline constraints).
These behaviors will abort the execution and the basic prop-
erties (e.g. safety, absence of deadlock, state reachability)
will obviously not be satisfied. In our validation process, we
are able to remove these configurations from the system by
relying again on the back-end model checker [7]. It com-
putes the set of bad product configurations, which we remove
from the feature diagram of the product line by adding the
appropriate cross-tree constraints.

4. VALIDATION

4.1 Implementation

4.1.1 Overview
The framework depicted in Fig. 3 has been entirely im-
plemented in Java. It consists of 3 main modules: i) meta-
models of variable application and configurable platform (cf.
Fig.7 and 8) ii) mapping meta-model Fig.9 and algorithm
(cf. listing 3) iii) generators that transform the design space



composed by all system sub-domains (application, platform,
mapping) (cf. listing 4) into formal models of behavioral
product line (cf. listings 5 and 6) in order to remove invalid
products (cf. listing 8) reusing automated formal reasoning
techniques (cf. listing 7).

The first module allows for specifying a variable data-flow
oriented application (cf. listing 1) and a configurable plat-
form (cf. listing 2) via fluent APIs. As a result, the running
example inputs are captured in less that 30 lines of code.
The second module calls our mapping algorithm (cf. listing
3) in order to infer, at the end, the resulting design space.
The third and last module transforms the design space into
a Feature Model in TVL (cf. listing 5) and a Featured Au-
tomaton in fPromela (cf. listing 6), capturing, respectively
the structural variability and behavior of the design space.

We reuse the ProVeLines model-checker [9, 6], which con-
sumes TVL and fPromela inputs to assess all system designs,
in one run of variability-aware model checking. The result-
ing outputs, printed as a set of invalid sub-products lines (c.f
listing 7), are directly used to constraint the design space to
only obtain valid products (cf. listing 8).

4.1.2 Applications as Variable Data-Flows
Listing 1 illustrates how we capture the functional require-
ments (cf. fig. 1) of the embedded system through an ex-
tended data-flow Java API. The data-flow meta-model (cf.
Fig. 7) contains the classic structure and behavior of the
data-flow (data instanced at line 3,6, task at line 4,5,7, data-
path at line 2), but also captures the variability in both
structural properties (e.g., data size at line 6) and behavioral
properties (e.g., alternative flows by allowing data-paths to
have multiple input and output tasks connected at line 4,5).

Listing 1: Running Example Application

1 Application app = new Application("WarpWithWhat");
2 Path p1 = app.addPath("P1"); Path p2 = ...; Path p3

= ...;
3 DataSource d1 =

app.addDataSource("D1").addSize(512).connect("o",
p1);

4 Task ta = app.addTask("ta", "A").connect(p1,
"i").connect("o", p2);

5 Task tb = app.addTask("tb", "B").connect(p1,
"i").connect("o", p2);

6 DataSource d2 =
app.addDataSource("D2").addSizes(512,
1024).connect("o", p3);

7 Task tc = app.addTask("tc", "C").connect(p2,
"i0").connect(p3, "i1");

8 app.split(p1).to(ta).to(tb);
9 app.join(p2).from(ta).from(tb);

4.1.3 Platforms as Variable Resource Graphs
Listing 2 illustrates how we express the platform specifica-
tion (cf. fig. 2) of the embedded system through a resource
component based Java API. The platform meta-model (cf.
Fig. 8) contains templated resource components such as
multi-pass processors instanced at line 13 and streaming pro-
cessor at line 6. Other elements in the template can be hard-
ware functions instanced at line 7,10,14, read-only memory
at line 2, read-write RAM memory at line 3, first-in-first-

Figure 7: Application Metamodel

out buffers at line 8,14, relevant elements being connected
with each others. In addition, a platform can have optional
resource components (line 4,13) and variability dependency
(line 15) on resources.

Listing 2: Running Example Platform

1 Platform plt = new Platform("Kepler");
2 Storage rom = plt.addStorage("ROM",

Type.READ_ONLY).addCapacity(4096);
3 Storage ram = plt.addStorage("RAM",

Type.READ_AND_WRITE).addCapacities(1024, 2048);
4 ram.setOptional();
5

6 Component dcu = plt.addComponent("DCU");
7 Processor a_dcu = dcu.addProcessor("a", "A");
8 Memory r0_dcu = dcu.addFIFOBuffer("R0");
9 a_dcu.connectToInputPort("i", ram,

rom).connectToOutputPort("o", r0_dcu);
10 Processor c_dcu = dcu.addProcessor("c", "C");
11 c_dcu.connectToInputPort("i0", ram, rom,

r0_dcu).connect("i1", ram, rom);
12

13 Component gpu =
plt.addComponent("GPU").setOptional();

14 Processor a_gpu = ...;Memory r0_gpu = ...;Processor
b_gpu = ...;

15 gpu.requires(ram);

Figure 8: Platform Metamodel

4.1.4 Variability-Aware Mapping Process
The mapping algorithm (cf. listing 3) takes as inputs the
variable data-flow and configurable platform Java models,
and generates the Variability-Aware Mapping Space(cf. Fig.
9 for metamodel). It then represents all mapping of appli-
cation elements onto platform resources



The process is composed of two steps : (i) it maps each data
source and output data path on storage memories (line 4-
7) (ii) it maps each task on appropriate processor function
(i.e., processor function can implement the task while data
path inputs can be mapped on reachable memory) and maps
task output on memory (line 8-11). Then, the algorithm
prunes unfeasible mappings w.r.t. structural and variabil-
ity constraints at line 12 (e.g., data-path mapping are not
reachable by any task mapping or vice versa), finally adding
appropriate constraints to ensure mapping space consistency
(line 13).

Listing 3: Mapping Algorithm

1 Mapping mapping = new MappingAlgorithm().map(app,
plt);

2 ...
3 public Mapping map(Application app, Platform plt) {
4 for(DataSource ds : app.getDataSources()) {
5 addDataSourceMappings(ds, plt.getStorages())
6 addDataPathMappings(ds);
7 }
8 for(Task t : app.getSortedTasks()) {
9 addTaskMappings(t, getProcessors(plt, t));

10 addDataPathMappings(t);
11 }
12 do while(removeUselessMappingChoices());
13 addMappingConstraints();
14 return new Mapping(dms, tms, pms);
15 }

Figure 9: Mapping Metamodel

4.1.5 Design Space as a Behavioral Product Line
From the system design space model (cf.listing 4), which
is the consistent composition of our 3 system sub-domains
(i.e., application, mapping, platform), a Behavioral Product
Line representing all system implementations is generated
into a Feature Automaton (cf.listing 4). While the behavior
of the whole product line is encoded in fPromela (cf. listing
6), a Feature Model in TVL encodes its structural variability
(cf.listing 5).

Our framework relies on Featured-Transition-Systems (FTS)
to formally reason on the structure and behavior of the
design space. FTS has the strength to model explicitly
the variability points structurally, through a Feature Dia-
gram [3] (FD) in TVL(cf.listing 5).

Thus, a single variability model is able to capture data size
at line 9-12, memory capacity at line 19-22, data mapping
28-31, task mapping 32-35, alternative flow 9-12,13,14 vari-

abilities, resource optionality 18,24, resource dependency 45,
mapping 41 and design space consistency constraints 39,
43. On the other hand, the behavior of the design space is
captured by an executable network of featured automata in
fPromela where state transitions are guarded by constraints
on feature values.

To execute the variable application over the configurable
platform, featured automata that capture behavior of data-
flow processes, such as data node (lines 18-34) and task node
(lines 36-52), call functions over platform resource featured
automata, such as memory storage (line 2-16) and processor.

Each featured automaton may have variable properties such
as capacity for memory storage process (lines 8-11), data size
(lines 21-24) and data deployment location (lines 25-30) for
data node process, or task deployment (line 42-47) for task
process. In addition to properties, a featured automaton
may be optional (i.e., behavior is executed if the element is
present in the system design cf. lines 39-50).

According to the subset of design decisions to explore, vari-
able properties are incrementally fixed. For example, for
system designs where D2 with a size of 1024 is deployed on
RAM with a capacity of 1024, we observe that after allo-
cating D2 on RAM (line 26,6), RAM is full, and any other
data allocation on RAM (e.g., D1 or data of P2) would lead
to a memory violation (cf. listing 7 line 4).

Listing 4: Generate Running Example Formal
Models from Design Space

1 DesignSpace ds = new DesignSpace(app, mapping, plt);
2 ToTVL toTVL = new ToTVL().generate(ds);
3 ToPML tofPML = new TofPML().generate(ds);

Listing 5: Part of Running Example Design Space
variability in TVL

1 root DesignSpaceVariability{
2 group allOf{
3 ApplicationVariability group allOf{
4 ...
5 P1_to group oneOf{
6 P1_to_TA,
7 P1_to_TB
8 },
9 D2_size group oneOf{

10 D2_size_512,
11 D2_size_1024
12 },
13 opt TA,
14 opt TB
15 }
16 group PlatformVariability{
17 ...
18 opt RAM group allOf{
19 RAM_size group allOf{
20 RAM_size_1024,
21 RAM_size_2048
22 }
23 },
24 opt GPU
25 }
26 group MappingVariability{
27 ...
28 D2_On group oneOf{



29 D2_On_RAM,
30 D2_On_ROM
31 }
32 opt TA_On group oneOf{
33 TA_On_DCU_a,
34 TA_ON_GPU_a
35 },
36 }
37 }
38 ...
39 TA <=> TA_On;
40 ...
41 D2_On_RAM => P3_On_RAM
42 ...
43 D2_On_RAM => RAM;
44 ...
45 GPU => RAM;
46 ...
47 }

Listing 6: Part of Running Example Design Space
behavior in fPromela

1 ...
2 active proctype Storage_RAM(){ atomic{
3 Data in;
4 ...
5 do
6 :: RAMalloc?in ->
7 cons = cons + in.size;
8 if
9 :: RAM_capacity_1024 -> size = 1024;

10 :: RAM_capacity_2048 -> size = 2048;
11 fi;
12 assert(cons <= size);
13 RAMalloc!in;
14 od;
15 ...
16 };}
17 ...
18 active proctype Data_D2(){ atomic{
19 Data out;
20 ...
21 if
22 :: D2_size_512 -> out.size = 512;
23 :: D2_size_1024 -> out.size = 1024;
24 fi;
25 if
26 :: D2_On_RAM -> RAMalloc!out;
27 RAMalloc?eval(out);
28 :: D2_On_ROM -> ROMalloc!out;
29 ROMalloc?eval(out);
30 fi;
31 ...
32 P3!out;
33 ...
34 };}
35 ...
36 active proctype Task_TA(){ atomic{
37 Data in, out;
38 ...
39 if
40 :: TA -> P1?in
41 ...
42 if
43 :: TA_On_GPU_a -> GPU_a!in, out;
44 ...
45 :: TA_On_DCU_a -> DCU_a!in, out;
46 ...
47 fi;

48 ...
49 :: else -> skip;
50 fi;
51 ...
52 };}
53 ...

4.1.6 Validation Process
The generated formal models (fPromela and TVL) are check-
ed through ProVeLines with specific command lines (cf.list-
ing 7 line 1). It returns output containing non feasible sub-
sets of products (line 4) that are used to invalid variants by
constraining the design space variability space (cf. listing 8
line 7). More precisely, the model checking is going to verify
products against inconsistent behaviors (e.g., memory allo-
cation error, violation of graphical pipeline constraints) and
more classic properties, such as safety, absence of deadlock
and state reachability on all variants in one run. This sin-
gle execution [7] makes also possible to remove all products
(cf.listing 7 at line 4) leading to an invalid execution , so
to improve and speed-up the verification process (see next
Section).

Listing 7: Part of Running Exemple ProVeLines
output

1 .\provelines -check -exhaustive -nt
running_example.pml

2 ...
3 assertion failled : (assert(cons <= size);) at

line... for products:
4 D2_size_1024 && D2_On_RAM && RAM_capacity_1024

&& D1_On_RAM && P1_On_RAM
5 ...

Listing 8: Part of Valid DesignSpace Variability in
TVL

1 root DesignSpaceVariability{
2 group allOf{
3 ...
4 }
5 ...
6 //invalid products constraints
7 !(D2_size_1024 && D2_On_RAM && RAM_capacity_1024

&& D1_On_RAM && P1_On_RAM);
8 ...
9 }

4.2 Evaluation

4.2.1 Industrial Use Case
In order to validate our tooled approach on an industrial
scale, we applied it to a real low-end market instrument clus-
ter provided by Visteon, the automotive systems company
we collaborate with.

The functional requirements of the cluster represents a vari-
able data-flow with 3 source images processed by 8 tasks
connected by 9 data-paths. Each source image has two dif-
ferent resolutions (i.e HD and LD) and two tasks sub flow
sequences are alternative through a xor join/split data-path,



Table 1: Industrial use case results

Variability Implementation Platform data-flow States explored Time ms / states /
variants variants variants (re-explored) (ms) variants variants

NONE 78 0 0 2453 (331) 27 0.346 31.448
Data size 624 0 8 15254 (2406) 201 0.322 35.976
Platform 424 24 0 5673 (546) 65 0.153 13.379

Platform and data size 3392 24 8 37435 (4856) 602 0.177 11.036
data-path 150 0 2 4727 (981) 74 0.493 31.513

data-path and data size 1200 0 16 29066 (6994) 587 0,489 24,222
ALL >4800 24 16 72704 (14652) 2361 - -

Platform mult. mem 16408 40 0 134941 (4534) 4010 0.244 8.224
Platform mult. proc 2848 80 0 19625 (3224) 337 0.118 6.890

Pltf. mult. proc & mem 516608 160 0 1341999 (175304) 289721 0.560 2.597

resulting in 16 data-flow variants. The platform specifica-
tion of the cluster is then represented by a variable hardware
component system with 2 memories (a Video RAM and a
ROM Flash) and 3 processors (two multi-pass GPU bitblit-
ter and one streaming- based DCU). Each processor has a
pipeline processing of 4 stages and 3 fifo buffers. In terms
of platform variability, the 2 bitblitters and the VRAM are
optional. Each memory has 2 different configurable sizes at
manufacturing time. The number of platform configurations
in the use case is then 24.

If each data-flow variant had one possible implementation on
each platform configuration, the number of different cluster
system implementations would be 384. In reality, some plat-
form configurations do not provide the graphical functional-
ities required by some data-flow variants. Furthermore, due
to multiple task implementation choices, data-flow variants
have several thousand possible implementation alternatives
onto a platform configuration. Setting the platform con-
figuration to the higher end (i.e. selecting VRAM and all
processors), one can find 72 and 78 possible implementations
for two data-flow variants that take different xor data-path
decisions. This is due to more pipelining opportunities in
the second data-flow variant, even if there is more data-path
mapping possibilities in the first one.

Table 1 shows time measurements of the complete toolchain
while varying the different variability dimensions over the
use case. In the first seven rows, we observe that the whole
process is performing well with small to medium scale of
variabilities. Data and memory size variability verifications
are faster and require more state exploration than plat-
form component and data-path variabilities. Component
and data-path variabilities are also slower to check than data
and memory size variabilities. It is likely to be due to the
fact that contrary to size variability, hardware component
and data-path variability are strongly impacting the imple-
mentation variability, and consequently the state space of
the model checker.

We have also complemented this experimentation by tak-
ing a single structural data-flow from the industrial use case
with a simulated larger platform, itself with multiple mem-
ories and processors. Results in the last three rows of Table
1 show that solving can scale to a large number of imple-
mentation variants. Even if the solving time is significant,

we observe that the number of states explored to assess all
the implementation variants is significantly low. This shows
that behavioral commonalities between system variants are
used to speed-up the verification process.

4.2.2 Scalability of System Variabilities
We now analyze the scalability of our solution against sys-
tem variability by increasing the application, platform and
mapping variability on simulated data. Fig. 10.a shows
measurements of our toolchain for data size and memory
capacities variability dimensions (called element variability)
while Fig. 10.b is about mapping dimensions. Each variable
system denotes his variability dimensions in the following
format :

flow; size; resource; capacity;mapping

Where flow represents the sum of flow variants of variable
data-paths, size the sum of alternatives data sizes, resource
the number of optional resources, capacity the sum of alter-
natives memory capacities and mapping the sum of alter-
natives mapping of application element onto platform re-
sources.

Fig. 10.a shows a system where data size and memory capac-
ities variability dimensions have been progressively increased
so that the first and last system counts, respectively, 384
and 6912 variants. We show relative time and (automaton)
states metrics – in total and per variants – compared to the
normalized system presenting the lowest variability. Thus,
for element variability dimensions (data size and memory
capacity), even if, obviously, the time and states number
needed to verify the system increase according to variability
dimensions, the verification time and states number needed
by variant decrease.

For the scalability of the mapping variability dimension, we
mainly increase progressively the mapping dimension over
5 systems, the lowest system containing 64 variants while
the highest has 23328. We observe that the needed time
and explored states number grow quickly. We think this
is due to the intrinsic high complexity of both binding and
scheduling [22], which leads to configuration space and state
space explosion during checking. However, the verification
speed-up by variant is still interesting for high variability
system.



(a) Element Variability (b) Mapping Variability

Figure 10: Variability Analysis

(a) Mapping Complexity (b) Flow Complexity

Figure 11: Complexity Analysis



4.2.3 Scalability of System Complexities
We analyze here the scalability of our solution against sys-
tem complexity by growing the application and platform
size. Fig. 11.a shows an example where we increased pro-
gressively the size and complexity of both application and
platform sides while keeping the mapping variability at a
common factor (i.e., %40).

The normalized system presenting the lowest complexity
and variability. It contains 14 application nodes and paths
mapped on a 10 resources platform with 48 variants, while
the most complex system has 22 nodes, 13 resources, and
2880 variants. A global system complexity metric, taking
into account the system size and it’s number of variants,
has been discussed with our industrial partner.

We observe that the verification time and states needed in-
crease quickly according to the system complexity (applica-
tion and platform sizes). Interestingly, as the needed states
and time to explore per variant in more complex while the
system is growing, the verification time per variant is still
lower. This observation can also be made on Fig. 11.b,
where we progressively increase the complexity of a system
with flow variability.

4.3 Threats to Validity
The validation on a single case study can be considered as
the major internal threat to validity. Nonetheless it was
incrementally built by numerous meetings with different do-
main experts of the automotive systems company. We gath-
ered specification and feedback from several applications and
platforms case studies, and we finally chose the presented
one as the most representative among them.

As for external threats, we identified the data sets as the
main issue. While the data sets are large, they are still
simulated. Our creation procedure has been built to mimic
the structure and behavior of both the platforms and the
applications, taking the real case studies as a basis to be
expanded by generators. Still we do not have empirical evi-
dence of their correspondence.

5. CONCLUSION AND FUTURE WORKS
A tremendous amount of variability can be observed in em-
bedded systems, and especially in data-flow oriented ones,
which are now systematically built from highly variable spec-
ifications and target diverse hardware platforms configurable
at a very high level of detail. To handle the early functional
assessment of all these possible configurations, we proposed
in this paper a tooled approach that takes variable data-
flow specifications and variable hardware platform models
to map them together and transform them into a behavioral
product line representing the potential design space. These
models and toolchain allow to use automated reasoning tech-
niques to explore and assess the functional feasibility of all
represented variants in a single run, and invalid products
can be removed by adding constraints to the product line.

We reported on the application of the proposed approach
to a real-world industrial use case of automotive instrument
cluster, giving hints on a potential good applicability. Our
experimental validation with large simulated datasets also

shows a good scalability of the prototype implementation
for industrial-scale applications and platforms.

As future work, we first plan to facilitate the usage of the
framework with domain specific languages for input models
(specification and platform), and to conduct larger experi-
ments with them on different and new case studies from our
industrial partner. Interestingly, we think that some prod-
uct lines optimization techniques [11, 23] could be applied
to assess more variable and complex embedded systems.

We will also extend our variability-focused framework by
taking into account quality attributes (e.g. cost, run-time
etc.). The extension would then provide optimized product
selection as a complement to the functional validation pre-
sented in this paper. We expect this more complete frame-
work to be applicable in different contexts, being similar
in the separation of application models being mapped onto
component-based platforms.
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