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CNRS, I3S, France

Abstract—Embedded systems, like those found in the automo-
tive domain, must comply with stringent functional and non-
functional requirements. To fulfil these requirements, engineers
are confronted with a plethora of design alternatives both at
the software and hardware level, out of which they must select
the optimal solution wrt. possibly-antagonistic quality attributes
(e.g. cost of manufacturing vs. speed of execution). We propose
a model-driven framework to assist engineers in this choice.
It captures high-level specifications of the system in the form
of variable dataflows and configurable hardware platforms. A
mapping algorithm then derives the design space, i.e. the set
of compatible pairs of application and platform variants, and a
variability-aware executable model, which encodes the functional
and non-functional behaviour of all viable system variants. Novel
verification algorithms then pinpoint the optimal system variants
efficiently. The benefits of our approach are evaluated through a
real-world case study from the automotive industry.

I. INTRODUCTION

In many embedded systems, requirements engineering and
design activities are tightly intertwined and involve complex
multi-criteria decision-making over various concerns. As an
example, let us consider an infotainment feature in an au-
tomotive system. Specifying such a feature typically entails
defining a set of functional and non-functional (aka. quality)
requirements. Functional requirements define, for example, not
only what content should be displayed through the Human
Machine Interface (HMI), but also constraints imposed by
the hardware , like not exceeding the available memory.
Typical examples of non-functional requirements constrain
manufacturing costs or execution time. A notoriously difficult
problem is to establish whether such a set of requirements is
feasible and what is the best design to implement it.

Design options are not only constrained by the requirements
but also by the existing software and hardware architectures.
In our case, an HMI-rendering automotive system consists
of (1) a data processing application (i.e., data-flow oriented
embedded software) and (2) a resource-constrained hardware
platform (i.e., heterogeneous hardware components like non-
programmable processors and data storage units). The appli-
cation and the platform are, however, not completely fixed as
they have variation points. There are three main sources of
extensive variability. First, at the application level, multiple
data-flow variants can achieve the functional requirements,

* This work was done while Maxime Cordy was part of the U. of Namur.

differing in, e.g., the size of the flowing data chunks, the order-
ing of the operation tasks, or the choice between alternative,
functionally-equivalent tasks. Second, there exists a diversity
of configurable hardware platforms which can differ, e.g., in
memory capacities and processing pipelines. Third, there are
various ways of mapping and deploying a given application
on a specific platform, e.g., choose a processor to perform a
given task or select a memory unit to store a given data.

This threefold variability is typical in automotive and many
other kinds of embedded systems [1]. Unfortunately, it leads to
a high number of variants (1,548,288 in this particular case),
each of which represents a specific system design alternative
(or design for short), that is, a specific mapping of a specific
application variant to a specific platform variant. Among these
design alternatives, not all are able to realize the functional
requirements to the same extent, and the same holds for
the non-functional requirements. Given the sheer number of
variants, a systematic consideration of all design alternatives
is unfeasible for the software and system engineers whereas
the high level of competition in industry puts a high pressure
on them to deliver optimal solutions and do so timely [2].
Efficient automations therefore appear as a necessity.

Examples of questions the engineers need to quickly answer
are: Can the specified HMI be properly rendered on platform
X? Which feasible designs can be built with a budget of
Y? Which feasible designs can execute in less than Z time?
Which feasible designs, with a rendering quality higher than
P and a manufacturing cost lower than Q, exhibit the fastest
execution time? Which feasible designs reach the best tradeoff
between rendering quality, manufacturing cost and execution
time? Answering those questions not only requires a way to
deal with the variability-induced combinatorial explosion (see
previous paragraph), but also a way to reason simultaneously
about different types of concerns: feasibility/satisfiability and
optimality; functional and non-functional requirements; the
structure and the behaviour of the system. Although signif-
icant progress was made in the recent years to automate
reasoning on variability-intensive systems, existing solutions
only address specific facets of the problem in isolation. As
revealed by our experiments, partial solutions give suboptimal
designs, while complete but non-variability-aware solutions do
not scale. Hence the need for multifaceted, variability-aware
analyses capable of answering all the above questions.



Without such solutions, engineers mostly resort to intuition
and experience. Theoretical analyses can be made but are time-
consuming and often turn out largely suboptimal, if not com-
pletely wrong. Simulators are sometimes provided by platform
suppliers but analyzing all system variants requires simulations
for all of them, which is unrealistic. Quick prototyping may
occur when the platform is finally supplied but it is then too
late to backtrack if the wrong platform was picked. In the end,
current practices are deemed very unsatisfactory.

These observations were made by our partner Visteon
Electronics, an international leader in automotive systems,
and are corroborated by surveys such as [3]. They formed
the motivation for the industry-academia partnership which
led to this research effort. In this paper, we propose an
approach that combines and extends existing research results
in order to provide the first tooled framework able to solve the
multifaceted problem described above. Our contributions are:

1) modelling languages based on Y-chart [4], [5] to
capture functional and non-functional specifications of
variability-intensive embedded systems that can vary at
both the application and platform levels;

2) mapping algorithms to derive, from the application and
platform models, the resulting design space (i.e. all
design alternatives) while capturing all the structural,
behavioural, functional and non-functional variations;

3) the first variability-aware model-checking algorithm to
optimize multiple behaviour-dependent quality attributes
across all variants;

4) an integrated tool chain to evaluate the functional feasi-
bility and the non-functional satisfiability and optimality
of the whole design space at once;

5) qualitative and quantitative evaluations of the approach
based on a real system developed by Visteon. The quali-
tative evaluation shows that functional and non-functional
requirements were properly captured by our framework,
and optimal system designs were correctly identified.
The quantitative evaluations assess the scalability of our
approach and give us confidence that our framework
is applicable to the majority of Visteon’s systems and
similar systems developed elsewhere in industry.

Although its motivation originates from an industrial part-
nership, our contribution is not domain specific. Our modelling
method covers a large class of variability-intensive data-flow-
oriented systems with quality attributes. Our model-checking
algorithm is language-independent and can be applied to a
broader range of variability-intensive systems.

II. INDUSTRIAL CASE STUDY

This research originates from a collaboration with Visteon
Electronics, a leading company developing solutions for the
automotive industry such as instrument clusters, infotainment
and connected vehicles. In this section, we introduce a simpli-
fied exerpt of the system we use in our evaluations (see Sec.
VIII) to further illustrate and justify our approach.

An instrument cluster generally consists of a speedometer
and other instruments which, unlike traditional analog gauges,

Fig. 1: Our instrument cluster application case study
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Fig. 2: A variable data-flow specification

appear on an electronic visual display (see Fig. 1). By applying
various data-flow image processing effects (e.g., 3D gauges,
3D view of the car), it improves the driving experience.

To achieve economies of scale, such systems are often built
and sold to car manufacturers as product lines, which have to
meet and optimize the manufacturers’ variable requirements
for an entire range of cars. To be competitive, they are highly
constrained on quality and cost. As such, one must know as
early as possible in the development whether the expected
HMI can be rendered properly on a candidate platform.

At industrial scale, the threefold variability introduced in
Sec.I (i.e. from application, platform and mapping) prevents
any product-based exhaustive feasibility checking, let alone
exhaustive reasoning/optimization on quality attributes (e.g.
cost, rendering quality, runtime). Yet, some separation of con-
cerns is intrinsically possible as data-flows can be abstracted
from the implementation by domain experts (i.e. rendering en-
gineers). Platforms are already specified by hardware experts
to organize competitive tendering on hardware providers.

Fig. 2 shows an example of data-flow specification with
quality attributes. The different processing flows that meet the
HMI functional requirements are captured by a variable data-
flow. Images are processed by graphical tasks. Image D1 can
be processed by tasks A or B. D2 has three different possible
resolutions and is processed by task D. The images produced
by A (or B) and D are then processed by task C, which
delivers the final result. Task and image resolution impacts
the HMI rendering quality. In our case, performing B instead
of A significantly improves the rendering quality. Also, as the
resolution of D2 is increased, the overall quality raises as well.

At the platform level (Fig. 3), image processing functions
A,B,C,D are provided by a non-programmable Graphical
Processing Unit (GPU) and an advanced Display Controller
Unit (DCU). Within DCU, there are three functions (A, C and D)
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and two buffers (R0 and R1). Directed edges denote the flows
followed by data that transit through the processing pipeline
of processors, while functions may be applied or not. The
platform also includes data storage on RAM and ROM. GPU
and RAM are optional as everything can be stored in ROM and
then rendered directly to the screen by DCU. Yet, they improve
the runtime efficiency for a higher manufacturing cost. There
is a presence condition between RAM and GPU as RAM acts
as a dedicated cache memory for GPU, while RAM can be
used without GPU, e.g., to store more data or larger images.
RAM comes in three alternative capacities (at different costs).
Similarly, RAM, GPU and ROM have two possible frequencies.
Frequency acts as a scale factor for data processing/transfer
bandwidth for processors and memories.

Our overall goal is to assist engineers in determining which
variants (i.e. alternative designs consisting of a data-flow
variant deployed on a platform configuration) of the instrument
cluster can satisfy the imposed functional (FC) and non-
functional (NF) requirements.

To ensure the executabilty of the application on the plat-
form, a first FC requirement states: “Any data required by a
task must be stored in a memory storage accessible to the
processor that processes the task”. Its satisfaction depends
only on the structure of the design, e.g. which tasks must be
processed, which tasks exchange data with each other, which
memory storage is accessible by the processors, and how
tasks (resp. data) are mapped onto processors (resp. memory
storage). Another FC requirement states that the execution of
the application on the platform must eventually terminate. This
not only depends on the structure of the design but also on
its runtime behaviour, as bad scheduling of tasks and data
transfers may cause deadlocks. Checking the satisfaction of
this requirement by a given design is more complicated, as it
requires analysing many (if not all) its executions.

In addition to FC requirements, the design must also meet
NF requirements. These commonly include a maximal manu-
facturing cost, a minimal rendering quality, and a maximal ex-
ecution time (i.e. time to render graphics on the visual display).

Manufacturing cost and rendering quality are quality attributes
which depend only on the structure of the design (e.g. size of
input data, choice between alternative tasks, components of the
platform). Execution time, however, depends on both structure
(e.g. processor frequency) and behaviour (e.g. scheduling of
tasks and memory access operations).

Those requirements are not enough, though, as market
competition forces engineers to deliver the best system to each
specific customer. Among the variants, they must thus find
those offering the best trade-off between the quality attributes.

Achieving our goal thus requires solving the problem of
efficiently identifying the variants that:

1) Satisfy the FC requirements. We further decompose this
sub-problem in two challenges: (a) checking the FC re-
quirements that depend only on the structure of the design
(challenge FCS) and (b) checking FC requirements that
depend also on its behaviour (FCB).

2) Satisfy the NF requirements, that is, checking: (a) those
that depend only on the structure (NFS) and (b) those
that also depend on the behaviour (NFB).

3) Optimize the trade-off between the quality attributes
(NFOB). This challenge requires considering all quality
attributes. Optimizing only those that depend on the struc-
ture (NFOS) is easier, but leads to suboptimal solutions
(as revealed by our evaluations).

We must solve all those challenges to give engineers the means
of making appropriate design decisions at an early stage.

III. STATE OF THE ART AND RELATED WORK

Many approaches were proposed to tackle parts of the above
challenges. First, research in variability modeling is black-box
oriented and focused on structural aspects. It attempts to assess
[6], [7] or efficiently predict [8]–[13] non-functional properties
of the whole product line, thus tackling both FCS and NFS.
Extensions of these methods with multi-objective optimiza-
tion [14]–[19] allow to find optimal variants wrt. structural
quality attributes, thereby solving NFOS. However, those
approaches lack reasoning support on the system behaviour
and are thus unable to, e.g., search for optimal schedulings.

Behavioural analyses of variable systems were addressed
by variability-aware model checking against functional re-
quirements (challenge FCB) [20]–[23] or one particular non-
functional aspect (e.g. real time [24]–[26], reliability [27],
[28], income [19], quality of service [29]). Resource-optimal
execution [30]–[33] and worst-case execution time [34] are
still determined product by product. Also, contrary to our
framework, these approaches are unable to automatically map
variable workflow specifications on configurable platform de-
scriptions in order to infer a system design space. Therefore,
applying them obliges to manually model and assess all
possible systems designs. They thus inefficiently tackle NFOB.
Even when both levels are captured in software/hardware
product lines with dependencies and constraints [35]–[40], the
expressiveness is also insufficient, because either behaviour is
not considered or only functional requirements are checked.



Some system design frameworks [4], [41]–[48], model,
assess and optimize quality attributes (NFB and NFOB),
but do not capture nor manage all variability dimensions.
Specific techniques attempt to efficiently handle either plat-
form variability [49]–[51], application variability [52]–[55]
or deployment variability [56], but they are limited to one
dimension at a time and cannot reason on the whole problem.

Other approaches [57]–[59] tackle both functional and
platform variabilities by focusing on an optimal platform
configuration for a multi-variant application. Contrarily to our
solution, they do not find a design (i.e., a mapping of a
functional variant onto a platform configuration) that ensures
an optimal execution. Our recent work [23] can capture and
reason on variability at all three levels. It is, however, limited
to functional requirements (challenges FCS and FCB).

IV. OVERVIEW OF THE FRAMEWORK

Our approach follows the model-driven Y-Chart process [4],
[5] which explicitly separates application and platform. This
allows for the modular specification of, and the reasoning
on, the different parts of the system. As shown in Fig. 4,
our framework involves several models and processes. On the
left, the inputs are application and platform models such as
those of Fig. 2 and Fig. 3. Domain experts are expected to
model the application as an extended concurrent data-flow
model with quality attributes. The model contains the classic
structure and behaviour of the data-flow (data, task, edge)
and its variability. Additionally, platform experts provide the
platform specification as a templated concurrent component-
based system, which also captures platform variability.

First process (detailed in Sec. V): from the input models
the framework generates a variability-intensive design space
that captures all valid deployment mappings of the variable ap-
plication onto the configurable platform. A mapping basically
allocates tasks to processors and data to memory components.

Second process (detailed in Sec. VI): from the design space,
we generate representations that allow for reasoning on the
structure and the behaviour of all designs. In addition to the in-
put models, experts define the NF requirements as constraints
and a cost function representing trade-offs between quality
attributes. To relate NF requirements with the design space,
we rely on feature models with quality attributes [10], [14]
for the structural part, and on featured transition systems [22]
with added weights [60] for the behavioural part.

Third process (detailed in Sec. VII): we reuse feature-
model reasoning and apply our new model-checking algo-
rithms to identify the designs that meet the requirements (FCS,
FCB, NFS and NFB) and are optimal (NFOB). Addition-
ally, we can provide the execution traces that optimize the
quality attributes while satisfying the requirements. Such a
trace shows not only the designs able to execute it but also
the behaviour it exhibits (i.e., how the application tasks are
executed and scheduled onto the platform), thereby helping
the upcoming engineering of the designs.

V. APPLICATIONS, PLATFORMS AND MAPPINGS

To model the application, the platform and their quality
attributes, we extend our former modelling framework [23] to
support NF requirements, as it is limited to checking designs
that satisfy the FC requirements. Thus, we define formal
models for variable dataflows and configurable platforms.

Definition 1: A variable data-flow graph is a tuple V DG =
(N, P, E, Ψ, χd) where N = T ∪ D is a set of nodes (T
are tasks and D are data); P is a set of communication paths
by which data flows between producers (tasks and data) and
consumers (tasks); E ⊆ N×P×T is the set of flow processing
between producers and consumers via available paths; Ψ is
a set of attributes; χd : N → (Ψ →

⋃
ψ∈Ψ ν(ψ)) →

{true, false} is a function that associates a node n to the
set of values that (all or a subset of) the attributes in Ψ can
take, where ν(ψ) is the finite set of values that ψ can take. �
Intuitively, these graphs encode two forms of variability. The
first consists of variations in the data flow, as we allow data
paths to have multiple connected producers and consumers;
this follows the same approach as in variable workflows [57].
The second lies in the alternative attribute values that a node
can take. For example, consider again Fig. 2. We see that
datum D2 can have three size values. This corresponds
to a design variation of the application (i.e. the size of
the processed data). On the contrary, the quality of D2
represents the impact of data size on the overall quality of
the system, which is also determined by the quality value of
B. Thus, the overall quality depends on (i) the size of D2
and (ii) whether A or B consumes D1. In our case study,
the property value of the system is obtained by summing the
property values of its constituents. We make this assumption
in the rest of the paper, without loss of generality: one can use
instead other aggregation functions (e.g. average, maximum).

Our definition of χd allows one to define cross-cutting
constraints over the attribute values of a given node n. For
instance, the quality value of D2 is directly linked to its
size property: a size of 256 leads to a quality of 0,
512 to 1, and 1024 to 3. We see that χd(n) defines which
valuations of the attributes are valid altogether. This flexible
definition, akin to the notion of configuration of non-boolean
parameters [61]–[65], can express that some attribute values
are forbidden in n, and that the value of given attributes in n
restricts the values of the others.

Definition 2: A variable resource graph is a tuple V RG =
(R,C,Θ,Ψ, χr) where R = P ∪S is a set of resources (P are
processors and S are memory storage); C ⊆ (S×P )∪(P×S)
is a set of connections between processors and storage, where
(p, s) ∈ C (resp. s, p ∈ C) means that processor p writes
from (resp. reads to) storage s; Θ : 2R → {true, false}
encodes which subsets of resources constitute a valid platform
configuration; Ψ is a set of attributes; χr : R → (Ψ →⋃
ψ∈Ψ ν(ψ)) → {true, false} associates a resource r to the

set of values that the attributes in Ψ can take. �
The function χr is defined similarly to its counterpart

in variable data-flow graphs and offers the same benefits.
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Another source of variability encoded by this model comes
from the optional nature of resources, that is, two variants
of the platform may differ by their constituent resources. Θ
symbolically encodes which subsets of resources constitute a
valid platform in the form of Boolean constraints.

The third and last part of our formal model is the mapping
rules that must be satisfied to deploy any given applica-
tion variant on any given platform variant. These rules are
automatically generated from the variable data-flow graph
and the variable resource graph. A mapping allocates each
task to at least one processor function, each datum to at
least one memory storage, and each path to at least one
buffer or memory storage. A valid mapping must ensure that
the required data can be read and written by the hardware
functions using them. For each path p, producer node i and
consumer task o of p, there must exist a buffer or storage b
associated to p, a function fi associated to i, and a function
fo associated to o, such that fi can write to b and fo can read
from b.

Altogether, the two graphs and their mapping rules con-
stitute the variability-intensive design space, as they define
the set of the design alternatives that can result from a valid
deployment of a variant of the application onto a configuration
of the platform.

VI. ENABLING REASONING ON THE DESIGN SPACE

From the variability-intensive design space, we generate
intermediate representations to reason on the structure and the
behaviour of all variants and on their quality attributes.

In product-line engineering [66], structural variability is
commonly addressed by modelling features and their inter-
dependencies as a feature model (FM) [67]. Since we consider
NF requirements, we use an extension of FMs where features
have quality attributes [10], [14], [68], which we name Priced
Feature Model (PFM). Reasoning on the PFM allows for
determining which design variants satisfy the requirements that
depend on the structure of the design (FCS and NFS).

Definition 3: A PFM is a tuple pfm = (F,Q,Ψρ, η,Ψτ )
where F is a set of Boolean features; Q is a set of positive
real-valued quality attributes; Ψρ is a set of cross-cutting
constraints over F defining which subsets of features form
a valid variant; η : F × Q → R+

0 is a function defining how

each f ∈ F changes the value of each q ∈ Q; Ψτ is a set
of constraints over Q defining what are the valid aggregated
values for a given attribute q. The semantics of a PFM is a
partial function JpfmK : 2F → Q→ R+

0 such that (i) JpfmK
is defined only for the valid variants: F ′ ∈ dom(JpfmK) ⇔
F ′ |= Ψρ; (ii) the aggregated value of each attribute q satisfies
the constraints: ∀q ∈ Q : η(F ′, q) |= Ψτ ; (iii) each attribute is
associated with its aggregated value: JpfmK(F ′, q) = η(F ′, q)
where η(F ′, q) is the aggregated value of q in the variant
represented by F ′ ⊆ F . �

An excerpt of PFM is shown in Fig.5. Each variation point
that may occur in the application (e.g., consumer of P1 is
A or B), platform (e.g., RAM is present or not) or mapping
(e.g., D1 can be stored in ROM or RAM) gives rise to an
optional feature in the PFM. The attributes representing design
variations (e.g. the size of D2) are transformed into alternative
features, while those representing quality attributes (e.g. cost
of manufacturing) become the PFM’s quality attributes. Ψρ

results directly from the mapping rules (3a and 3b), the
presence conditions Θ between resources (5), consistency
rules requiring that alternative application node or optional
resources used in the mapping become mandatory (1,2,4), and
constraints over attribute values encoded in χd and χr. Ψτ

correspond to the NF requirements defined by the engineers.
Finally, η is obtained from χd and χr.

To check requirements that depend on behaviour, we need
to systematically evaluate all executions of all design variants.
A common approach to achieve this for a single design
is to model-check an automaton modelling the system be-
haviour [69], [70], which results from the scheduling [71]
of an application automaton on a platform automaton. These
approaches, however, cannot handle variability and are thus
limited to one system at a time. Accordingly, we propose to
generate, from our variability-intensive design space, a Fea-
tured Weighted Automaton (FWA) [60] – a recent formalism
that combines featured transition systems [22] with priced
automata [72]. Basically, FWA is a variability-aware, weighted
extension of finite state machines where each transition t
is annotated with a formula defining (i) which variants can
execute t; and (ii) conditional weight values that depend on
the variant executing t. This formula, named weighted feature



Fig. 5: An excerpt of the PFM corresponding to Fig. 2 and 3.

expression, allows one to represent compactly the evolution of
quality attributes as the execution of the variants progresses.

Definition 4: Let F be a set of features and {τ1 . . . τn} an
ordered set of n positive real-valued weights. Then a weighted
feature expression is a (possibly partial) function γ : 2F →
Rn≥0 that associates a variant F ′ ⊆ F with a vector w such
that wi is the value of the i-th weight for F ′. �

Intuitively, the weighted feature expression γ associated to a
given transition t is such that a variant F ′ belongs to dom(γ)
if and only if F ′ can execute t, and γ(t) returns the value of
t’s weights for F ′. In our case, each weight corresponds to a
distinct quality attribute and represents the value added to this
attribute when F ′ executes the transition t.

Definition 5: Let T = {τ1 . . . τn} be a set of positive real-
valued, quality attributes and pfm = (F,Q,Ψρ, η,Ψτ ) be a
PFM, such that Q ⊆ T . A FWA over T and pfm is a tuple
fwa = (S, s0, sf , T, γ→) where S is a set of states, s0 is the
initial state, sf is the final state, T ⊆ S × S is the transition
relation, and γ→ : T → 2F → Rn≥0 associates each transition
with a weighted feature expression. �

A FWA defines, for each variant F ′ ⊆ F , the set of
paths starting from s0 to sf that F ′ can execute, together
with the weight vector associated to each path: ∀F ′ ⊆ F :
JfwaK(F ′) = {(p, w) ∈ S+ × Rn≥0} where p = s0 → · · · →
sk = sf and such that (i) p exists in fwa: ∀j : 0 ≤ j < k :
(sj , sj+1) ∈ T ; (ii) all transitions of p are executable by F ′:
F ′ ∈

⋂k−1
j=0 dom(γ→(sj , sj+1)); (iii) w is the sum over all

associated weight vectors: w = Σk−1
j=0γ→(sj , sj+1).

Note that we assume all quality attribute values to be
positive. Negative values are supported modulo transformation.
In PFM, one can replace negative values on a feature by
positive values on the alternative features. In FWA, one can
replace negative values on a transition by positive values on
the alternative transitions.

From the design space, we generate a network of FWA,
where each source datum, task, processor and memory storage
corresponds to a distinct FWA whose states and transitions
encode the different steps of their process. Data automata
implement the process of sending the data onto a task au-
tomaton, which itself transmits the data to the automaton of
the processor that provides the function whereon the task

Fig. 6: An FWA modelling memory storage behaviour.

is mapped. The automaton of a processor models standard
processing pipeline behaviour [23]. During this processing, the
processor can store input and output data by transferring them
to its dedicated storage automaton.

An excerpt of FWA modelling storage behaviour is shown in
Fig. 6. It models memory read and write via input/output inter-
faces while checking that memory capacity is never exceeded.
Weighted feature expressions occur in the transitions of the
hardware resources automata (i.e. processors and memories)
that correspond to processing instructions and memory ac-
cesses, as these operations impact the “execution time” quality
attribute. In the excerpt, such an expression is shown in pink
and models that the increase of time depends on RAM fre-
quency. The automaton modelling all the designs results from
the parallel composition of the individual automata, which
can synchronize their transitions on specific synchronization
actions (e.g. the transfer action in Fig. 6 sends data only
when another FWA executes the corresponding action).

Our FWA differs from that of Fahrenberg et al. [60]: (i)
ours is linked to a PFM to also check structural requirements;
(ii) we support parallel composition and consider time as a
special weight in that we execute fastest actions first and
dynamically update the remaining time delay of other parallel
actions to simulate time elapsing; (iii) Fahrenberg et al. [60]
represents γ→ as a partition of the set of variants because their
verification algorithm – which is not tooled – relies on matrix
representations, whereas ours relies on antichains [73] to scale
wrt. the large state space incurred by our evaluation cases.



VII. ALL-IN-ONE VERIFICATION AND OPTIMIZATION

Our FWA formalism allows us to design a first algorithm to
solve all challenges FCS, FCB, NFS and NFS for all variants
at once. The key idea is to perform an exploration of the state
space of the automaton in search of paths that can reach the
final state while satisfying the FC and NF requirements.

The first step filters out variants that do not satisfy PFM
constraints Ψρ and Ψτ , thereby ensuring that the structure of
the variants does not violate the requirements. Then we explore
all paths starting from the initial state. As we visit a new state,
we retain the set of variants able to execute the sequence of
transitions that led to the state. We also accumulate the sum of
the weights over all executed transitions and for all variants
and assert that these values satisfy the NF requirements. In
the end, we obtain a set of paths going from the initial to the
final state, together with, for each path p, (a) the valid variants
that can execute p and (b) the values of the quality attributes
corresponding to p and each of those variants.

This first algorithm finds all variants satisfying the require-
ments. We have to find what are the optimal variants satisfying
the requirements while providing the best values for the quality
attributes. Since these attributes can be antagonistic (e.g.,
manufacturing costs can decrease to the detriment of rendering
quality), this is assimilated to multi-objective optimization. To
drive our search for optima, we define a cost function over the
attributes: let ζ(τ1, . . . , τn) = θ1 × τ1 . . . θn × τn be our cost
function, such that θi ∈ R+ is the coefficient associated to the
attribute τi. Then, our objective is to discover the variant that
minimizes ζ. This is achieved by modifying our exploration
algorithm in order to (i) record the optimal variants and their
associated attribute values, and (ii) stop exploring a path as
soon as all quality attributes reach a worse (i.e. higher) value.
This latter heuristics requires the cost function to be monotonic
as more states are explored along a given path; hence why we
assume that all θi and τi are ≥ 0. Negative values can be
supported by disabling the heuristics (Line 7 in Algorithm 1).

Algorithm 1 details this exploration procedure. It takes as
input a FWA, a PFM and a cost function ζ. It iteratively
computes R, the reachability relation that associates each state
s to the γ function encoding all variants that can reach s and
their associated attribute values. At first (Line 1), R contains
s0 together with γ0, such that dom(γ0) = dom(JpfmK) and
γ0(F ′, τi) = 0 for any variant F ′ and attribute τi. Then,
we start the exploration from s0 (L3–4) and iterate over the
states encountered successively (L5–20). At each iteration, we
retrieve the state s reached last, together with its associated γ
function (L6). Here, γ encodes the variants that can reach s
and associates to each variant the values of its attribute values
when following the path that led to s. If all these variants yield
a value for ζ greater than the current optimum ζ∗ (L7), we do
not pursue the exploration further from this state. Otherwise,
we distinguish between the cases where s is sf (L8–10) and
where it is not (L11–18). In the first case, we assign ζ∗ to the
minimal cost over all variants that can reach the final state. In
the second case, we compute the set of successors of (s, γ)

Input: fwa = (S, s0, sf ,→, γ→);
pfm = (F,Q,Ψρ, η,Ψτ ); ζ : ζ(τ1, . . . , τn) ∈ R+

Output: F∗, the set of optimal variants that reach sf
ζ∗, their associated minimal cost

1 R← {(s0, γ0)};
2 ζ∗ ← +∞;
3 Stack ← [];
4 push({s0, γ0}, Stack);
5 while Stack 6= [] do
6 (s, γ)← pop(Stack);
7 if ∃F ′ ∈ dom(γ) : ζ(γ(F ′)) ≤ ζ∗ then
8 if s = sf then
9 ζ∗ ← min

F ′∈dom(γ)
ζ(γ(F ′));

10 end
11 else
12 foreach (s′, γ′) ∈ Post(s, γ) do
13 if 6 ∃(s′, γ′′) ∈ R : γ′ � γ′′ then
14 push((s′, γ′), Stack);
15 R← R t {(s′, γ′)};
16 end
17 end
18 end
19 end
20 end
21 F∗ ← {F ∗ ⊆ F |(sf , γf ) ∈ R ∧ γf (F ∗) = ζ∗};
22 return (F∗, ζ∗)

Algorithm 1: optima(fwa, pfm, ζ)

(L12), given by Post(s, γ) = {(s′, γ′)|(s, s′) ∈ T ∧ γ′ =
γ ⊗ γ→(s, s′)} where dom(γ1 ⊗ γ2) = dom(γ1) ∩ dom(γ2)
and ∀F ′ ∈ dom(γ1⊗ γ2) : (γ1⊗ γ2)(F ′) = γ1(F ′) + γ2(F ′).
This means that γ′ is defined only for the variants that can
reach s and execute the transition from s to s′, and it sums
the attribute values of each variant in γ with its attribute
values on the transition (s, s′). Then, we add a successor iff
it improves the reachability relation (L13), that is, if for at
least one variant, there is no element in R that gives a better
value for all attributes. This rule ensures that infinite cycles
are avoided. To do so, we use the comparison operator � over
weighted feature expressions, defined as γ1 � γ2 ≡ ∀F ′ ∈
dom(γ1) : γ1(F ′) ≥ γ2(F ′). If R is improved, we continue
the exploration (L14) and add the successor to R (L15) using a
particular union operator t that keeps R as an antichain. This
is achieved by a split-and-combine algorithm along the lines
of [24], [60], which we do not detail due to lack of space.
Finally, we return the set of variants F∗ that can reach sf
while minimizing ζ, together with the optimal cost (L21–22).

VIII. IMPLEMENTATION AND EVALUATION

A. Implementation

We implemented our framework as a toolchain combining
a new Java tool with (extensions of) existing model checkers.



Our Java tool1 consists of two modules, each of which imple-
ments a process depicted in Fig. 4. The first one allows for
specifying a variable data-flow graph and a variable resource
graph via a fluent API. Then, it calls our mapping algorithm
to generate the design space. Second, an automata generator
takes as inputs the design space, NF requirements and the
cost function to generate an FWA with its associated PFM.
Two concrete syntaxes are used, as we can then invoke two
independent model checkers to search for optima.

One is UPPAAL-CORA [32], an established tool to carry
out cost-optimal reachability analyses that we reuse as is with
optimal settings. It takes as input a network of Linearly Priced
Timed Automata (LPTA) [74]. LPTA can be regarded as FWA
without variability, and as such can only encode the behaviour
of the variants separately. Our automata generator actually
transforms our design space into a network of LPTA in the
UPPAAL-CORA format. It also generates an additional au-
tomaton dedicated to configuring the other LPTAs before their
execution starts, by setting variables that correspond to the
variation points of the design space. We thus follow the 150%
model approach [75]. Additionally we use SPLOT’s feature
model reasoning library [76] to restrict the configuration to
valid products. Then, UPPAAL-CORA can find an execution
of a variant that reaches the accepting state while satisfying
all the NF requirements and optimizing the cost function.

The other model checker is ProVeLines [77], which can
check variability-intensive systems. We chose this tool be-
cause it was extended over the years, by both its original
developers [77] and others [19], [29], to solve multiple model-
checking problems including real-time verification [24]. We
fully implemented Alg. 1 in a new version of ProVeLines.2 To
achieve this, we first extended ProVeLines’ input language –
Promela [78] – to associate Promela statements with weighted
feature expressions. Actually, each Promela process encodes a
single FWA. Like UPPAAL-CORA, our ProVeLines extension
is able to provide the execution trace associated to an optimal
variant. The difference lies in that weighted feature expressions
allow an all-at-once verification of all variants. To encode
the structural variability, we generate a PFM in the format
supported by ProVeLines, viz. TVL [64], [79].

B. Qualitative Evaluation

Our first evaluation assesses the usefulness of our approach
for practitioners on the basis of Visteon’s instrument cluster
system (see Sec. II). More precisely, our evaluation concerns
an important module of the whole system. Yet, it remains a
real-world case that was selected by our partner as represen-
tative in terms of size, complexity and variability.

With the assistance of an expert engineer, we reverse-
modelled the variable application and platform of the existing
system. Some technical simplifications were made as we aim
at facilitating early design decisions: we do not consider data
and parameters that only have minor impact on the system’s

1https://bitbucket.org/SamiLazreg/enlighter
2https://bitbucket.org/maxcordy/provelines-cora

runtime; we abstract away from data content and consider data
sizes as the most influential factor for runtime performance;
we do not model mechanisms like internal cache replacement
policies, AXI bus and internal backup communication buffers
as these implementation details have no fundamental impacts
and are handled by engineers later in the development process.
These simplifications were deemed harmless by our industrial
expert and did not endanger the correctness of our results.

This results in an application model with two input data
types, four tasks and 32 flow processing, and in a platform
model with one ROM, one RAM, one DCU and two GPUs.
In total, the variability yields 1,548,288 candidate designs.
Our generated mapping rules reduced this number to 1,878.
By adding the NF requirements rendering quality ≥ 2 and
manufacturing cost ≤ 280, we further diminish this number to
894. By checking the behaviour against the requirements (i.e.
the end of execution is reached within 840 processing cycles)
we obtain 279 variants that satisfy all requirements. Incorpo-
rating the cost function representing trade-offs defined with
the expert (i.e. with θtime = 1, θm.cost = 10, θr.qual. = 100)
yielded 6 optimal variants with time = 642, manufacturing cost
= 140 and rendering quality = 2.

We performed the behavioural analyses using both
UPPAAL-CORA and ProVeLines, which provided the same
results for all variants. This increases our confidence that the
transformation of the design space into LPTA and Promela
is consistent. Expert’s confirmation is also needed, though,
as mistakes may originate from the input models themselves.
The expert validated that the optima returned by our tools
conform to the very best designs that the company could
produce over the past years. The quality attributes’ values
also corresponded to what is expected. Regarding execution
time (cycles), there are slight differences due to hardware
modelling simplifications; however, the numbers are close to
reality (< 10% difference) and the relative orders between
variants are preserved. In the end, the expert validated that
our approach helps make optimal design decisions that will
provide significant gains at all stages of development.

C. Quantitative Evaluations

The second part of our evaluation focuses on the efficiency
and the scalability of our approach in terms of execution time.
This is indeed essential, as the total number of variants can
be high in real-world systems. In addition to the instrument
cluster case study (numbered case #0), we constituted a
dataset of realistic topologies that were generated based on
our partner’s history. To do so, our model generator relies
on multivariate Gaussian distributions whose parameters were
settled on the basis of Visteon’s past systems. Thereby, it
ensures that the characteristics of our generated data-flow and
platform models are similar to real-world cases. Amongst
all the models we generated, we selected 11 of them that
appropriately summarize our findings. These models exhibit
different state densities (i.e. average number of system states
per variant) and variability intensities (i.e. numbers of valid
variants to check). We carried out three series of experiments



TABLE I: Results for the three quantitative evaluations. Times are in seconds.

(1) FCS + FCB + NFS + NFB (2) NFOB (3) NFOS Priorization
Product-based Family-based P.V.L. optim UPP.-CORA ClaferMOO + P.V.L.

case density variants time explored time explored time time time # OOS inc. %
Ins. Cl. (#0) 369 1,878 22.60 693,178 3.33 305,114 2.42 5.64 0.08 10 74.10%

Gen. #1 1,561 32 0.80 49,952 0.48 45,681 0.38 18.61 = = =
Gen. #2 2,250 64 2.72 143.968 2.10 124,004 1.27 39.59 = = =
Gen. #3 3,061 243 22.11 743,823 80.54 660,348 75.79 OoM. = = =
Gen. #4 1,656 516 16.32 854,996 10.95 777,616 8.23 17.60 2.32 129 9.19%
Gen. #5 2,256 1,152 55.48 2,599,393 40.17 2,217,593 29.77 OoM. = = =
Gen. #6 1,496 1,280 38.49 1,915,264 11.81 840,711 8.65 19.89 1.37 64 40.86%
Gen. #7 2,416 2,187 144.48 5,283,792 120.83 4,593,249 89.56 OoM. = = =
Gen. #8 1,461 2,592 109.96 3,785,940 35.01 1,032,639 24.40 OoM. 17.60 324 1.39%
Gen. #9 2,273 3,168 151.87 7,201,320 69.14 3,926,395 19.58 OoM. 6.21 792 9.81%

Gen. #10 1,609 12,288 395.64 19,777,536 148.71 6,570,642 75.97 OoM. 3.62 256 64,90%
Gen. #11 1,732 34,560 1344.23 59,858,304 227.31 10,871,741 72.17 OoM. 2.90 32 95.77%

presented hereunder. Table I provides the results, such that
the results of the different series of experiments are separated
by double borders. All benchmarks were run on a MacBook
Pro 2014 with a 2,8 GHz Intel Core i7 processor and 16 GB
of DDR3 RAM. We repeated each experiment ten times and
computed the average, although random deviations were low.

Product-based vs. family-based. Our first experiments
evaluate the efficiency of our method to verify that all variants
satisfy the requirements, that is, we consider only the four
challenges FCS, FCB, NFS and NFB. We compare the runtime
of our family-based verification algorithm with an alternative,
product-based one that checks each variant separately. Both
algorithms are implemented in ProVeLines, which allows us
to compare both approaches on an equal technological ground.

The results are presented on the left part of Table I. It
depicts, for each approach and model, the time needed to check
all variants as well as the total number of states that were
explored by each algorithm. In the family-based case, fewer
states are explored since one state common to multiple variants
is explored only once. For case #0, the family-based method
outperforms the product-based one, reducing the verification
time from 22.60 seconds to 3.33. The generated models allow
us to observe that the benefits of the family-based method
grow with the number of variants. When this number is low
(#1–3), our family-based algorithm either brings insignificant
improvements (#1 and #2) or performs way worse than the
product-based approach (#3). On the contrary, for models with
higher variability (#4–11) we obtain reductions in verification
time of minimum 16% (#6), most often substantial ones. The
most impressive results are obtained for the case with the
most variants (#11 – which is also the case where variants
share the most commonalities): our algorithm is 5.9 times
faster, achieving an absolute reduction of 1,116.92 seconds.
We also see that a higher state density often reduces the gain
offered by our algorithm (e.g. cases #5 and #7). To explain
this, we analyzed the models and observed that a small number
of variants exhibit a large state space, while all the others
encompass far fewer states. The variants thus have fewer states
in common, while family-based algorithms generally perform
better as variants share more commonalities. This also explains
the poor performance of our algorithm in case #3.

Optimization in ProVeLines and UPPAAL-CORA. Our
second experiment compares the efficiency of the two model
checkers to solve challenge NFOB, that is, we compare
UPPAAL-CORA cost-optimal reachability algorithm against
our Algorithm 1. The two tools present clear differences,
notably in history (UPPAAL-CORA’s development started in
the early 2000’s, while ProVeLines was released in 2013),
in focus (cost-optimal reachability in continuous-time models
vs. family-based model checking in discrete-time models) and
in input syntax (LPTA vs. Promela). Still, we believe this
comparison can highlight interesting research directions.

Results are given at the centre of Table I. Like any product-
by-product approach, UPPAAL-CORA suffers from every
increase in the number of variants, except for cases #4 and
#6 where it luckily alleviates complexity with branch-and-
bound optimizations. It systematically performs poorer than
ProVeLines. Even worse, apart from cases #0–2, #4 and
#5, UPPAAL-CORA consumes too much memory (> 16GB)
and raises a fatal error. We assumed two reasons behind
this. First, UPPAAL-CORA does not implement partial-order
reduction [80] and thus considers all possible interleavings
between LPTAs, including during their configuration. This
creates an exponential blow-up as the number of LPTAs
increases. Second, we use a model that encodes the behaviour
of all variants and thus accumulates all their state space. Yet,
applying an alternative, product-based approach where each
variant is turned into a separate model did not solve the
problem and even led to slower times. Process interleaving
is therefore responsible. One way to circumvent this is to
assign priorities over the automata. However, in most cases,
this will cause to miss better scheduling opportunities and will
yield suboptimal results. In spite of the disappointing results
for UPPAAL-CORA, the fact that it outperforms product-
based ProVeLines on case #0 tends to indicate that combining
our family-based algorithm with UPPAAL-CORA’s efficient
search heuristics can be a promising future work.

Through these experiments, we also observe that looking
only for optima in ProVeLines, as opposed to verifying all
variants, can yield significant reductions in execution time (up
to 68% in case #11). More importantly, computing the optima
without a family-based algorithm boils down to applying the



product-based algorithm used in the first series of experiments.
In this regard, our Algorithm 1 exacerbates the benefits of a
family-based algorithm. For the models with the most variants
(#9–11), Algorithm 1 is 5 to 128 times faster than the product-
based method. Interestingly, it seems to be way less affected
by the number of variants than the all-variant verifications.

Prioritization based on structural optima. The last part
of our evaluation studies whether the structural optima (i.e.
the solutions of NFOS) are sufficiently close to the overall
optima (i.e. the solutions of NFOB). If that is the case, solving
NFOS would yield an imperfect but relevant, cost-effective
solution, as structural optimality can be resolved statically, that
is, without requiring the exploration of a large state space. We
use the ClaferMOO tool [14], [81] to compute the structural
optima based on our PFMs. To complete the toolchain, we
extended it to generate PFMs in ClaferMOO’s format, as well
as our verifier module to retrieve the variants that are structural
optima and only allow these variants by adding a constraint
in the PFM. Then, we use ProVeLines in family-based mode
to assess the time needed to discover which structural optima
lead to the lowest cost function value, as well as the difference
between this value and that of the overall optimum.

Results are given on the right side of Table I. The first
two columns give the number of structural optima returned
by ClaferMOO, as well as the time needed to run ProVeLines
only on those structural optima. The last column gives the
increase of cost function, in percentage, due to considering
only structural optima instead of all variants. In cases #1–3,
#5 and #7, the variants differ only by their behaviour and are
thus all structural optima. For the other cases, we see that
ProVeLines’ runtime is dramatically decreased as it has to
check fewer variants. This, however, comes at the cost of a
notable increase in cost function value (up to 96%), except for
case #8 where it increases by less than 2%. We conclude that
structural optima are still far from being overall optima, and
thus are not sufficient. Yet, in some cases they can constitute
viable solutions to get a quick answer or when the state space
of the system is too large to be exhaustively explored.

D. Threats to Validity

Internal. The main threat to internal validity is the selection
of the used case study. Although it was built from specification
and feedback meetings with system and platform experts from
our partner company, it is a single case. Still, Visteon chose
it as being representative in terms of shape and complexity of
the data flow, the platform and their variability.

External. Several threats to external validity exist. First,
our scalability experiments have been conducted over large
but simulated data sets. We nevertheless expect the creation
procedures to respect the structure and behaviour of the
potential applications and platforms of our industrial partner.
More generally, we also expect the proposed approach to be
applicable in other domains where data flows can be an ap-
propriate modelling support, like stateless enterprise processes
with micro-services. On the platform side, the component-
based representation seems general enough to cover different

forms of deployment architectures, but we do not have any
evidence yet of this generalization possibility.

Second, satisfiability and optimality checking processes
depend highly on the level of detail and on the quality of
application and platform modelling. On the platform side, a
design not detailed enough could lead to loss of relevance in
the performance metrics, and could even produce false optimal
results. From the feedback we got from our industrial partner,
the level of detail is currently sufficient as it is at the level they
use to specify the platform when selecting suppliers. Still, in
other contexts, some details may be hidden due to intellectual
property management. As for applications, they are described
with data-flows that are well mastered by domain experts in
our case study, but they have been built manually. Reverse
engineering from existing application code could be envisaged
to build data-flow or at least templates of them, but their
quality would be directly related to the good organization of
existing software. More globally, as the engineers were able to
understand proposed designs that result from our framework,
machine learning technique fed by their feedback on good or
bad solutions could help when details are missing. Introducing
this in the framework remains an open issue.

IX. CONCLUSION

In many data-flow oriented embedded systems, three levels
of variability significantly increase the complexity of the
design space: variable high-level data-flows are deployed in
many different ways over highly configurable component-
based hardware platforms. We provided a modelling and
reasoning framework that unifies state-of-the-art techniques
on structural reasoning with a novel variability-aware model-
checking algorithm, which evaluates the functional feasibility,
the non-functional satisfiability and optimality on the whole
design space. This design space comes as a mapping between
two other models: one represents the variable applications with
a data-flow model complemented with quality attributes, the
other models platform variability through connected compo-
nents, also with quality attributes. We showed how the design
space is transformed into featured priced timed automata to
enable different reasoning and optimization operations.

The application of the proposed approach to a medium-scale
industrial case of an automotive instrument cluster demon-
strates its end-to-end ability to check and optimize a complex
design space. System experts revealed that, even on small data
flow and platform models, the optimal designs were non-trivial
to identify for them, giving us confidence on the relevance of
the approach. Experiments on large simulated design spaces
also show that the prototyped toolchain exhibits good scala-
bility and outperforms non-variability-aware solutions.

We believe that the models used in the framework (data-
flows and components) make the contribution potentially
applicable in different contexts. Our future works will start
with an extension of the framework to facilitate its usage,
introducing domain-specific languages for input models. We
also plan to conduct larger evaluations on different data flows
coming from various product lines of our industry partners.
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influence models for highly configurable systems,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 2015, pp. 284–294.

[12] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel,
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